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Abstract. Real world players often increase their payo¤s by voluntarily com-

mitting to play a �xed strategy, prior to the start of a strategic game. In fact,

the players may further bene�t from commitments that are conditional on the

commitments of others.

This paper proposes a model of conditional commitments that uni�es earlier

models while avoiding circularities that often arise in such models.

A commitment folk theorem shows that the potential of voluntary con-

ditional commitments is essentially unlimited. All feasible and individually-

rational payo¤s of a two-person strategic game can be attained at the equilib-

ria of one (universal) commitment game that uses simple commitment devices.

The commitments are voluntary in the sense that each player maintains the

option of playing the game without commitment, as originally de�ned.

1. Introduction

We study the following commitment folk theorem for a general �nite two-person

strategic game G: When an appropriate set of voluntary commitment devices D is

made available to the players, the Nash equilibria in the game with commitments,

GD, span all the individually-rational correlated-strategies payo¤s of the original
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game G. In particular, in a decentralized manner the players may commit to indi-

vidual devices that lead to fully-cooperative (Pareto e¢ cient) individually-rational

outcomes of the game.

A direct implication is that players do not have to resort to in�nite (or any)

repetitions in order to avoid con�icts (of the prisoners� dilemma type) between

cooperative and noncooperative solutions. The availability of su¢ ciently rich set

of individual commitment devices is enough to resolve such con�icts.

We emphasize that, at this stage of the research, our goal is only to map out the

mathematical possibilities of commitment devices. The commitment devices we

use are mathematical constructs, designed to illustrate the folk theorem above.

Further development of "natural" commitment devices is necessary for use in

a variety of real-life applications. The discovery or construction of such natural

commitment devices may, in some cases, directly improve the welfare of people and

organizations engaged in strategic interaction.1

Another implication is that voluntary commitment devices can be more e¤ective

than correlation devices, see Aumann (1974,1987). Correlated equilibria also o¤er

Pareto improvements over the Nash equilibria of a game. However, unlike the

commitment equilibria presented in this paper, they fall short of being able to

attain full cooperation in many cases. This paper is restricted to the simple setting

of two-person complete-information games, even though extensions to more general

settings seem plausible, see discussion in the concluding section.

While the illustration of the above folk theorem requires nothing beyond elemen-

tary mathematics, it introduces two modelling innovations. First, it avoid pitfalls

1There is a need to �rst study what conditions make devices natural. Such research, which may
involve issues from psychology, bounded rationality, etc., is left for future work.
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and circularities of conditional commitments by incorporating into the model a

simple notion of a well-de�ned commitment space. Second, in order to obtain

the full generality, especially in games that have no Pareto-e¢ cient pure-strategies

individually-rational payo¤s (unlike the standard prisoners�dilemma game, for in-

stance), our commitment space permits the use of jointly controlled lotteries, see

Blum (1983) and Aumann and Maschler (1995).

Referring to the main observation of this paper as a folk theorem is appropriate

for two reasons. First, this observation describes the same set of possible payo¤s as

the repeated-game folk theorem. Second, (and again in parallel to repeated games)

this type of phenomenon has been known to many authors in di¤erent contexts.

The earlier literature on commitments, however, only established possibilities of

partial cooperation in special cases, the current paper presents a general complete

folk theorem in a simple unifying model.

We next discuss commitments in real life and in some of the earlier theoretical

literature. Since the subject of commitments is too large for a full survey, we

selected examples that are helpful in explaining the contribution of the current

paper.

1.1. Commitments and conditional commitments. The observation that a

player in a strategic game can improve his outcome through the use of a commitment

device goes back to Schelling (1956 and 1960). For example, when a player in a

game delegates his play to an agent, with irreversible instruction to play strategy

X, the agent may be viewed as a device that commits the player to the strategy X.

The strategic delegation literature, see for example Katz and Shapiro (1985) and

Fershtman and Judd (1987) study implications of strategic delegation in economic
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applications. Fershtman, Judd and Kalai (1991) provide a partial delegation folk

theorem for a special class of games.

Indeed, real players often use agents and other commitment devices strategi-

cally. Sales people representing sellers, lawyers representing buyers, and sports

agents representing athletes are only a few examples. Early price announcements,

in newspapers, on the internet and in stores, are commitments to terms of sale

by retailers. Money-back guarantees are commitment devices used by sellers to

overcome informational asymmetries that may prevent trade. A limited menu of

options on an airline�s web page is a device that commits the airlines to not discuss

certain options that customers may wish to raise.

But real life examples display the use of more sophisticated, conditional, com-

mitment devices. For example, when placing an ad that states �we will sell X at

a price of $500, but will match any competitor�s price,�a retailer commits itself to

a conditional pricing strategy. Such conditional commitment can be more e¢ cient.

For example, in oligopoly pricing games match-the-competitors clauses make the

monopolist price be a dominant strategy for all sellers, see Kalai and Satterthwaite

(1986) and Salop (1986).

Legal contracts are another example of e¤ective conditional commitment devices.

Each player�s commitment to honor the contract is conditioned on his opponent�s

commitment to honor the contract. As Kalai (1981) and Kalai and Samet (1985)

show, under dynamic use of contracts, re�ned Nash equilibria must converge to

partially e¢ cient outcomes.
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Recently, Tennenholtz (2004) introduced a sophisticated model of conditional

delegation, called program equilibrium.2 In his model, every player in a game

delegates the choice of his strategy to a computer program. Each player�s selected

program reads the opponents�selected programs and outputs a (mixed) strategy

that plays the game on behalf of the player. Equilibria in the game of choosing

programs, called program equilibria, are more e¢ cient than the unmodi�ed Nash

equilibria of the game. But they fail to reach full e¢ ciency.

In general, however, conditioning requires caution, as conditional commitments

may fail to uniquely determine the outcome, lead to circular reasoning, or generate

programs that fail to terminate. For example, imagine that each of two retailers

places the following ad in the paper: �we sell X at a price of $500, but will undercut

any competitor�s price by $50.� Obviously, no pair of prices charged by the two

competitors is consistent with their ads, because each of the prices should be $50

lower than the other price.

Another example is the prisoners� dilemma game. If both players commit to

matching the strategy of the opponent then there are two possible outcomes: both

cooperate and both defect. But if one player commits to match and the other

commits to mismatch then there are no possible outcomes consistent with such

commitments.

Howard (1971) initiated a study of conditional commitments through the con-

struction of metagames. In order to avoid the contradictions and circularities

above, he constructed hierarchical spaces in which higher levels of commitments

2See McAfee (1984) for an earlier treatment of such concepts.
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are de�ned inductively over lower ones.3 However, perhaps due to its complex-

ity, Howard�s model of hierarchical commitments does not seem to lead to many

applications.

1.2. Our approach and main �nding. The current paper o¤ers two main contri-

butions. First, we propose a general model that encompasses the various approaches

and questions above without getting trapped in the de�nitional di¢ culties of con-

ditional commitments. Second, by proving a general full folk theorem, we show

that the potential of conditional commitment devices is essentially unlimited.

In our model each player may delegate her play to one of many conditioning

devices that selects her strategy in the game. We require that such a device con-

ditions on the conditioning device chosen by the opponent and not on the strategy

realized from the opponent�s conditioning device. To illustrate, in the newspaper

ad example this requirement means that every ad must determine a unique sell-

ing price for every possible ad of the opponent (and not for every price that may

computed from ads of the opponent). This requirement is important for having a

well-de�ned model that avoids the circularities discussed above. But it also re�ects

similar real-life restrictions. In the design of contracts, for example, parties use

lawyers with the hope that the outcomes of their commitments are well de�ned

under all conceivable circumstances.

For an arbitrary �nite two-person strategic game we construct a simple voluntary

complete device space. Being voluntary means that each individual player may

choose to commit to a device ahead of time, but may also choose not to commit

and just play the game as originally de�ned.

3Klemperer and Meyer (1989) and Epstein and Peters (1999) represent economics literature that
deals with related issues; but also with issues that are beyond the scope of the present paper.
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The completeness of the space means that a full folk theorem is obtained through

the play of its (one-shot) induced commitment game. The equilibria of the one-shot

commitment game span the convex hull of all the individually-rational correlated

payo¤s of the game without commitments. In particular, our folk theorem includes

all the distributions over payo¤ pro�les obtained from mixed correlated strategies.

As illustrated by the example later presented in Figure, this set can be much larger

than that achievable by earlier approaches.

2. A model of commitment devices

In what follows we restrict ourselves to a �xed 2-person �nite strategic game,

de�ned by a triple G � (N = f1; 2g; S = S1 � S2; u = (u1; u2) : S ! R2).

N = f1; 2g is the set of players, each Si is a non-empty �nite set describing the

feasible strategies of player i, and each ui is the payo¤ function of player i. We

use the standard convention where for every player i, player �i denotes the other

player.

A mixed strategy of player i is a probability distribution �i over Si, with �i(si)

describing the probability that player i chooses the strategy si. A pair of inde-

pendent mixed strategies � = (�1; �2) induces a probability distribution on S with

�(s1; s2) = �1(s1)�2(s2). A correlated strategy is a probability distribution  over

S. Clearly, every pair of independent mixed strategies induces the product distri-

bution described above, which is in particular a correlated strategy, but there are

correlated strategies that cannot be obtained this way.

For a correlated strategy  we de�ne the (expected) payo¤s in the natural way,

u() = E(u).
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A pure strategy Nash equilibrium is a pair of strategies s, such that for every

player i, ui(s)(= ui(si; s�i))� ui(si; s�i), for any alternative strategy si of player i.

A mixed strategy Nash equilibrium is a vector of mixed strategies � = (�1; �2), with

the same property, i.e., no player can increase his expected payo¤ by unilaterally

switching to a di¤erent mixed strategy.

We say that a correlated strategy  is individually rational if for all i 2 N ,

ui() � min��i max�i ui(�1; �2). For each player i let  i be some �xed member

of argmin�i(max��i u�i(�1; �2)), which we will call his minmax strategy. So when

player i�s strategy is  i, then player �i�s payo¤ is at most her individual rational

payo¤ .

2.1. Commitment devices and commitment games. In the model below, so-

phisticated players choose their conditioning devices optimally against each other.

For example, for a pair of devices (d�1; d
�
2) to be an equilibrium, d

�
1 must be the best

device that player 1 can select against the device d�2 of player 2, taking into account

the known responses of d�2 to hypothetical alternatives to d
�
1.

A non-empty set Di describes the conditional commitment devices (or just de-

vices) available to player i. With every device di 2 Di there is an associated device

response function: rdi : D�i ! Si where rdi(d�i) denotes the strategy that di

selects for player i, if it plays against the device d�i of the opponent.

However, to ease the discussion we use a more compact represention for the

response functions. The responses of the various devices of player i are aggregated

into one (grand) response function Ri : D1�D2 ! Si, where Ri(di; d�i) = rdi(d�i)

describes the strategy chosen by the device di of player i when matched against the

device d�i of the opponent. The two response functions together describe a joint
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response function R(d1; d2) = (rd1(d2); rd2(d1)) where R(d1; d2) describe the pair

of strategies selected by the devices when they respond to each other.

Note, however, that any function R : D1 �D2 ! S is a possible joint response

function. This reasoning motivates the simple de�nition of a commitment space

below.

De�nition 1 (Device Space). A space of commitment devices (also a device space)

of G is a pair D � (D = D1 �D2; R : D ! S).

Each Di is a nonempty set describing the possible devices of player i, and R is

the joint response function. The associated device response functions are de�ned

(as above) by rdi(d�i) = Ri(di; d�i).

A device space D induces a two-person commitment game GD (or device game)

in the following natural way. The feasible pure strategies of player i are the devices

in the set Di and the payo¤ functions are de�ned by u(d) = (u1(R(d)); u2(R(d)))

(we abuse notation by using the letter u to denote both the payo¤s in G and the

payo¤s in GD).

De�nition 2 (Commitment-Device Equilibrium). A commitment-device equilib-

rium (or device equilibrium) of the game G is a pair (D; �), consisting of a device

space D and an equilibrium � of the device game GD.

Clearly, the pair of payo¤s of any pair of mixed strategies in the device game,

including any device equilibrium, are the payo¤s of some correlated strategy in G.

Of special interest to us are the equilibrium payo¤s in voluntary commitment

spaces. These allow each player i to play the game G as scheduled, without making

any advanced commitment. In other words, he can choose any G strategy si 2 Si
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without conditioning on the opponent�s choices and with the opponent not being

able to condition on si. Formally, we incorporate this into a device space by adding

to it neutral (non committal) devices.

De�nition 3 (Voluntary). The device space D is voluntary for player i if for every

strategy si 2 Si, his set of devices, Di, contains one designated neutral device sDi

with the following two properties.

(1) Unconditioned play: for every d�i 2 D�i, rsDi (d�i) = si.

(2) Private play: for every d�i 2 D�i; and si; si 2 Si, rd�i(sDi ) = rd�i(s
D
i ):

A voluntary device space is one that is voluntary for both players.

3. Elaboration on the model.

A trivial example of a voluntary commitment space is the game itself, with each

Di = Si , where GD = G. But all the examples discussed in the introduction,

delegation to agents, newspaper ads, contracts, program equilibrium, and many

more can be e¤ectively described by the model above. The next example illustrates

this point.

Example 1 (Price competition). Consider two retailers, 1 and 2, preparing to

compete in the sales of X in the upcoming weekend. The game G is described by the

(per-unit) prices that each retailer may charge, and the payo¤ of each retailer is the

pro�t realized after informed buyers choose who to buy from. Assume, for simplicity,

that there is a known demand curve, that buyers buy from the less expensive retailer,

and that if their prices are the same, the demand is equally split.

As discussed in the introduction, this game lends itself to the use of commitment

devices in the form of newspaper ads posted in Friday�s newspaper. To �t into the
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formal model above, we may let D1 and D2 describe (respectively) all the ads that

the two retailers are allowed to post. With the Di�s speci�ed, it is straightforward

to verify that ads lead to well-de�ned prices: one must check that for every ad of

player i, di, there is a well de�ne price of retailer i, rdi(d�i), resulting from every

competitor�s ad, d�i 2 D�i. This formulation disallows vague ads, like �I will

undercut opponents�prices by $50,� which fail to specify a response price to an

identical competitor�s ad.

Notice that the mathematical need for a well-de�ned model re�ects a legal real-

life need for coherence. Indeed, we often see ads of the type, �we will meet any

posted price of our competitors.� A restriction of this type may be described

by a model in which an ad consist of two items, a posted price, p, and a rule,

h, that responds only to posted (not computed) prices of the opponent. In this

case, the device set of player i consists of all such pairs (pi; hi), and if retailers

1 and 2 place the ads d1 = (p1; h1) and d2 = (p2; h2) then the selling prices are

R(d1; d2) = (h1(p2); h2(p1)).

3.1. More e¤ective model. Earlier attempts to deal with sophisticated condi-

tional commitments (without the use of well de�ned commitment device spaces)

lead to di¢ cult models. Howard (1971) wanted to describe a notion of a meta

strategy, one that conditions its choice of an action based on the action chosen by

the opponent. For example, a player in a one shot prisoners�dilemma game should

be able to match-the-opponent, and in e¤ect induce a tit-for-tat strategy in the one

shot game.

But this plan proved to be di¢ cult due to the issue of timing. How can a player

react to his opponent�s choice, if they play simultaneously?
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Howard�s solution was to construct an in�nite hierarchical structure of reaction

rules: At the lowest level each player chooses a strategy in the underlying game,

and at level t+ 1 he speci�es response rules to his opponent level t rules.

The model of the current paper o¤ers a simpler, more manageable solution to the

apparent contradiction between timing and commitment. This is possible because

a player�s device conditions on the device chosen by the opponent, and not on the

strategy produced by the opponent�s device. The following is a simple illustration

of this simple useful idea.

Example 2 (Divorce-settlement). The game is a simple model of divorce between

two players, he and she. The underlying game is exactly like the standard Prisoners�

Dilemma game with cooperative (c) and aggressive (a) strategies.

But assume now that each player has the option of choosing a lawyer to represent

him in the game and that lawyers are of two possible types: �exible (fl) and tough

(tl) (and lawyers know the types of other lawyers).

No matter who they face, tls choose the strategy a. But fls choose the strategy c

when they face an opponent of type fl, and choose the strategy a against all others.

A voluntary commitment-device space for the above situation may be described

by D � (D = D1 �D2; R : D ! S) as follows. Each Di = ffl; tl; cD; aDg and the

response function R is described by the table below.

Notice that the R-table describes the behavior of the lawyers. For example,

as can be seen in the top row, if player one commits to an fl device, he ends up

cooperating against an fl device of the opponent, but aggressing against all the

other opponent�s devices. The cD and aD devices satisfy the conditions of neutral

devices. For example, when Player 1 �commits� to cD, he ends up cooperating
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unconditially (no matter what device is chosen by the opponent). Moreover, his

choice is private, as non of the devices of Player 2 (in choosing an action for Player

2) ever di¤erentiate between the devices cD and aD of Player 1 (since the second

entries in the two bottom cells of every column are identical).

If one substitutes the prisoners�dilemma payo¤s in the sixteen cells in the table

(assuming that the lawyers fees are negligible :), it is easy to see that fl,fl is a

dominant strategy equilibrium. In e¤ect, this equilibrium employs a tit-for-tat type

of strategy to get cooperation in this one shot prisoners�dilemma game: a player

deviating from fl causes the opponent�s device to switch from c to a.

Pl 2

fl tl cd ad

fl c,c a,a a,c a,a

Pl 1 tl a,a a,a a,c a,a

cd c,a c,a c,c c,a

ad a,a a,a a,c a,a

4. A commitment folk theorem

4.1. Technical subtleties. Unlike the example above, where the construction of

a cooperative commitment equilibrium is easy, the proof of a general folk theorem

is more subtle. Before continuing with the formal part, we point to two of the

technical di¢ culties.

Example 3. (a modi�ed prisoners�dilemma: �ght-or-relinquish)
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Pl. 2

Pl. 1

fight relinq

fight 2,2 10,0

relinq 0,10 0,0

Here, the minmax strategies guarantee each player a payo¤ of at least 2. But

unlike in the standard prisoners�dilemma game, there is no pair of pure strategies

that simultaneously yield each player a payo¤s greater than 2. Yet a full folk

theorem should have Nash equilibria generating every payo¤ pro�le in the convex

hull of f(2; 2); (2; 8); (8; 2)g, for example (5; 5).

In the repeated-game folk theorem this is not a problem since the players can

alternate in playing the cells (fight; relinquish) and (relinquish; fight), and a

trigger strategy will induce the correct incentives to do so. But such alterations are

impossible if the game is played only once.

A second di¢ culty in the proof of a general commitment folk theorem is illus-

trated by the next example.

Example 4. (a game with �ghting options)

Copier

Trend setter

style A style B relinq

style A 1,3 3,1 10,0

style B 3,1 1,3 10,0

relinq 0,10 0,10 0,0
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0,0

0,10

10,0

1,3

3,1

feasible and
individually rational
payoffs

u1

2

Nash eq., Corr. eq.,
and minmax payoffs

u1

u2 prog. eq.
payoffs

Figure 1. The payo¤s achievable in Example 4. The full feasible
individual rational region is signi�cantly larger than that of the
payo¤s achievable by program equilibria. The unique Nash and
correlated equilibrium is (2,2).

This game is similar to the modi�ed prisoners� dilemma above, where in any

cooperative outcome one of the players relinquieshes. But in this game none of the

individually-rational feasible payo¤s (i.e., the convex hull of f(2; 2); (2; 8); (8; 2)g),

including the minmax payo¤s, are generated by pure strategies. Thus, when trig-

gering to noncooperation a player must mix :50� :50 between his style A and style

B strategies. But our de�nition of a commitment space prohibits commitment

devices that randomize.

This second di¢ culty is overcome by moving the randomization from the stage

of triggering to an earlier stage, when the player chooses a device. In the stage of

choosing devices the player randomizes, and chooses with probabilities :50� :50 a

device that triggers to style A or a device that triggers to style B. But doing this

may still not su¢ ce, since the chosen device is observable to the opponent�s device,

who would know whether the player plans to trigger him with the pure strategy

style A or the pure strategy style B.
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There are a variety of ways of dealing with this last di¢ culty. For example, a

player may choose a device that punishes any opponent�s device that conditions on

the punshing strategy of the player.

The device space constructed in our proof below is carefully chosen to be rich

enough in some aspects, but not so in others. It allows for jointly controlled lotter-

ies, a la Blum (1983) and Aumann and Maschler (1995), to replace the alterations

of an in�nitely repeated game by one stage randomization. But it disallows devices

that can react to certain pure choices made by the opponent ex-ante, as a way to

avoid the second di¢ culty discussed above.4

4.2. Formal statement and proof.

De�nition 4. A space C of commitment devices is complete for the game G, if the

payo¤ pro�le of every individually-rational correlated strategy in the game G can

be obtained at some (possibly mixed strategy) Nash equilibrium of the commitment

game GC

Theorem 1 (Commitment-device folk-theorem). For any �nite two-person game

G, there is a complete voluntary space of commitment devices C:

Proof. We �rst construct C. It will have an in�nite set of devices, to be used as

strategies in the commitment game GC. The strategies of a player i are a triples,

where the �rst part is an encoding of a correlated strategy, the second part is a

number in the interval [0; 1], and the third part is a fall-back strategy in Si. Let

M = jSj and let [M ] denote f1; 2; : : : ;Mg.

4This is done for simplicity in the proof of the folk theorem. One can produce alternative proofs
with more natural device spaces. Further discussion of related issues is o¤ered at the concluding
section of the paper.
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We now describe a method for encoding any correlated strategy  over S by a

unique x 2 �M = fx 2 [0; 1]M j
P

i xi = 1g, the simplex of dimension M � 1. The

important property is that there is a function f : �M � [0; 1] ! S such that the

probability that f(x; r) = s for a uniformly random r 2 [0; 1] is the same as the

probability assigned to s by . (There are several ways to achieve this, and any

other method of achieving it would be satisfactory.) For completeness, we give one

such encoding now. Any x 2 �M corresponds to a probability distribution over [M ]

by choosing r uniformly from [0; 1] and the following map g : �M � [0; 1]! [M ],

g(x; r) = min
�
j 2 [M ]

�� x1 + x2 + : : :+ xj � r
	
:

Finally, let � : [M ] ! S denote an arbitrary bijection from [M ] to S. The map �

should be �xed and known in advance to all players. Hence, �M gives a unique

encoding of correlated strategies over S, where the correlated strategy correspond-

ing to x 2 �M is chosen by picking r uniformly at random from [0; 1] and taking

f(x; r) = �(g(x; r)).

We can now specify C = (C (= C1 � C2) ; L). Ci = (�M [ f?g) � [0; 1] � Si.

The special symbol ? is necessary to make the game voluntary, and indicates that

the player wants to play the fall-back strategy, and L is de�ned by,

L
�
(x1; r1; s1); (x2; r2; s2)

�
=

8>>><>>>:
f(x1; r1 + r2 � br1 + r2c) if x1 = x2 and x1 6= ?

(s1; s2) otherwise

The expression r1 + r2 � br1 + r2c above computes the fractional part of r1 + r2.

Now let  be an individually rational correlated strategy of G. We will see that

there is a mixed device equilibrium of C with an outcome distribution that coincides
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with the correlated strategy . Let x be the unique encoding of  so that, for any

s 2 S, the probability that f(x; r) = s is equal to the probability that  assigns

to s. Take the mixed device for each player �i that chooses (xi; ri; si) by taking

xi = x (with probability 1), ri 2 [0; 1] uniformly at random and, independently, si

according to the mixed minmax strategy of player i.

To see that � = (�1; �2) has the desired properties, notice �rst that for any ri

chosen by player i, the equilibrium strategy of the opponent induces the distribu-

tion  on S. In other words, player i cannot gain by deviating from the uniform

distribution on his ri�s. Moreover, deviating by submitting a vector x0i 6= x, makes

him face the minmax distribution of his opponent, which can only decrease his

payo¤.

The game is voluntary because player i has neutral strategy (?; 0; si) for any

strategy si 2 Si. �

The proof of the theorem above uses in�nitely many commitment devices. Two

�nite folk theorems are presented in an appendix to this paper. One is an approx-

imately complete folk theorem with a �nite number of devices. The other shows

that an (exact) complete folk theorem with a �nite number of devices can only be

obtained for a highly specialized class of games.

5. Comparison with earlier notions

5.1. Comparison to correlated equilibria. As it turns out, the set of commitment-

equilibrium payo¤s is signi�cantly larger than that of correlated-equilibrium payo¤s.

For example, In the �ght-or-relinquish game above the only correlated equilibrium

payo¤s are (2; 2), whereas any payo¤s in the convex hull of ff(2; 2); (2; 8); (8; 2)gg

(including (5; 5)) can be obtained at commitment equilibria.
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Given a game G, there are some important epistemological di¤erences between

the devices used to amend G. Aumann�s (1974, 1987) correlation device outputs,

prior to the start of the game, a vector of individual private messages according to

a commonly known probability distribution.5 The players proceed to play G after

learning their private messages. Once a player received a signal he has no way to

a¤ect the other players�strategies.6

In the commitment setting, the game is amended with a commonly known space

of commitment devices (no probability distributions). The players may choose

individual commitment devices from this space. However, due to the conditioning,

by changing his own commitment a player may change the other players�strategies.

5.2. Comparison to delegation. The delegation folk theorem presented in Judd,

Fershtman and Kalai (1991) starts with a game G and states that the payo¤s of any

pure strategy pro�le of G that Pareto dominates some pure strategy Nash equilib-

rium of G, can be obtained at a Nash equilibrium of the game with delegation.

From a technical point of view, the proof of their delegation folk theorem is

relatively easy, since it bypasses the two technical di¢ culties discussed prior to the

proof of our folk theorem. Not surprisingly, the applications of their delegation

folk theorem are severely limited, as can be seen by the two examples above.

In the �ght-or-relinquish game, the only "new" equilibrium that may be deduced

from this delegation folk theorem is when both players fight. Thus, unlike our

commitment folk theorem (that enables payo¤s like (5; 5)), their delegation theorem

5To ease the discussion, we use the notion of common knowledge carelessly. As readers familiar
with the literature are aware, less than full common knowledge su¢ ces in statements made here.
6To generate the probability distribution of a correlation device one needs an external impartial
mediator, or, alternatively, use a system of devices that produces signaling that induce the desired
correlated distribution over the game outcome (see, Barany (1992), Lehrer (1996), Lehrer and
Sorin (1997), Ben-Porath (1998), Gossner (1998), and Urbano and Vila (2002)).
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o¤ers no Pareto improvements. In the game with �ghting options, which has no

pure strategy equilibria, their delegation folk theorem is vacuous.

5.3. Comparison with program equilibrium. Tennenholtz (2004) presents a

partial folk theorem using program equilibria: The program equilibrium payo¤s of

a game G consist of all the individually-rational payo¤ pairs that can be obtained

through independent (not correlated) mixed strategies of G. Applying the result of

Tennenholtz to the modi�ed-prisoners�-dilemma game above the largest symmetric

program-equilibrium payo¤s are (3 18 ; 3
1
8 ), short of the e¢ cient payo¤s (5; 5) that

can be obtained at a commitment equilibrium (as de�ned in this paper).

Tennenholtz�s programs may be viewed as commitment devices, but there are

important di¤erences between the formal models. A commitment device, as de-

�ned in this paper, outputs a pure strategy for a player. A program, in Tennen-

holtz�s model, outputs a mixed strategy for a player. Thus, for better or worse,

Tennenholtz�s programs are more sophisticated and o¤er more �exibility than our

commitment devices.

Given this added �exibility, one may expect Tennenholtz to get a larger, rather

than the obtained smaller, set of equilibrium payo¤s. But this is explained by

another important di¤erence. Tennenholtz�s analysis is restricted to the payo¤s

obtained through the use of pure-strategy program equilibria, while our model

allows for mixed -strategy commitment equilibria.

There are pros and cons regarding the di¤erences in the timing of randomization.

Since Tennenholtz allows his devices to output mixed strategies, it is easier in his

model to trigger punishing when the minmax strategy is not pure (recall the second

di¢ culty we mention prior to the proof of the commitment folk theorem).
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But there are advantages to allowing the mixing to be done ex-ante. First, it is

necessary for a full folk theorem. But also from a conceptual view point, ex-ante

randomization, done in a player�s mind prior to a choice of a strategy, may be less

demanding than having to construct devices that can randomize.

6. Additional remarks

6.1. On natural commitment devices and implementation. Cooperation ob-

tained through commitment devices is useful in real-life situations. But its applica-

bility depends largely on the availability of devices that are natural for such situa-

tions. We have discussed examples of natural devices: newspaper ads, delegates,

computer programs, etc. But our proof of a general theorem relies on devices that

are not natural for most real-life situations.

A formal investigation of natural commitment devices is a conceptual challenge

that would require considerations beyond the scope of this paper.

A related question is, where do commitment devices come from? Is there an

outside entity (other that the players of the game) able to construct commitment

spaces for the players, or are commitment devices something the players generate

on their on? Under the former narrower case, the study of commitment may be

viewed as a subarea of the implementation literature, see the survey of Jackson

(2001).7

But under the latter and more general case, the study of natural commitment

devices may lead to deeper issues about the evolution of language and vocabulary.

7Indeed, the paper of Monderer and Tennenholtz (2006) mentioned in out introductory footnote,
takes an implementation viewpoint on these issues.
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For example, what makes "match my competitors" ads natural? Could an evolu-

tion of language and communication devices lead to other, perhaps better, natural

commitment devices.

The implementation literature raises another issue. In the commitment folk

theorem we devise a complete commitment space, one that spans all the individually

rational correlated payo¤s in the game. But it may be desirable to construct

(natural) partial commitment spaces that span more restricted sets of payo¤s. For

example, it may be desirable to generate only the Pareto e¢ cient ones or even

subsets of these, like ones consisting of �fair�outcomes.8

6.2. Extensions to n-players. When dealing with more than two players, repeated-

game folk theorems bring about some modeling choices. For example, if player i

deviates from the equilibrium, can the remaining players secretly correlate their

future strategies in order to achieve a more e¤ective punishment against him? Dif-

ferent answers to the above question lead to di¤erent equilibrium sets.

Similar related choices must be faced when dealing with commitment devices of

more than 2 players. For example, in the two-player case studied in this paper we

assume that every player�s device can condition on (e.g., it sees) the device used

by his opponent. When we deal with more players, are all devices fully visible to

all the players�devices, or should we allow each coalition to have devices that are

only visible to the devices of its own members?

What equilibrium payo¤s can be obtained under a various visibility assumptions?

Can the results of Aumann (1961) on Alpha and Beta cores in repeated games be

reproduced in one shot games with commitment devices?

8Nash (1953), Rai¤a (1953) and Kalai and Rosenthal (1978) suggest examples of such commitment
spaces.
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6.3. Commitment in Bayesian games. Restricting ourselves to complete in-

formation games, the folk theorem above shows that strategic ine¢ ciencies may

be removed by commitments. The following example shows that one may expect

similar improvements with regards to informational ine¢ ciencies. Speci�cally,

commitments may be used as means for communication.

Example 5 (Hunting a hidden stag). Consider two players, 1 and 2, and three

locations, H1;H2, and H3. A prize is located at random in one of the three locations

(with probability 1=3 for each), and each player i , who is initially located at Hi , is

told whether the prize is at his location, or not. Following this, in one simultaneous

move, each player chooses one of the three locations. If both players choose the

location with the prize they are paid one dollar each, otherwise zero. Assuming no

communication, the highest achievable equilibrium payo¤ is 2=3 each.

When dealing with commitments in Bayesian games, there are several modeling

choices. For example, are the individual commitments done before or after the

private information is revealed. Assuming the latter, the example above illustrates

that, from considerations of Pareto e¢ ciency, commitment devices may serve as

e¤ective communication devices.

Consider a commitment space in which each player i has two devices, si (for

stubborn) and fi (for �exible). The device si chooses the location Hi no matter

what device is used by the opponent. The device fi chooses the location H�i

against the device s�i of the opponent, but chooses H3 against the device f�i of

the opponent. Consider the strategy pro�le where each player i chooses si when the

prize is at his location and fi otherwise. It is easy to see that this is an equilibrium

that guarantees that they both show up at the right place, whichever one it is.
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6.4. Uncertain, partial, and dynamic commitment. What can be achieved

by devices that are not fully observable? This issue has been partially studied

in the delegation literature. For example, Katz and Shapiro (1985) argued that

unobserved delegation could not really change the equilibrium of a game. On the

other hand Fershtman and Kalai (1997) have shown that under restriction to perfect

Nash equilibrium, even unobserved delegation may drastically a¤ect payo¤s.

Another important direction is partial commitments. What if the commitment

devices do not fully determine the strategies of their owners, but only restrict the

play to subsets of strategies, to be completed in subsequent play by the real players?

It seems that a fully developed model of commitments should allow for the

options above and more. It should be dynamic, with gradually increasing levels of

commitments that are only partially observable.

6.5. Contracts. While technically speaking the commitment equilibria discussed

in this paper are decentralized, they still require a high degree of coordination due

to the large multiplicity of the equilibria. This is an important issue when dealing

with the selection of contracts.

First, to �t into our formal model, imagine a possible transaction between a

seller and a buyer, conducted in a certain real-estate o¢ ce. The real estate agent

may have a large (possible in�nite) number of contacts around, and each of the two

players can choose to sign any of these contracts. But unless they both choose to

sign the same contract, the transaction does not take e¤ect. If there are positive

gains from the transaction, there is a large multiplicity of (equilibrium) contracts

that may be signed.
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Without communication, it is hard to imagine that the parties will sign the

same contract. But under nonbinding (cheap talk) communication, it is fairly

likely that they would coordinate and sign the same contract (as we observe in real

life situations). Thus, in situations where binding contracts are legal, contracts

combined with cheap talk are a natural and e¤ective commitment devices of the

type discussed in this paper.

But from the game theoretic perspectives, the contracts described above are

pure-strategy Nash equilibria. Thus they may not su¢ ce for generating the full

gains from cooperation as described in the commitment folk theorem.

To gain the full bene�ts, it may be desirable to mimic the ideas in the commit-

ment folk theorem by allowing strategic contracts. These would incorporate the

possibilities of jointly controlled lotteries into the contract agreement.

For a concrete example consider the (version of battle of the sexes) game de-

scribed below.

Pl. 2

Pl. 1

insist yield

insist 0,0 3,2

yield 2,3 0,0

For a helpful interpretation, imagine that there is one precious indivisible item

to be allocated to one of the two players (e.g., custody of a child). If one player

insists and the other one yields, the item is allocated to the insisting player. In all

other situations neither one of the players is allocated the item.

Can they sign a contract, regarding their chosen strategies, that guarantees the

(fair) allocation of the item to one of them? An obvious solution is a randomizing

contract. For example, this contract may stipulate that some impartial mediator
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will �ip a coin, if it shows H, they would play (insist; yield), and if it shows T ,

they would play (yield; insist).

But the use of the outside randomizing mediator may be avoided through the use

of a strategic contract. For example, each player would submit a sealed envelope

with an integer si = 1 or 2 together with a contract that states that if their integers

match, they would play (insist; yield) and if their integers mismatch they would

play (yield; insist). Under such a contract, submitting the integers 1 or 2 with

equal probabilities guarantees each player the expected payo¤ of 2.5, no matter

what integer the opponent submits.9

7. Appendix

7.1. Finite number of devices. The device space in the commitment folk theo-

rem is in�nite. It may be important to note that a �nite version approximation of

the above folk theorem can be made where correlated strategies have coe¢ cients

that are integer multiples of 1=n, meaning that the probabilities assigned to the

di¤erent strategies s 2 S are in the set
�
0; 1n ;

2
n ; : : : ; 1

	
. While this does not give a

full-folk theorem, it is su¢ cient for many practical purposes and has the advantages

of being �nite.

9The simultaneous submission of sealed envelope with an invisible integer can be replaced by the
submission of observable messages, under assumptions from the theory of cryptography, see Naor
(1991). For example, each player may openly submit with the contract a large integer that is the
product of two or of three prime numbers. The contact will condition, in the same manner as
the one above, on matching or mismatching the number of factors of the two submitted integers.
By current assumptions of cryptography, it is practically impossible for any player, other than the
one submitting the number, to know whether the observed submitted integer has 2 or 3 factors.
But it is trivial for the player who constructed the number to illustrate the answer to this question.
So in e¤ect, the observed submitted numbers still have "sealed" values of 2 or 3, until the players
"open" them by revealing their factorizations.
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Theorem 2 (Finite commitment-device folk-theorem). For the two player game G

and any n � 1, there exists a �nite voluntary commitment device space Cn =

(Cn; Ln) with a commitment game GCn that has the following property. Every

individually rational correlated strategy in the game G whose coe¢ cients are in�
0; 1n ;

2
n ; : : : ; 1

	
can be obtained as a (mixed strategy) Nash equilibrium of the com-

mitment game GCn. Moreover, the function Ln can be computed in time polynomial

in log(n).

The proof of the above theorem is nearly the same as that of Theorem 1. The

only di¤erence is that the correlated strategies (and simplex) are discretized to an

accuracy of 1=n and the players choose ri 2
�
1
n ;

2
n ; : : : ; 1

	
uniformly at random.

Such numbers are represented using O(log n) bits. The function Ln is straightfor-

ward to e¢ ciently compute, i.e., compute in time polynomial in the input length.

In some applications, a �nite number of commitment devices may be su¢ cient

to achieve a full folk theorem. It may be useful to know, however, that for the folk

theorem with the generality above (one complete commitment space that achieves

all equilibria of the game G) one needs in�nitely many devices, unless the game is

of a very narrow form. The following is a sketch of such a theorem and its proof.

Theorem 3. For any two player game G the following two conditions are equiva-

lent:

1. There exists a �nite device space C in which every individually rational cor-

related strategy in G can be obtained as a Nash equilibrium of GC,

2.The feasible payo¤s set of G is a rectangle with facets parallel to the axes.

Proof. If (2) holds, then there are four payo¤s in the game which are the extreme

points of the feasible set. Thus, one can de�ne a 2 � 2 device game in which each



28 ADAM TAUMAN KALAI, EHUD KALAI, EHUD LEHRER, AND DOV SAMET

player controls the payo¤ of the other and has no say over her own payo¤. The

equilibrium payo¤s in this game are the entire feasible set of G.

As for the converse, assume (1) and that (contrary to (2)) one the facets of G�s

payo¤s, say F , is not parallel to one of the axes. Since F is a facet of the feasible

set, in order to obtain a (correlated) payo¤ in F , all the payo¤s involved should be

also in F .

Let � = (�1; �2) be any equilibrium of GC whose payo¤ is in F and let C� = (

D�
1 �D�

2 ; T ) where each D
�
i denotes the supports of �i. The payo¤s of G

C� are all

in F . Moreover, � induces a full-support equilibrium of GC
�

.

Consider any subspace C0 = (D0
1�D0

2; T ) of C where all payo¤s of G
C0 are in F .

By a linear transformation of the payo¤s of player 1, GC
0
can be transformed to a

zero-sum game, say GC
0

0 . As a zero-sum game GC
0

0 has only one equilibrium payo¤.

In particular, all full-support equilibria of GC
0

0 induce the same payo¤.

Since GC
0

0 is derived from GC
0
by a linear transformation (of the payo¤s of one

of the players), any full-support equilibrium of GC
0

0 is a full-support equilibrium

of GC
0
. Consequently, any GC

0
has only one full-support equilibrium payo¤. Since

there are �nitely many subgames GC
0
in GC with payo¤s in F , and each has at most

one full-support equilibrium payo¤, there are only �nitely many equilibrium payo¤s

of GC in F . Thus, the equilibrium payo¤s of GC cannot cover all the correlated

equilibrium strategies payo¤s in F . This contradiction leads to the conclusion that

if GC is �nite, then all the facets of the feasible set of C are parallel to the axes. �



COMMITMENTS 29

8. References

Aumann, R.J. (1961), "The core of a cooperative game without side payments,"

Transactions of the American Mathematical Society, 98, 539-552.

Aumann, R.J. (1974), �Subjectivity and correlation in randomized strategies.�

Journal of Mathematical Economics, 1, 67-96.

Aumann, R.J. (1987), �Correlated Equilibrium as an Expression of Bayesian

Rationality,�Econometrica, 55(1), 1-18.

Aumann, R.J. and M. Maschler (1995), Repeated Games with Incomplete Infor-

mation, MIT Press.

Barany, I. (1992), �Fair distribution protocols or how players replace fortune,�

Mathematics of Operations Research, 17, 327-340.

Ben-Porath, E. (1998), �Correlation without mediation: expanding the set of

equilibrium outcomes by cheap pre-play procedures,�Journal of Economic Theory,

80, 108-122.

Blum, M. (1983), �Coin Flipping by Telephone: A Protocol for Solving Impos-

sible Problems,�SIGACT News, 15(1), 23-27.

Epstein, L. and M. Peters (1999), �A Revelation Principle for Competing Mech-

anisms,�Journal of Economic Theory, 88, 119-161.

Fershtman, C., and K. Judd (1987), �Equilibrium Incentives in Oligopoly,�

American Economic Review, 77(5), 927-940.

Fershtman, C., K. Judd and E. Kalai (1991), �Observable Contracts: Strategic

Delegation and Cooperation,�International Economic Review, 32(3), 551-59.

Fershtman, C. and E. Kalai (1993), �Unobserved Delegation,�International Eco-

nomic Review, 38(4), 763-74.



30 ADAM TAUMAN KALAI, EHUD KALAI, EHUD LEHRER, AND DOV SAMET

Fudenberg, D. and E. Maskin (1986), �Folk Theorem for Repeated Games with

Discounting or with Incomplete Information,�Econometrica, 54(3), 533-554.

Gossner, O (1998), �Secure Protocols or How Communication Generates Corre-

lation," Journal of Economic Theory, 83(1), 69-89.

Howard, N. (1971), Paradoxes of Rationality: Theory of Metagames and Political

Behavior , The MIT Press, Cambridge.

Jackson, M.O. (2001), �A Crash Course in Implementation Theory,� Social

Choice and Welfare, 18(4), 655-708.

Kalai, E. and R. W. Rosenthal (1978), "Arbitration of Two-Party Disputes under

Ignorance," International Journal of Game Theory, 7(2), 65-72

Kalai, E. and M. Satterthwaite (1986), �The Kinked Demand Curve, Facilitating

Practices and Oligopolistic Competition,� DP 677, Center for Math Studies in

Econ and Mgt Science, published also in Imperfection and Behavior in Economic

Organizations, R. P. Gilles and P. H. M. Ruys (eds.), Kluwer Academic Publishers,

1994, 15-38.

Kalai, E. (1981), �Preplay Negotiations and the Prisoner�s Dilemma,�Mathe-

matical Social Sciences, 1(4), 375-379.

Kalai, E. and D. Samet (1985), �Unanimity Games and Pareto Optimality,�

International Journal of Game Theory, 14(1), 41-50.

Katz, M. L., and C. Shapiro (1985), �Network Externalities, Competition, and

Compatibility,�The American Economic Review, 75(3), 424-440.

Klemperer, P.D., and M.A. Meyer (1989), "Supply Function Equilibria in Oligopoly

under Uncertainty," Econometrica, 57(6), 1243-1277.



COMMITMENTS 31

Lehrer, E. (1996), �Mediated talk," International Journal of Game Theory, 25,

177-188.

Lehrer, E. and S. Sorin (1997), �One-Shot Public Mediated Talk," Games and

Economic Behavior, 20(2), 131-148.

McAfee R.P. (1984), "E¤ective Computability in Economic Decisions," Univer-

sity of Western Ontario working paper.

Monderer, D. and M. Tennenholtz (2006), "Strong Mediated Equilibria," Discus-

sion Paper in the Department of Industrial Engineering, Technion, Israel Institute

of Technology.

Naor, M. (1991), �Bit Commitment Using Pseudo-Randomness,� Journal of

Cryptology, 4(22), 151-158.

Nash, J. (1953), "Two-Person Cooperative Games," Econometrica 21,128-140.

Rai¤a, H. (1953), "Arbitration Schemes for Generalized Two-Person Games,"

Annals of Mathematics Studies 28, ed. by Kuhn and Tucker, Princeton, 361-87.

Salop, S.C. (1986), "Practices that (Credibly) Facilitate Oligopoly Coordina-

tion," Analysis of Market Structure, Cambridge: MIT Press, 265-290.

Schelling, T.C. (1956), �An Essay on Bargaining," The American Economic

Review, 46(3), 281-306.

Schelling, T.C. (1960), The Strategy of Con�ict. Cambridge, Mass.: Harvard

University Press.

Tennenholtz, M. (2004), �Program Equilibrium�, Games and Economic Behav-

ior, 49, 363-373.



32 ADAM TAUMAN KALAI, EHUD KALAI, EHUD LEHRER, AND DOV SAMET

Urbano, A. and J.E. Vila (2002), �Computational complexity and communica-

tion: coordination in two-player games,�Econometrica, 70, 1893-1927.

College of Computing, Georgia Institute of Technology

E-mail address : atk@cc.gatech.edu

Kellogg School of Management, Northwestern University

E-mail address : kalai@kellogg.northwestern.edu

School of Mathematical Sciences, Tel Aviv University and INSEAD

E-mail address : lehrer@tau.ac.il

Faculty of Management, Tel Aviv University

E-mail address : samet@tau.ac.il


