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Applications to Biology

* “Nothing in biology makes sense except in the
light of evolution” — T. Dobhzhansky (1973)

* “Nothing in evolution makes sense except in
the light of phylogeny” - The Society of
Systematic Biologists



Evolution informs about everything in biology

* Big genome sequencing projects just produce data so
what?

e Evolutionary history relates all organisms and genes,
and helps us understand and predict
— interactions between genes (genetic networks)
— drug design
— predicting functions of genes
— influenza vaccine development
— origins and spread of disease
— origins and migrations of humans



Phylogenomic pipeline

Select taxon set and markers

Gather and screen sequence data, possibly identify orthologs
Compute multiple sequence alignments for each locus
Compute species tree or network:

— Compute gene trees on the alignments and combine the estimated
gene trees, OR

— Estimate a tree from a concatenation of the multiple sequence
alignments

Get statistical support on each branch (e.g., bootstrapping)
Estimate dates on the nodes of the phylogeny

Use species tree with branch support and dates to understand biology
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Phylogenetic reconstruction methods

1 Hill-climbing heuristics for hard optimization criteria
(Maximum Parsimony and Maximum Likelihood)

Local optimum

Cost /

Phylogenetic trees

Global optimum

2 Polynomial time distance-based methods: Neighbor
Joining, FastME, etc.

3. Bayesian methods



Performance criteria

Running time

Space

Statistical performance 1ssues (e.g., statistical
consistency) with respect to a Markov model of
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Quantifying Error
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Statistical consistency, exponential convergence,
and absolute fast convergence (afc)
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Neighbor joining has poor performance on large diameter trees [Nakhleh
et al. ISMB 2001]

0.8 . NJ i
Theorem (Atteson):
Exponential sequence
QO .
50-6 length requirement for
g Neighbor Joining!
0.4 i
0.2 1
O B T T T T T
0 400 800 1200 1600
No. Taxa



RAXML is the “best” ML code — but it is
very slow on large datasets
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Analyses on biological dataset (16S.B.ALL) from Gutell Lab, with 27,643 sequences.
Results shown the structural alignment, using three different ML methods.



Avian Phylogenomics Project

Erich Jarvis, MTP Gilbert, G Zhang, T. Warnow S. Mirarab Md. S. Bayzid,
Copenhagen BGI UIUC/UT-Austin UT-Austin

« 48 species, whole genomes Plus many many other people...

e 14,000 genomic regions and “gene trees”

Science, December 2014 (Jarvis, Mirarab, et al., and Mirarab et al.)

Two main challenges
* Computationally intensive concatenation analysis: 200 CPU years
* Gene tree heterogeneity: needed new method (statistical binning)




1kp: Thousand Transcriptome Project

G. Ka-Shu Wong  J. Leebens-Mack  N. Wickett N. Matasci T. Warnow, 3. Mirarab, N. Nguyen,
U Alberta U Georgia Northwestern iPlant uluc UT-Austin UT-Austin

Plus many many other people...

o Plant Tree of Life based on transcriptomes of ~1200 species
o More than 13,000 gene families (most not single copy)
o First paper: PNAS 2014 (~100 species and ~800 loci)

* First challenges: gene tree heterogeneity (new method: ASTRAL)
 Upcoming Challenges: alignments and trees on ~1200 species




Metagenomics:

Venter et al., Exploring the Sargasso Sea:

Scientists Discover One Million New Genes in
Ocean Microbes




Two dimensions

* Number of species — not adequately
addressed by any methods, and size also
becomes a big issue (large alignments with
>200Gb)

* Number of genes (resulting in very long
sequences from combining sequence
datasets) — gene tree heterogeneity requires
new methods



Constructing the Tree of Life:
Hard Computational Problems
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NP-hard problems

Large datasets
1,000,000+ sequences
thousands of genes

“Big data” complexity:
model misspecification
heterogeneity across genome
fragmentary sequences
errors in input data
streaming data



Research Strategies

Improved algorithms through:
 Divide-and-conquer

* “Bin-and-conquer”

* [teration

* Bayesian statistics

* Hidden Markov Models

* Graph theory
» Combinatorial optimization

Statistical modelling
Massive Stmulations
High Performance Computing



DACTAL: divide-and-conquer trees (almost) without
alignment (ISMB and Bioinformatics 2012)

Overlapping
subsets
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Results on Three Biological Datasets
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Neighbor joining has poor performance on large diameter trees
[Nakhleh et al. ISMB 2001]
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Chordal graph algorithms enables phylogeny estimation
w.h.p. from polynomial length sequences
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Supertree Estimation

* Purposes:
— Divide-and-conquer tree estimation

— Combining analyses performed by other research
groups



Many Supertree Methods

Matrix Representation with Parsimony

* MRL
* MRF
* MRD

* Robinson-Foulds
Supertrees

* Min-Cut
* Modified Min-Cut
* Semi-strict Supertree

(Most commonly used and until recently the most accurate)

QMC

Q-imputation

SDM

PhySIC

Majority-Rule Supertrees

Maximum Likelihood
Supertrees

and many more ...



Two competing approaches

gene1 qgene?2 ... qgenek

—

Combined
Analysis

Species

Analyze
separately

%\ Supertree
Method

>



MRP vs. RAXML on combined dataset
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Challenges in Supertree Estimation

Challenges:

* Tree compatibility is NP-complete (therefore, even if subtrees
are correct, supertree estimation is hard)

* Estimated subtrees have error

* MRP and MRL-two leading supertree methods - create huge
binary matrices and analyze them using heuristics for NP-hard
optimization problems. This cannot run on any large input.

 The best current methods (MRP, ML) are also not as accurate
as RAXML on combined dataset.

We need new supertree methods that have excellent accuracy and
can analyze large datasets!



Maximum Likelihood Supertrees

Steel and Rodrigo, Systematic Biology:

Given set of source trees, find a supertree that
maximizes the probability of generating the
source trees under a statistical model of tree
generation

Robinson-Foulds Supertrees: non-parametric
version of ML Supertrees.



The RF Supertree optimization problem

» Input: Set 7 of source trees
» Output: RF Supertree T that minimizes the total RF
distance to T

» The Robinson-Foulds (RF) distance between a binary
supertree T and a binary source tree t on a taxon subset s

is
RF(T,t) = |bipartitions(T|s) \ bipartitions(t)|

where T|sis T restricted to the taxa in s
F
A 5 oA :
B \ < B> \ <
D D C
T < T

» RF distance is 1



The RF Supertree optimization problem

» Input: Set 7 of source trees
» Qutput: RF Supertree T that minimizes the total RF
distance to T

NP-hard!

4 )
S =




Constrained Robinson-Foulds Supertree

* |nput: Set T of source trees and set X of
pipartitions on species set S (so each source tree

nas leaves in S)

 QOutput: Tree T on S that draws its bipartitions
from X, and that minimizes the total RF distance
to the source trees in T.

The criterion score of a supertree is its total RF
distance to the source trees.




FastRFS

* Theorem: FastRFS solves the Constrained
Robinson-Foulds Supertree problem exactly in

O(|X|2nk) time, where n=|S| and k=|T].

* Proof: Uses dynamic programming, and
constructs the tree from the bottom-up based on
halves of the bipartitions in X.

Published in Bioinformatics 2016, selected papers
from RECOMB Comparative Genomics.



Exact constrained search used before for different
problems

» Approach initially suggested in Hallet and Lagergren
(2000) for dup-loss model

» Similar approach used for quartet support maximization in
Bryant and Steel (2001) and ASTRAL (Mirarab et al.,
2014), minimizing deep coalescences (Than and Nakhleh,
2009)



Choosing the constraint set X

» FastRFS finds the best scoring tree with every bipartition in
the set X

» We can look at the input trees to generate the set X
B, CDE
QBD CE

D

C

» We can also add bipartitions from a tree M estimated with
a different method

» If that tree is added, the FastRFS tree will have a score at
least as good as M



Enhancing FastRFS with other supertree methods

FastRFS-basic:

» By default, FastRFS uses ASTRAL-2 to generate the
constraint set X from the input trees

» This finds a tree with a score at least as good as the
ASTRAL-2 tree

We define FastRFS-enhanced.:
» Always add the MRL tree
» Use the ASTRID tree if ASTRID can run quickly

ASTRID runs quickly if every pair of taxa appears in at least
one source tree



Performance study

* We compared FastRFS-basic and FastRFS-
enhanced to leading supertree methods for
Robinson-Foulds Supertrees (PluMiST and

MulRF) on biological and simulated data with
respect to

— Criterion scores

— Tree error (on simulated data)
— Running time



Robinson-Foulds Supertree Criterion Scores
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Tree Error on Simulated Datasets
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Criterion score
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Time (sec)
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Summary

* FastRFS is a fast and highly accurate supertree
method, with greatly improved topological
accuracy and criterion scores compared to
alternative approaches for Robinson-Foulds

Supertrees.

e FastRFS also is more topologically accurate than
other leading supertree methods (data not
shown, see paper).

 The main challenge is computing a set X of
bipartition constraints from the input.



Future Work

e Test FastRFS within DACTAL and other divide-
and-conquer strategies, and evaluate it as a
starting point for Maximum Likelihood
Supertrees.

* Explore whether constraining the search space
makes other NP-hard optimization problems
tractable.

* Analyses of biological datasets (e.g.,
collaborations with Genome 10K, Avian
Phylogenetics Project, and Thousand Plant
Transcriptome Project)



