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Applica3ons	to	Biology	

•  “Nothing	in	biology	makes	sense	except	in	the	
light	of	evolu3on”	–	T.	Dobhzhansky	(1973)	

•  “Nothing	in	evolu3on	makes	sense	except	in	
the	light	of	phylogeny”	-	The	Society	of	
Systema3c	Biologists	



Evolu3on	informs	about	everything	in	biology	

•  Big	genome	sequencing	projects	just	produce	data	------	so	
what?	

•  Evolu3onary	history	relates	all	organisms	and	genes,	
and	helps	us	understand	and	predict	
–  interac3ons	between	genes	(gene3c	networks)	
–  drug	design	
–  predic3ng	func3ons	of	genes	
–  influenza	vaccine	development	
–  origins	and	spread	of	disease	
–  origins	and	migra3ons	of	humans	



Phylogenomic	pipeline	

•  Select	taxon	set	and	markers	

•  Gather	and	screen	sequence	data,	possibly	iden3fy	orthologs	

•  Compute	mul3ple	sequence	alignments	for	each	locus	

•  Compute	species	tree	or	network:	

–  Compute	gene	trees	on	the	alignments	and	combine	the	es3mated	
gene	trees,	OR	

–  Es3mate	a	tree	from	a	concatena3on	of	the	mul3ple	sequence	
alignments		

•  Get	sta3s3cal	support	on	each	branch	(e.g.,	bootstrapping)	

•  Es3mate	dates	on	the	nodes	of	the	phylogeny	

•  Use	species	tree	with	branch	support	and	dates	to	understand	biology	
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1  Hill-climbing heuristics for hard optimization criteria 
(Maximum Parsimony and Maximum Likelihood) 

Local optimum 
 

Cost 

 
Global optimum 

Phylogenetic trees 
 
 
2  Polynomial time distance-based methods: Neighbor 

Joining, FastME, etc. 
3.  Bayesian methods 

Phylogenetic reconstruction methods 



Performance criteria 
 
•  Running time 
•  Space 
•  Statistical performance issues (e.g., statistical 

consistency) with respect to a Markov model of 
evolution 

•  “Topological accuracy” with respect to the 
underlying true tree or true alignment,  typically 
studied in simulation 

•  Accuracy with respect to a particular criterion 
(e.g. maximum likelihood score), on real data 



Quantifying Error 

FN: false negative 
      (missing edge) 
FP: false positive 
      (incorrect edge) 
 
50% Robinson-Foulds error rate 

FN 

FP 



Statistical consistency, exponential convergence, 
and absolute fast convergence (afc) 



Neighbor joining has poor performance on large diameter trees [Nakhleh 
et al. ISMB 2001] 

Theorem (Atteson): 
Exponential sequence 
length requirement for 
Neighbor Joining! 
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RAxML	is	the	“best”	ML	code	–	but	it	is	
very	slow	on	large	datasets	

Analyses	on	biological	dataset	(16S.B.ALL)	from	Gutell	Lab,	with	27,643	sequences.	
Results	shown	the	structural	alignment,	using	three	different	ML	methods.	



Avian	Phylogenomics	Project	

G	Zhang,		
BGI	

• 	48	species,	whole	genomes	
• 	14,000	genomic	regions	and	“gene	trees”	

MTP	Gilbert,	
Copenhagen	

S.	Mirarab			Md.	S.	Bayzid,	
UT-Aus3n								UT-Aus3n	

T.	Warnow	
UIUC/UT-Aus3n	

Plus	many	many	other	people…	

Erich	Jarvis,	
HHMI		

Science,	December	2014	(Jarvis,	Mirarab,	et	al.,	and	Mirarab	et	al.)	
	
Two	main	challenges	
•  Computa3onally	intensive	concatena3on	analysis:	200	CPU	years	
•  Gene	tree	heterogeneity:	needed	new	method	(sta3s3cal	binning)	



1kp:	Thousand	Transcriptome	Project	

l  Plant	Tree	of	Life	based	on	transcriptomes	of	~1200	species	
l  More	than	13,000	gene	families	(most	not	single	copy)	
l  First	paper:	PNAS	2014	(~100	species	and	~800	loci)	
•  Gene	Tree	Incongruence	

G. Ka-Shu Wong 
U Alberta 

N. Wickett 
Northwestern 

J. Leebens-Mack 
U Georgia 

N. Matasci 
iPlant 

T. Warnow,        S. Mirarab,                N. Nguyen,  
UIUC                  UT-Austin                 UT-Austin 

Plus many many other people… 

 

•  First	challenges:	gene	tree	heterogeneity	(new	method:	ASTRAL)	
•  Upcoming	Challenges:	alignments	and	trees	on	~1200	species		



Metagenomics: 
Venter et al., Exploring the Sargasso Sea: 

Scientists Discover One Million New Genes in 
Ocean Microbes 



Two	dimensions		

•  Number	of	species	–	not	adequately	
addressed	by	any	methods,	and	size	also	
becomes	a	big	issue	(large	alignments	with	
>200Gb)	

•  Number	of	genes	(resul3ng	in	very	long	
sequences	from	combining	sequence	
datasets)	–	gene	tree	heterogeneity	requires	
new	methods	



Constructing the Tree of Life: 
Hard Computational Problems 

NP-hard	problems	
	
Large	datasets	

	1,000,000+	sequences	
	thousands	of	genes	

	
“Big	data”	complexity:	

	model	misspecifica3on	
	heterogeneity	across	genome	
	fragmentary	sequences	
	errors	in	input	data	
	streaming	data	



Research	Strategies	
•  Improved algorithms through: 

• Divide-and-conquer 
•  “Bin-and-conquer” 
•  Iteration 
• Bayesian statistics 
• Hidden Markov Models 
• Graph theory 
• Combinatorial optimization 

•  Statistical modelling 
•  Massive Simulations 
•  High Performance Computing 



DACTAL:	divide-and-conquer	trees	(almost)	without	
alignment	(ISMB	and	Bioinforma3cs	2012)		

Supertree Construction


Overlapping 

subsets


A tree for each 
subset


A tree for the 
entire dataset


Set	of	species	



DACTAL	more	accurate	than	standard	
methods,	and	faster	than	SATé  

(Liu et al., Science 2009)	

CRW:	Compara3ve	RNA	database,	structural	
alignments		

3	datasets	with	6,323	to	27,643	sequences	
Reference	trees:	75%	RAxML	bootstrap	trees	
DACTAL	(shown	in	red)	run	for	5	itera3ons	

star3ng	from	FT(Part)	
	
SATé-1 fails on the largest dataset 
SATé-2 runs but is not more accurate than 

DACTAL, and takes longer  

Results	on	Three	Biological	Datasets	



Neighbor joining has poor performance on large diameter trees 
                                              [Nakhleh et al. ISMB 2001] 

Theorem (Atteson): 
Exponential sequence 
length requirement for 
Neighbor Joining! 
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Chordal	graph	algorithms	enables	phylogeny	es3ma3on	
w.h.p.	from	polynomial	length	sequences		

	
• Theorem	(Warnow	et	
al.,	SODA	2001):	
DCM1-NJ	correct	with	
high	probability	given	
sequences	of	length	
O(ln	n	eO(ln	n))	

• Simula3on	study	from	
Nakhleh	et	al.	ISMB	
2001	
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Supertree	Es3ma3on	

•  Purposes:	
– Divide-and-conquer	tree	es3ma3on	
– Combining	analyses	performed	by	other	research	
groups	



Many	Supertree	Methods	

•  MRP	
•  MRL	
•  MRF	
•  MRD	
•  Robinson-Foulds	

Supertrees	
•  Min-Cut	
•  Modified	Min-Cut	
•  Semi-strict	Supertree	

•  QMC	
•  Q-imputa3on	
•  SDM	
•  PhySIC	
•  Majority-Rule	Supertrees	
•  Maximum	Likelihood	

Supertrees	
•  and	many	more	...	

Matrix	Representa3on	with	Parsimony	
(Most	commonly	used	and	un3l	recently	the	most	accurate)	



. . .

Analyze
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MRP	vs.	RAxML	on	combined	dataset	

Scaffold	Density	(%)	



Challenges	in	Supertree	Es3ma3on	
Challenges:	
•  Tree	compa3bility	is	NP-complete	(therefore,	even	if	subtrees	

are	correct,	supertree	es3ma3on	is	hard)	
•  Es3mated	subtrees	have	error	
•  MRP	and	MRL–	two	leading	supertree	methods	-	create	huge	

binary	matrices	and	analyze	them	using	heuris3cs	for	NP-hard	
op3miza3on	problems.	This	cannot	run	on	any	large	input.		

•  The	best	current	methods	(MRP,	ML)	are	also	not	as	accurate	
as	RAxML	on	combined	dataset.	

	
We	need	new	supertree	methods	that	have	excellent	accuracy	and	
can	analyze	large	datasets!	



Maximum	Likelihood	Supertrees	

Steel	and	Rodrigo,	Systema3c	Biology:		
Given	set	of	source	trees,	find	a	supertree	that	
maximizes	the	probability	of	genera3ng	the	
source	trees	under	a	sta3s3cal	model	of	tree	
genera3on	

	
Robinson-Foulds	Supertrees:	non-parametric	
version	of	ML	Supertrees.	



2/6

The RF Supertree optimization problem
I Input: Set T of source trees
I Output: RF Supertree T that minimizes the total RF

distance to T

I The Robinson-Foulds (RF) distance between a binary
supertree T and a binary source tree t on a taxon subset s
is

RF (T , t) = |bipartitions(T |s) \ bipartitions(t)|

where T |s is T restricted to the taxa in s

A

B

C
D

E

F

A

B

D
C

E

T1
T2

I RF distance is 1
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I Input: Set T of source trees
I Output: RF Supertree T that minimizes the total RF
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NP-hard!
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I RF distance is 1



Constrained	Robinson-Foulds	Supertree	

•  Input:	Set	T	of	source	trees	and	set	X	of	
bipar33ons	on	species	set	S	(so	each	source	tree	
has	leaves	in	S)	

	
•  Output:	Tree	T	on	S	that	draws	its	bipar33ons	
from	X,	and	that	minimizes	the	total	RF	distance	
to	the	source	trees	in	T.	

	
The	criterion	score	of	a	supertree	is	its	total	RF	
distance	to	the	source	trees.	



FastRFS	

•  Theorem:	FastRFS	solves	the	Constrained	
Robinson-Foulds	Supertree	problem	exactly	in	
O(|X|2nk)	3me,	where	n=|S|	and	k=|T|.	

•  Proof:	Uses	dynamic	programming,	and	
constructs	the	tree	from	the	bovom-up	based	on	
halves	of	the	bipar33ons	in	X.	

	
Published	in	Bioinforma3cs	2016,	selected	papers	
from	RECOMB	Compara3ve	Genomics.	
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Exact constrained search used before for different
problems

I Approach initially suggested in Hallet and Lagergren
(2000) for dup-loss model

I Similar approach used for quartet support maximization in
Bryant and Steel (2001) and ASTRAL (Mirarab et al.,
2014), minimizing deep coalescences (Than and Nakhleh,
2009)
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Choosing the constraint set X

I FastRFS finds the best scoring tree with every bipartition in
the set X

I We can look at the input trees to generate the set X

A

B

D
C

E
[AB,CDE]

[ABD,CE]

I We can also add bipartitions from a tree M estimated with
a different method

I If that tree is added, the FastRFS tree will have a score at
least as good as M
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Enhancing FastRFS with other supertree methods

FastRFS-basic:
I By default, FastRFS uses ASTRAL-2 to generate the

constraint set X from the input trees
I This finds a tree with a score at least as good as the

ASTRAL-2 tree
We define FastRFS-enhanced:

I Always add the MRL tree
I Use the ASTRID tree if ASTRID can run quickly

ASTRID runs quickly if every pair of taxa appears in at least
one source tree



Performance	study	

•  We	compared	FastRFS-basic	and	FastRFS-
enhanced	to	leading	supertree	methods	for	
Robinson-Foulds	Supertrees	(PluMiST	and	
MulRF)	on	biological	and	simulated	data	with	
respect	to	
– Criterion	scores	
– Tree	error	(on	simulated	data)	
– Running	3me	



Robinson-Foulds	Supertree	Criterion	Scores	



Tree	Error	on	Simulated	Datasets	



Robinson-Foulds	Supertree	Criterion	Scores		
																	on	biological	datasets	



Running	3mes	on	biological	datasets	

Running	3mes	on	five	biological	supertree	datasets.		
The	CPL	dataset	has	2228	species,	and	is	too	large	for	PluMiST	and	MulRF	to	run.	



Summary	
•  FastRFS	is	a	fast	and	highly	accurate	supertree	
method,	with	greatly	improved	topological	
accuracy	and	criterion	scores	compared	to	
alterna3ve	approaches	for	Robinson-Foulds	
Supertrees.	

•  FastRFS	also	is	more	topologically	accurate	than	
other	leading	supertree	methods	(data	not	
shown,	see	paper).	

•  The	main	challenge	is	compu3ng	a	set	X	of	
bipar33on	constraints	from	the	input.		



Future	Work	
•  Test	FastRFS	within	DACTAL	and	other	divide-
and-conquer	strategies,	and	evaluate	it	as	a	
star3ng	point	for	Maximum	Likelihood	
Supertrees.	

•  Explore	whether	constraining	the	search	space	
makes	other	NP-hard	op3miza3on	problems	
tractable.	

•  Analyses	of	biological	datasets	(e.g.,	
collabora3ons	with	Genome	10K,	Avian	
Phylogene3cs	Project,	and	Thousand	Plant	
Transcriptome	Project)	


