PEARL: Perceptual Adaptive Representation
Learning in the Wild

Adversarial Domain Adaptation

Kate Trevor Eric Judy
Saenko Darrell Tzeng Hoffman

O Berkeley



http://www.eecs.berkeley.edu/%7Etrevor
http://www.eecs.berkeley.edu/%7Etrevor

Kate Saenko, Trevor Darrell, PEARL: Perceptual Adaptive Representation Learning in the Wild

Has deep learning solved Al?

pedestrian detection FAIL

https://www.youtube.com/watch?v=w2pwxv8rFkU
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‘What you saw IS not what you get”

What your net is trained on What it's asked to label

“Dataset Bias”
“Domain Shift”
“Domain Adaptation”
“Domain Transfer”
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Exam|:_)le shift: scene segmentation

Train on Cityscapes, Test on Cityscapes
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FCNs in the Wild: Pixel-level Adversarial and Constraint-based Adaptation, Judy Hoffman, Dequan Wang, Fisher Yu, Trevor Darrell,
Arxiv 2016
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Examle shift: scene sementation

Train on Cityscapes, Test on San Francisco

building

FCNs in the Wild: Pixel-level Adversarial and Constraint-based Adaptation, Judy Hoffman, Dequan Wang, Fisher Yu, Trevor Darrell,
Arxiv 2016
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Today: solving the domain shift problem

From dataset to dataset From RGB to depth

From simulated to real control From CAD models to real images
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Background: Domain Adaptation from source to target distribution

backpack chair bike bike

Wﬁ

Source Domain ~ Ps(X,Y) ?é Target Domain ~ Pr(Z, H)
lots of labeled data unlabeled or limited labels

Ds = {(x;,v:),Vi € {1,...,N}} Dr ={(z;,?),¥i € {1,...,M}}
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How to adapt a deep network?
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How to adapt adeep network?
@FS =l e
| il sl

-------------------------------- loss

Source Data

‘ @ » Applying source classifier to target domain can

backpack  Target Data yield inferior performance...
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How to ada|:_)t a deeE network?

IDEA: align feature
Fal ][] distributions
LIE

fe | e source
convl e+ convb

Source Data
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Target Data

shared
shared
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classification
loss

convl e+ convb fc) |t

labeled target
data

* Fine tune?

..... Zero or few labels in target domain
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Adversarial networks
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Encoder P  Reference Q

Encoder

Generates features such that
their distribution P matches
reference distribution Q

Adversarial networks

Adversary

Tries to discriminate between
samples from P and samples
from Q
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Adversarial networks

Encoder P  Reference Q

Encoder Adversary

Generates features such that “ Tries to discriminate between
their distribution P matches samples from P and samples
reference distribution Q from Q

fools adversary tries harder
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Adversarial domain adaptation

o:

' Source Data + Labels

classification

E - - - - - - === === === neenee e loss

Classifier

can be shared

Unlabeled Target Data

Encoder




Kate Saenko, Trevor Darrell, PEARL: Perceptual Adaptive Representation Le

Adversarial domain adaptation

[ ILIE R

Source Data + Labels

classification
loss

Classifier

can be shared

Unlabeled Target Data

| Discriminator |....| Adversarial
-------- loss

Encoder
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Adversarial domain adaptation

classification

----- Encoder loss

Source Data + Labels

Classifier

can be shared

Unlabeled Target Data

| Discriminator |....| Adversarial
-------- loss

Encoder
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Design choices in adversarial adaptation

classification
loss

(LI

Source Data + Labels

Classifier

Generative or \/ 8 | “confusion”
discriminative? Shared or not? Which loss?
Unlabeled Target Data Sreaiac: M Advlersarial
_______ oss
Encoder |-
Method Base model = Weight sharing Adversarial loss
Gradient reversal [ 16] discriminative shared minimax
- Domain confusion [|2]  discriminative shared confusion
CoGAN [13] generative unshared GAN

[13] Ming-Yu Liu and Oncel Tuzel. Coupled generative adversarial networks, NIPS 2016
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Deep domain confusion [Tzeng ICCV15]

Train a network to minimize classification loss AND confuse
two domains

nglin Lp(xs,2r, Oep:Op)
D

min Leont(25, 27,00 Orepr)-

repr



Kate Saenko, Trevor Darrell, PEARL: Perceptual Adaptive Representation Le

Deep domain confusion [Tzeng ICCV15]

Train a network to minimize classification loss AND confuse

two domains
network domain st -1 i
W .
source target parameters ((:Ifasrsr:;ler domain classifier loss 1 ?

inputs  inputs  (fixed)

~_ N\ . /

= i";a'?"'iéiiéaéa'iéiﬁ&”"”i_a_i
Lp(®s, Tr, Owepr; Op) = E llyp = d]log qq e e
domain classifier prediction
( (#:brepr)) = p (7 %) iterate
domain network domain confusion loss
ifier (fi inLp(rg. xr. Qe 0
= classifier (flxe\d) param;ters (learn) __— 1%;11 p(xs, 27, Oepr: Op)
%/\h; ﬁconf(xS: 7, 0p: Qrepr) — Z 5 log qa Itlglill Leont(25. 27,0D: Orepr ).
| = repr
d

(cross-entropy with uniform distribution)
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What is a good adversarial loss function?

Confusion loss [Tzeng2015]
max Expg (x) [10g D(Ms(x))] + Expr x) [log(1 — D(Mr(x)))]

1 1
e Y B [ngD(Md(x))+§1og<1—D(Md(x)>)
T de{S,T}

Minimax loss [Ganin2015]

MTIJII}T IIIBLXV(D MS: MT) Exrvps (x) []-Og D(MS(X)H + EprT (x) []-Og(]- - D(MT (X)))]

GAN loss [Goodfellow 2014]
xops () [108 D(Ms(x))] + Exnpr(xlog(1 — D(Mr(x)))] ~ "stronger gradients”

IE]/I&X EXNIOT (x) [log D(MT(X))} y
T

max E
D
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Adversarial Discriminative Domain Adaptation (ADDA)

[Tzeng CVPR17]

.

Source Data + Labels

Generative or
discriminative?\/

Unlabeled Target Data

Encoder

classification
loss

Classifier

Shared or not?\/

GAN

Which loss?
| Discriminator |...| Adversaria
__________ loss
Encoder |7

Method Base model = Weight sharing Adversarial loss
Gradient reversal [ 16] discriminative shared minimax
Domain confusion [12] discriminative shared confusion
CoGAN [173] generative unshared GAN
ADDA discriminative unshared GAN
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Applications to different types of domain shift

From dataset to dataset From RGB to depth

WELD

From CAD models to real images

N Ny
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Fully Convolutional Network with Domain Confusion L0OSS [Hoffman 2016]

convl L] comve fol o7 fca
............ B N source data
s
: b
i ‘%@ | domain
9 g = | B | .~ | confusion 5
S a = L - lnss B
=R 3 ¥ @ feD [, I3
ﬁ = w i W :: N — o
/! damain H
i classifier
; Q.;f' loss
£
i
conv COms fcb fc7 | & fcd

FCNs in the Wild: Pixel-level Adversarial and Constraint-based Adaptation, Judy Hoffman, Dequan Wang, Fisher Yu, Trevor Darrell,
Arxiv 2016
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Results on Cityscapes to SF adaptation  (roffman2016]

Before domain After domain confusion
confusion

FCNs in the Wild: Pixel-level Adversarial and Constraint-based Adaptation, Judy Hoffman, Dequan Wang, Fisher Yu, Trevor Darrell,
Arxiv 2016
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ADDA: AdaEtation on digits [Tzeng CVPR17]
wer [ [EN B E1 Y
A1 51514
o T 2

MNIST — USPS USPS — MNIST SVHN — MNIST
Method /1 7I2E3 OIS ) 10ISES /171> IREED? [MEd /| 7] 3
Source only 0.752 £ 0.016 0.571 = 0.017 0.601 = 0.011
Gradient reversal 0.771 £ 0.018 0.730 = 0.020 0.739 [16]
Domain confusion 0.791 £+ 0.005 0.665 + 0.033 0.681 £+ 0.003
CoGAN 0.912 4 0.008 0.891 £ 0.008 did not converge

ADDA (Ours) 0.894 £ 0.002 0.901 £ 0.008 0.760 = 0.018
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Office dataset: historical progress

backpack chair bike

@4 st

Amazon domain “Robot” domain
.. @=m ADDA
ADDA
70
% %or a Unsupervised adaptation in 2016/2017
80 - ‘D:)C - DDC
70l DecA® 50 DeCAF Method A—W
2600 - &40} DDC (Tzeng et al., 2014) 0.618
g o DLID £ DAN (Long & Wang, 2015) 0.685
3 Tw DRCN (Ghifary et al., 2016) ~ 0.687
£ . £ . DANN (Ganin et al., 2016) 0.730
§ " GFK § 20 DLD
“ ADDA (Ours) 0.751
200 gym . L]
54+ 10+ SGF GFK
10
0 20‘1 1 2!7;12 261 3 2014 20‘]5 0 20‘1 1 2012 20‘13 20‘14 20‘15

(a) A—W supervised adaptation (b) A—W unsupervised adaptation



Kate Saenko, Trevor Darrell, PEARL: Perceptual Adaptive Representation Learning in the Wild

Applications to different types of domain shift

From dataset to dataset

———

From RGB to depth

N Ny
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ADDA: Adaptation on RGB-D [Tzeng CVPR17]

Train on RGB

Test on depth

: s, T :
A A T T T - - 2 % 3 B
F 2 2 2 £ 3 %3 8 EE E g P 2 i § 3 % : &
# of instances 19 96 87 210 611 103 122 129 25 55 144 37 51 276 47 129 210 33 17 2401

Source only  0.000 0.010 0.011 0.124 0.188 0.029 0.041 0.047 0.000 0.000 0.069 0.000 0.039 0.587 0.000 0.008 0.010 0.000 0.000 0.139
ADDA (Ours) 0.000 0.146 0.046 0.229 0.344 0.447 0.025 0.023 0.000 0.018 0.292 0.081 0.020 0.297 0.021 0.116 0.143 0.091 0.000 0.211

Train on target 0.105 0.531 0.494 0.295 0.619 0.573 0.057 0.636 0.120 0.291 0.576 0.189 0.235 0.630 0.362 0.248 0.357 0.303 0.647 0.468
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Not covered today: simulation-to-real shifts

From dataset to dataset From RGB to depth

MELE

From CAD models to real images

RN

—
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Thank you
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