Combinatoric Auctions

John Ledyard Caltech

October 2007

<u>Outline</u>

- Introduction
- Single-Minded Bidders
- Challenges

<u>Combinatorial Auctions:</u> Allocate K items to N people.

The allocation to i is $x^i \in \{0, 1\}^K$ where $x_k^i = 1$ if and only if *i* gets item *k*.

Feasibility: $x = (x^1, ..., x^N) \in F$ if and only if $x^i \in \{0, 1\}^K$ and $\sum_i x^i_k \leq 1$ for all k.

Utility for i: $v^i(x^i, \theta^i) - y^i$ where $\theta^i \in \Theta^i$. [For reverse auctions, use $y^i - c^i(x^i, \theta^i)$.]

Is there a combinatorial auction problem?

If agents are obedient and infinitely capable, and if the mechanism is infinitely capable, then to maximize revenue or to achieve efficiency:

Have each i report $v^i(x^i, \theta^i)$ for all $x^i \in \{0, 1\}^K$.

Let $x^* = \operatorname{argmax} \sum v^i(x^i, \theta^i)$ subject to $x \in F$.

Allocate x^{*i} to each i.

Charge each i, $y^i = v^i(x^{i*}, \theta^i)$.

This is efficient and revenue maximizing.

Note: If $y^i = 0$ for each i, then you get buyer efficiency.

Is there a problem?

Have each i report $v^i(x^i, \theta^i)$ for all $x^i \in \{0, 1\}^K$. <u>Communication</u>: 2^K can be a lot of numbers.

Let $x^* = \operatorname{argmax} \sum v^i(x^i, \theta^i)$ subject to $x \in F$. Computation: Max problem isn't polynomial.

Charge each i, $y^i = v^i(x^{i*}, \theta^i)$. <u>Incentives</u>: So, why should I tell you θ^i ?

Subject to Communication, Computation, Voluntary Participation, and Incentive Compatibility Constraints,

What is the Best Auction Design?

Some Design Features to Consider

Bids allowed - single items, all packages, some (which?)

Timing - synchronous, asynchronous

Pricing - pay what you bid, uniform (second price), incentive pricing

Feedback - all bids, provisional winning bids only, number of bids for each item, item prices (which?), ...

Others - minimum increments, activity rules, withdrawals, reserve prices (secret or known), retain provisional losing bids, XOR, proxies, ...

Example Practical Questions

- Public sector <u>Spectrum Auctions</u>
 Use Design #1 (single item bids, synchronous, iterative) or use Design #2 (package bids, synchronous, iterative) ?
- Private sector Logisitics Acquisitions
 Use Design #1 (package bids, synchronous, iterative) or use Design #2 (package bids, one-shot sealed bid)?

How Should we Decide? What about Other Designs?

<u>Combinatorial Auctions:</u> The Art of Design - the 1st generation

Sealed bid, IC pricing

- Vickrey-Clarke-Groves (1963, 71, 73)

Sealed bid, pay what you bid

- Rasenti-Smith-Bulfin (1982)

Iterative, asynchronous,

- Banks, Ledyard, Porter 1989 - AUSM

Iterative, synchronous,

- Ledyard, Olson, Porter, etc. 1992 - Sears

Iterative, synchronous, no package bids, activity rules

- McMillan, Milgrom 1994 - FCC-SMR

<u>Combinatorial Auctions:</u> The Art of Design - the 2nd generation

Iterative, synchronous, Proxies

- Parkes 1999 - iBEA

Iterative, synchronous, price feedback

- Kwasnica, Ledyard, Porter 2002 - RAD

Clock auction, packages, synchronous

- Porter, Rassenti, Smith 2003

CC, proxies

- Ausubel, Milgrom 2005

How should we decide Which Design is Best for which Goals in which Situations?

Combinatorial Auction Design: Three approaches

- Experimental: the economist's wind tunnel
- Agent-based: the computer scientist's wind tunnel
- Theoretical: the analyst's wind tunnel

approach	behavioral	mechanism	environmental
	model	complexity	coverage
experimental correct (naive?)		not stressed	costly
agent-based	open? (not str.for.)	can stress	moderate
theoretical	theoretical stylized		complete

A Taste of the Experimental Approach: (Brunner-Goeree-Holt-Ledyard)

- 12 licenses , 8 subjects (experienced trained) 6 regional bidders: 3 licenses each, $v \in [5,75]$ 2 national bidders: 6 licenses each, $v \in [5,45]$ 13,080,488 possible allocations
- 0.4 cents per point, (upto \$1.25 for 3, \$1.30 for 6) with a synergy factor α per license of 0.2 (national) and 0.125 (regional)
- Earnings averaged \$50/ 2 hour session incl \$10 show-up fee.
 48 sessions of 8 subjects each. 10 auctions/session.
 120 auctions /design.

Economic Experiment Results

	SMR	CC	RAD	FCC*
Average Efficiency	90.2%	90.8%	93.4%	89.7%
Average Revenue	37.1%	50.2%	40.2%	35.1%
Average Profits	53.1%	40.6%	53.3%	54.6%

$$\mathsf{Efficiency}_{output} = (E_{actual} - E_{random}) / (E_{maximum} - E_{random}).$$

Revenue = $(R_{actual} - R_{random})/(R_{maximum} - R_{random})$.

Profits = Efficiency - Revenue

Is Revenue of 50% big or small?

Are these the result of Behavior, Environment, or Design?

<u>Outline</u>

- Introduction
- Single-Minded Bidders
- Challenges

A Taste of the Theoretical Approach

An auction design is $\gamma = \{N, S^1, ..., S^N, g(s)\}.$

Bidders behavior is $b^i : \{(I^i, v^i, \gamma)\} \to S^i$.

The Design Problem is:

• Choose γ so that $g(b(I, v, \gamma)) = [x(v), y(v)]$ is <u>desirable</u>.

The Economist's approach:

(1) Get an upper bound on performance; ignore Computation and Communication Constraints.

(2) Use all information available; Assume the seller has a prior $\pi(\theta)d\theta = d\Pi(\theta) = d\Pi^1(\theta^1)...d\Pi^N(\theta^N).$

Using the revelation principle, choose $(x, y) : \Theta^N \to \{(x, y)\}$ to maximize expected revenue

$$\max \int \sum_{i} y^{i}(heta) d \Pi(heta)$$

subject to
 $(x(\cdot), y(\cdot)) \in F^{*} \cap IC \cap VP.$

Question: Interim or ex-post? Bayesian or Dominance? Answer: Will see it doesn't matter. Consider a special class of environments

Single-Minded Bidders

• Each bidder has a preferred package x^{*i} that is common knowledge (including the auctioneer).

 $v^i(x,\theta^i) = \theta^i q^i(x)$ where

$$q^i(x) = 1$$
 if $x^i \ge x^{*i}$
 $q^i(x) = 0$ otherwise

Probability of winning is $Q^i(\theta^i) = \int q^i(x(\theta)) d\Pi(\theta|\theta^i)$

Expected payment is $T^i(\theta^i) = \int y^i(x(\theta)) d\Pi(\theta|\theta^i)$

Expected Utility is $\theta^i Q^i(\theta^i) - T^i(\theta^i)$

Incentive compatibility is $T(\theta) = T_0 + \int_{\theta_1}^{\theta} s dQ(s)$ and $dQ/d\theta \ge 0$

Voluntary participation is $\theta_1^i Q^i(\theta_1^i) - T^i(\theta_1^i) \ge 0$

Combine these with revenue maximization and get that $T = \theta Q - \int_{\theta_1}^{\theta} Q(s) ds$

So Expected revenue from i is $\int [\theta^i - \frac{1 - \Pi(\theta^i)}{\pi(\theta^i)}] q^i(\theta) d\Pi(\theta)$

The optimal *interim* mechanism for single minded-bidders (where $\Pi(\theta)$ is common-knowledge) solves

$$\begin{aligned} x(\theta) &\in \arg \max_{x \in F^*} \sum w_i(\theta^i) q^i(x) \\ y^i(\theta) &= \theta^i Q^i(\theta^i) - \int_{\theta_1}^{\theta^i} Q^i(s) ds \\ \text{where } w_i(\theta^i) &= \theta^i - \frac{1 - \Pi^i(\theta^i)}{\pi^i(\theta^i)} \end{aligned}$$

Requires $dw^i/d\theta^i \ge 0$, for incentive compatibility SOC. An increasing hazard rate is sufficient.

This is a (very slight) generalization of Myerson (1981). Only F^* is different. Using Mookherjee and Reichelstein (1992), monotonicity implies one can convert the *interim* mechanism to an *ex-post* mechanism with the same interim payoffs to everyone.

$$x^{*}(\theta) \in \arg \max_{x \in F} \sum w_{i}(\theta^{i})q^{i}(x)$$
$$y^{*i}(\theta) = \theta^{i}q^{i}(x^{*}(\theta)) - \int_{\theta_{1}}^{\theta^{i}}q^{i}(x^{*}(\theta/s^{i}))ds^{i}$$

This mechanism is the optimal *ex post* mechanism because

 $\textit{ex-post } F^* \cap IC \cap VP \subset \textit{interim } F^* \cap IC \cap VP$

Note that
$$q^i(x^*(\theta)) = 1$$
 if

$$\max_{x \in F} \sum_{j=1}^N w^j(\theta^j) q^j(x) > \max_{x \in F} \sum_{j \neq i} w^j(\theta^j) q^j(x)$$
Let

$$\theta^{*i}(\theta_{-i}) = \inf\{\theta^i | q^i(x^*(\theta)) = 1\}$$

The optimal *ex-post* mechanism is:

$$q^{i}(x^{*}(\theta)) = 1 \text{ iff } \theta^{i} \ge \theta^{*i}(\theta_{-i})$$

and $y^{*i}(\theta) = \theta^{*i}(\theta_{-i})q^{i}(x^{*}(\theta))$

The optimal *ex-post* mechanism is not VGC.

It is closely related. They both look like

$$q^{i}(x(\theta)) = \text{iff } \theta^{i} \ge \theta^{i}(\theta_{-i})$$

and $y^{i}(\theta) = \theta^{i}(\theta_{-i})q^{i}(x(\theta))$

but the Optimal $\theta^{*i}(\theta_{-i}) \neq VCG \hat{\theta}^{i}(\theta_{-i})$

$$x^{*}(\theta) \in \arg \max_{x \in F} \sum_{i} \left(\theta^{i} - \frac{1 - \Pi^{i}(\theta)}{\pi^{i}(\theta)} \right) q^{i}(x)$$
$$\widehat{x}(\theta) \in \arg \max_{x \in F} \sum_{i} \theta^{i} q^{i}(x)$$

The optimal *ex post* mechanism is <u>not</u> output-efficient.

Even if conditioned on participation (as in Myerson).

The optimal *ex post* optimal mechanism is VCG with preferences.

• Request sealed bids for packages: b^i

• Subtract an *individual* "preference":
$$p^i = \frac{1 - \prod^i (b^i)}{\pi^i (b^i)}$$

• Maximize adjusted bid revenue: max $\sum_i (b^i - p^i)\nu^i$ subject to $\nu^i \in \{0,1\}$ and $(\nu^1,...,\nu^N)$ feasible

• Charge pivot prices:
$$y^i = \inf\{b^i | \nu^i = 1\}$$

Interesting Special Case

If values are uniformly distributed, then

$$\theta^{i} \sim U[m^{i}, M^{i}]$$
, then $p^{i}(b^{i}) = M^{i} - b^{i}$ and $b^{i} - p^{i}(b^{i}) = 2b^{i} - M^{i}$.

In this case, the optimal auction is equivalent to:

- Charge a reserve price of: $r^i = M^i/2$
- Maximize the reserve-adjusted surplus: $\sum (b^i r^i)\nu^i$.

Example: K = 2, N = 3

 $x^{*1} = (1,0), x^{*2} = (0,1,), x^{*3} = (1,1)$ θ^1, θ^2 are uniformly distributed on [0,1] θ^3 is uniformly distributed on [0,a]

Revenue as a % of maximum extractable					
		if $a=1$	if a=2	if a=3	
	OA	0.585	0.625	0.613	
	VGC	0.240	0.452	0.426	
	Random	0.480	0.465	0.413	

OA & VCG highest for a = 2, the most competitive situation.

Random (5 allocations possible) looks as good as VCG.

New Experiments

- * 2 items, 3 subjects
- * Tested SMR, RAD, and SB
- * 1 session for each auction
- * 9 subjects per session
- * Randomly matched into groups of 3 at beginning
- * 10 rounds for each group (the first 2 were practice rounds).
- * Before round, bidders randomly assigned to role .
- * Values for 1 and 2 are in [0,100], values for 1,2 are in [0,200]
- * No withdrawals, no activity rules

Experiment Results (24 auctions of each type)

Mean (Std. Dev.)

	Revenue	Efficiency	Rev/Max Possible
OA	77.31 (38.52)	0.86 (.29)	0.59 (.23)
SMR	58.13 (43.16)	0.90 (0.20)	0.46 (0.33)
RAD	66.71 (46.99)	0.97 (0.09)	0.53 (0.30)

RAD > SMR in revenue.

rounds for RAD (5.65) < SMR (7.46).

But OA > RAD

Experiment Results (24 auctions of each type)

Mean (Std. Dev.)

	Revenue	Efficiency	Rev/Max Possible
OA	77.31 (38.52)	0.86 (.29)	0.59 (.23)
SMR	58.13 (43.16)	0.90 (0.20)	0.46 (0.33)
RAD	66.71 (46.99)	0.97 (0.09)	0.53 (0.30)
SB	89.79 (36.99)	0.96 (0.19)	0.74 (0.19)

SB > OA > RAD > SMR.

No reserve price used in SB.

Summary to here

For combinatorial auctions with single minded bidders

We find the DSIC design that maximizes expected revenue.

- It is <u>neither</u> VGC <u>nor</u> output efficient.
- It is VCG with individualized bid preferences.

In a small experiment, SB > OA > RAD > SMR,

- RAD gets 85% of the revenue of the theoretical upper bound.
- SB gets 116% of the revenue of the theoretical upper bound.

<u>Outline</u>

- Introduction
- Single-Minded Bidders
- Challenges

Combinatorial Auctions:

- The auction design: $\gamma = \{N, S^1, ..., S^N, g(\cdot)\}.$
- Bidders behavior: $b^i : \{(I^i, \theta^i, \gamma)\} \to S^i$
- Choose a <u>feasible</u> γ so that $g(b(I, \theta, \gamma))$ is <u>desirable</u>.

The tension is between theory and practice.

Choose a feasible γ so that $g(b(I, \theta, \gamma))$ is desirable.

• Which γ are feasible?

Need pliable communication and computation constraints

- A finer grid than NP-hard, polynomial, etc.

- An analytic version that can be used as constraints in a maximization problem.

Need a revelation principle for feasible mechanisms, $G^F \subset G$. - Usual: $\forall \gamma \in G^F$, $\exists \gamma^* \in G^D$ with $\gamma^* = \{N, \Theta, h(\cdot)\}$ such that $h(\theta) = g(b(\theta, \gamma))$ and $b(\theta, \gamma^*) = \theta$.

- But inverse is now a problem. Need to characterize G^{D*} such that if $\gamma^* \in G^{D*}$ then $\exists \gamma \in G^F \ni h(b(\theta, \gamma^*)) = g(b(\theta, \gamma))$.

Choose a feasible γ so that $g(b(I, \theta, \gamma))$ is desirable.

• What is the "right" theory of behavior?

Need better theory of behavior in iterative auctions

- Game theoretic equilibria such as Dominance & Bayes make sense for simple, direct revelation auctions but are "wrong."

- With iteration, straight-forward bidding tempting, but "wrong."

- Incorporate behavioral learning models (agents) into optimal auction methodology?

Need behavior model to be more sensitive to details

- Designing to prevent collusion often involves information issues finessed by direct mechanisms.

- Reveal bids and bidders? Reveal only winning bids? Endogenous sunshine? Choose a feasible γ so that $g(b(I, \theta, \gamma))$ is desirable.

- What does desirable mean?
 Need to consider all costs and benefits
 - Tradeoff between mechanism and bidder computations
 - Iteration may reduce costs of determining values but increase costs of bidding?
- How do we choose?
 - Can we always reduce to an optimization problem?
 - Need to deal with multi-dimensional incentive constraints
 - Need to find a simple characterization for feasible $\gamma.$
 - Or do we just need to generate a lot of experiments?