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Combinatorial Auctions: Allocate K items to N people.

The allocation to i is xi ∈ {0,1}K where xi
k = 1

if and only if i gets item k.

Feasibility : x = (x1, ..., xN) ∈ F if and only if

xi ∈ {0,1}K and
∑

i xi
k ≤ 1 for all k.

Utility for i: vi(xi, θi)− yi where θi ∈ Θi.

[For reverse auctions, use yi − ci(xi, θi).]
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Is there a combinatorial auction problem?

If agents are obedient and infinitely capable, and if the mecha-
nism is infinitely capable, then to maximize revenue or to achieve
efficiency:

Have each i report vi(xi, θi) for all xi ∈ {0,1}K.

Let x∗ = argmax
∑

vi(xi, θi) subject to x ∈ F.

Allocate x∗i to each i.

Charge each i, yi = vi(xi∗, θi).

This is efficient and revenue maximizing.

Note: If yi = 0 for each i, then you get buyer efficiency.
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Is there a problem?

Have each i report vi(xi, θi) for all xi ∈ {0,1}K.

Communication: 2K can be a lot of numbers.

Let x∗ = argmax
∑

vi(xi, θi) subject to x ∈ F.

Computation: Max problem isn’t polynomial.

Charge each i, yi = vi(xi∗, θi.)

Incentives: So, why should I tell you θi?

Subject to Communication, Computation, Voluntary Participa-

tion, and Incentive Compatibility Constraints,

What is the Best Auction Design?
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Some Design Features to Consider

Bids allowed - single items, all packages, some (which?)

Timing - synchronous, asynchronous

Pricing - pay what you bid, uniform (second price), incentive

pricing

Feedback - all bids, provisional winning bids only, number of bids

for each item, item prices (which?), ...

Others - minimum increments, activity rules, withdrawals,

reserve prices (secret or known), retain provisional losing bids,

XOR, proxies, ...
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Example Practical Questions

• Public sector - Spectrum Auctions

Use Design #1 (single item bids, synchronous, iterative) or

use Design #2 (package bids, synchronous, iterative) ?

• Private sector - Logisitics Acquisitions

Use Design #1 (package bids, synchronous, iterative) or

use Design #2 (package bids, one-shot sealed bid)?

How Should we Decide? What about Other Designs?
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Combinatorial Auctions: The Art of Design - the 1st generation

Sealed bid, IC pricing
- Vickrey-Clarke-Groves (1963, 71, 73)

Sealed bid, pay what you bid
- Rasenti-Smith-Bulfin (1982)

Iterative, asynchronous,
- Banks, Ledyard, Porter 1989 - AUSM

Iterative, synchronous,
- Ledyard, Olson, Porter, etc. 1992 - Sears

Iterative, synchronous, no package bids, activity rules
- McMillan, Milgrom 1994 - FCC-SMR
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Combinatorial Auctions: The Art of Design - the 2nd generation

Iterative, synchronous, Proxies
- Parkes 1999 - iBEA

Iterative, synchronous, price feedback
- Kwasnica, Ledyard, Porter 2002 - RAD

Clock auction, packages, synchronous
- Porter, Rassenti, Smith 2003

CC, proxies
- Ausubel, Milgrom 2005

How should we decide
Which Design is Best for which Goals in which Situations?
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Combinatorial Auction Design: Three approaches

• Experimental: the economist’s wind tunnel

• Agent-based: the computer scientist’s wind tunnel

• Theoretical: the analyst’s wind tunnel

approach behavioral mechanism environmental
model complexity coverage

experimental correct (naive?) not stressed costly

agent-based open? (not str.for.) can stress moderate

theoretical stylized open? complete
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A Taste of the Experimental Approach:
(Brunner-Goeree-Holt-Ledyard)

• 12 licenses , 8 subjects (experienced - trained)
6 regional bidders: 3 licenses each, v ∈ [5,75]
2 national bidders: 6 licenses each, v ∈ [5,45]
13,080,488 possible allocations

• 0.4 cents per point, (upto $1.25 for 3, $1.30 for 6)
with a synergy factor α per license of 0.2 (national)
and 0.125 (regional)

• Earnings averaged $50/ 2 hour session incl $10 show-up fee.
48 sessions of 8 subjects each. 10 auctions/session.
120 auctions /design.
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Economic Experiment Results

SMR CC RAD FCC∗

Average Efficiency 90.2% 90.8% 93.4% 89.7%
Average Revenue 37.1% 50.2% 40.2% 35.1%
Average Profits 53.1% 40.6% 53.3% 54.6%

Efficiencyoutput = (Eactual − Erandom)/(Emaximum − Erandom).

Revenue = (Ractual −Rrandom)/(Rmaximum −Rrandom).

Profits = Efficiency − Revenue

Is Revenue of 50% big or small?

Are these the result of Behavior, Environment, or Design?
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A Taste of the Theoretical Approach

An auction design is γ = {N, S1, ..., SN , g(s)}.

Bidders behavior is bi : {(Ii, vi, γ)} → Si.

The Design Problem is:

• Choose γ so that g(b(I, v, γ)) = [x(v), y(v)] is desirable.
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The Economist’s approach:
(1) Get an upper bound on performance; ignore Computation
and Communication Constraints.
(2) Use all information available; Assume the seller has a prior
π(θ)dθ = dΠ(θ) = dΠ1(θ1)...dΠN(θN).

Using the revelation principle, choose (x, y) : ΘN → {(x, y)} to
maximize expected revenue

max
∫ ∑

i

yi(θ)dΠ(θ)

subject to

(x(·), y(·)) ∈ F ∗ ∩ IC ∩ V P.

Question: Interim or ex-post? Bayesian or Dominance?
Answer: Will see it doesn’t matter.
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Consider a special class of environments

Single-Minded Bidders

• Each bidder has a preferred package x∗i that is common

knowledge (including the auctioneer).

vi(x, θi) = θiqi(x) where

qi(x) = 1 if xi ≥ x∗i

qi(x) = 0 otherwise
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Probability of winning is Qi(θi) =
∫

qi(x(θ))dΠ(θ|θi)

Expected payment is T i(θi) =
∫

yi(x(θ))dΠ(θ|θi)

Expected Utility is θiQi(θi)− T i(θi)

Incentive compatibility is T (θ) = T0 +
∫ θ
θ1

sdQ(s) and dQ/dθ ≥ 0

Voluntary participation is θi
1Qi(θi

1)− T i(θi
1) ≥ 0

Combine these with revenue maximization and

get that T = θQ−
∫ θ
θ1

Q(s)ds

So Expected revenue from i is
∫
[θi − 1−Π(θi)

π(θi)
]qi(θ)dΠ(θ)
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The optimal interim mechanism for single minded-bidders

(where Π(θ) is common-knowledge) solves

x(θ) ∈ argmax
x∈F ∗

∑
wi(θ

i)qi(x)

yi(θ) = θiQi(θi)−
∫ θi

θ1
Qi(s)ds

where wi(θ
i) = θi −

1−Πi(θi)

πi(θi)

Requires dwi/dθi ≥ 0, for incentive compatibility SOC.

An increasing hazard rate is sufficient.

This is a (very slight) generalization of Myerson (1981).

Only F ∗ is different.
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Using Mookherjee and Reichelstein (1992), monotonicity implies

one can convert the interim mechanism to an ex-post mechanism

with the same interim payoffs to everyone.

x∗(θ) ∈ argmax
x∈F

∑
wi(θ

i)qi(x)

y∗i(θ) = θiqi(x∗(θ))−
∫ θi

θ1
qi(x∗(θ/si))dsi

This mechanism is the optimal ex post mechanism because

ex-post F ∗ ∩ IC ∩ V P ⊂ interim F ∗ ∩ IC ∩ V P
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Note that qi(x∗(θ)) = 1 if

max
x∈F

N∑
j=1

wj(θj)qj(x) > max
x∈F

∑
j 6=i

wj(θj)qj(x)

Let

θ∗i(θ−i) = inf{θi|qi(x∗(θ)) = 1}

The optimal ex-post mechanism is:

qi(x∗(θ)) = 1 iff θi ≥ θ∗i(θ−i)

and y∗i(θ) = θ∗i(θ−i)q
i(x∗(θ))
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The optimal ex-post mechanism is not VGC.

It is closely related. They both look like

qi(x(θ)) = iff θi ≥ θi(θ−i)

and yi(θ) = θi(θ−i)q
i(x(θ))

but the Optimal θ∗i(θ−i) 6=VCG θ̂i(θ−i)

x∗(θ) ∈ argmax
x∈F

∑
i

(
θi −

1−Πi(θ)

πi(θ)

)
qi(x)

x̂(θ) ∈ argmax
x∈F

∑
i

θiqi(x)

The optimal ex post mechanism is not output-efficient.

Even if conditioned on participation (as in Myerson).
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The optimal ex post optimal mechanism is VCG with preferences.

• Request sealed bids for packages: bi

• Subtract an individual “preference”: pi = 1−Πi(bi)
πi(bi)

• Maximize adjusted bid revenue: max
∑

i(b
i − pi)νi

subject to νi ∈ {0,1} and (ν1, ..., νN) feasible

• Charge pivot prices: yi = inf{bi|νi = 1}
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Interesting Special Case

If values are uniformly distributed, then

θi ∼ U [mi, M i], then pi(bi) = M i − bi and bi − pi(bi) = 2bi −M i.

In this case, the optimal auction is equivalent to:

• Charge a reserve price of: ri = M i/2

• Maximize the reserve-adjusted surplus:
∑

(bi − ri)νi.
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Example: K = 2, N = 3

x∗1 = (1,0), x∗2 = (0,1, ), x∗3 = (1,1)

θ1, θ2 are uniformly distributed on [0,1]

θ3 is uniformly distributed on [0, a]

Revenue as a % of maximum extractable
if a=1 if a=2 if a=3

OA 0.585 0.625 0.613
VGC 0.240 0.452 0.426

Random 0.480 0.465 0.413

OA & VCG highest for a = 2, the most competitive situation.

Random (5 allocations possible) looks as good as VCG.
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New Experiments

* 2 items, 3 subjects

* Tested SMR, RAD, and SB

* 1 session for each auction

* 9 subjects per session

* Randomly matched into groups of 3 at beginning

* 10 rounds for each group (the first 2 were practice rounds).

* Before round, bidders randomly assigned to role .

* Values for 1 and 2 are in [0,100], values for 1,2 are in [0,200]

* No withdrawals, no activity rules
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Experiment Results (24 auctions of each type)

Mean (Std. Dev.)

Revenue Efficiency Rev/Max Possible
OA 77.31 (38.52) 0.86 (.29) 0.59 (.23)
SMR 58.13 (43.16) 0.90 (0.20) 0.46 (0.33)
RAD 66.71 (46.99) 0.97 (0.09) 0.53 (0.30)

RAD > SMR in revenue.

# rounds for RAD (5.65) < SMR (7.46).

But OA > RAD
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Experiment Results (24 auctions of each type)

Mean (Std. Dev.)

Revenue Efficiency Rev/Max Possible
OA 77.31 (38.52) 0.86 (.29) 0.59 (.23)
SMR 58.13 (43.16) 0.90 (0.20) 0.46 (0.33)
RAD 66.71 (46.99) 0.97 (0.09) 0.53 (0.30)
SB 89.79 (36.99) 0.96 (0.19) 0.74 (0.19)

SB > OA > RAD > SMR.

No reserve price used in SB.
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Summary to here

For combinatorial auctions with single minded bidders

We find the DSIC design that maximizes expected revenue.

- It is neither VGC nor output efficient.

- It is VCG with individualized bid preferences.

In a small experiment, SB > OA > RAD > SMR,

- RAD gets 85% of the revenue of the theoretical upper bound.

- SB gets 116% of the revenue of the theoretical upper bound.
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Combinatorial Auctions:

• The auction design: γ = {N, S1, ..., SN , g(·)}.

• Bidders behavior: bi : {(Ii, θi, γ)} → Si

• Choose a feasible γ so that g(b(I, θ, γ)) is desirable.

The tension is between theory and practice.
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Choose a feasible γ so that g(b(I, θ, γ)) is desirable.

• Which γ are feasible?

Need pliable communication and computation constraints

- A finer grid than NP-hard, polynomial, etc.

- An analytic version that can be used as constraints in a

maximization problem.

Need a revelation principle for feasible mechanisms, GF ⊂ G.

- Usual: ∀γ ∈ GF , ∃ γ∗ ∈ GD with γ∗ = {N,Θ, h(·)}
such that h(θ) = g(b(θ, γ)) and b(θ, γ∗) = θ.

- But inverse is now a problem. Need to characterize GD∗

such that if γ∗ ∈ GD∗ then ∃γ ∈ GF 3 h(b(θ, γ∗)) = g(b(θ, γ)).
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Choose a feasible γ so that g(b(I, θ, γ)) is desirable.

• What is the ”right” theory of behavior?

Need better theory of behavior in iterative auctions
- Game theoretic equilibria such as Dominance & Bayes make
sense for simple, direct revelation auctions but are ”wrong.”
- With iteration, straight-forward bidding tempting, but ”wrong.”
- Incorporate behavioral learning models (agents) into opti-
mal auction methodology?

Need behavior model to be more sensitive to details
- Designing to prevent collusion often involves information
issues finessed by direct mechanisms.
- Reveal bids and bidders? Reveal only winning bids? En-
dogenous sunshine?
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Choose a feasible γ so that g(b(I, θ, γ)) is desirable.

• What does desirable mean?

Need to consider all costs and benefits

- Tradeoff between mechanism and bidder computations

- Iteration may reduce costs of determining values but in-

crease costs of bidding?

• How do we choose?

Can we always reduce to an optimization problem?

- Need to deal with multi-dimensional incentive constraints

- Need to find a simple characterization for feasible γ.

- Or do we just need to generate a lot of experiments?

DIMACS-34


