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Has deep learning solved AI?

pedestrian detection FAIL

https://www.youtube.com/watch?v=w2pwxv8rFkU
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“What you saw is not what you get”

“Dataset Bias”
“Domain Shift”

“Domain Adaptation”
“Domain Transfer”

What your net is trained on What it’s asked to label
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Example shift: scene segmentation
Train on Cityscapes, Test on Cityscapes

road

road

people

building

building

sky

FCNs in the Wild: Pixel-level Adversarial and Constraint-based Adaptation, Judy Hoffman, Dequan Wang, Fisher Yu, Trevor Darrell, 
Arxiv 2016
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Example shift: scene segmentation

tree
building

FCNs in the Wild: Pixel-level Adversarial and Constraint-based Adaptation, Judy Hoffman, Dequan Wang, Fisher Yu, Trevor Darrell, 
Arxiv 2016

Train on Cityscapes, Test on San Francisco
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Today: solving the domain shift problem
From dataset to dataset

From simulated to real control

From RGB to depth

From CAD models to real images 
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Background: Domain Adaptation from source to target distribution

backpack chair bike

Adapt

Source Domain
lots of labeled data

bike??

Target Domain
unlabeled or limited labels

?
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fc
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7 classification

loss

How to adapt a deep network?

backpack chair bike

Source Data
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backpack chair bike

fc
8conv1 conv5 fc

6
fc
7

• Applying source classifier to target domain can 
yield inferior performance…

classification
loss

How to adapt a deep network?

Source Data

Target Databackpack

?
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Source Data

backpack chair

Target Databackpack

?

fc
8conv1 conv5 fc

6
fc
7

labeled target 
data
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8conv1 conv5 fc

6
fc
7

classification
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• Fine tune?  
…..Zero or few labels in target domain

How to adapt a deep network?

source 
data

bike

IDEA: align feature 
distributions
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Adversarial networks
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Adversarial networks
P QEncoder P Reference Q

Adversary
Tries to discriminate between 
samples from P and samples 
from Q

Encoder
Generates features such that 
their distribution P matches 
reference distribution Q
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Adversarial networks
P

Q

Encoder P Reference Q

Adversary
Tries to discriminate between 
samples from P and samples 
from Q

Encoder
Generates features such that 
their distribution P matches 
reference distribution Q
fools adversary tries harder

Q
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Source Data + Labels

backpack chair bike

Unlabeled Target Data

?

Encoder

C
la

ss
ifi

er

Encoder classification
loss

Adversarial domain adaptation

can be shared 
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Source Data + Labels

backpack chair bike

Unlabeled Target Data

?

Encoder

C
la

ss
ifi

er

Encoder classification
loss

Adversarial domain adaptation

Discriminator Adversarial 
loss

can be shared 
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Source Data + Labels

backpack chair bike

Unlabeled Target Data

?

Encoder

C
la

ss
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Adversarial domain adaptation

Discriminator Adversarial 
loss

can be shared 
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Source Data + Labels

backpack chair bike

Unlabeled Target Data

?

Encoder

C
la

ss
ifi

er

Encoder classification
loss

Design choices in adversarial adaptation

Discriminator Adversarial 
loss

Which loss?Shared or not?
Generative or
discriminative?

“confusion”

[13] Ming-Yu Liu and Oncel Tuzel. Coupled generative adversarial networks, NIPS 2016
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Deep domain confusion
Train a network to minimize classification loss AND confuse 
two domains

[Tzeng ICCV15 ]
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Deep domain confusion
Train a network to minimize classification loss AND confuse 
two domains

[Tzeng ICCV15 ]

source 
inputs

target
inputs

network
parameters
(fixed)

domain
classifier
(learn) domain classifier loss

domain classifier prediction

network 
parameters (learn)

domain confusion loss

= 𝑝𝑝(𝑦𝑦𝐷𝐷 = 1|𝑥𝑥)

(cross-entropy with uniform distribution)

domain
classifier (fixed)

iterate
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What is a good adversarial loss function?

Minimax loss

Confusion loss

GAN loss [Goodfellow 2014]

[Tzeng 2015]

[Ganin 2015]

“stronger gradients”



Kate Saenko, Trevor Darrell, PEARL: Perceptual Adaptive Representation Learning in the Wild

Source Data + Labels

backpack chair bike

Unlabeled Target Data

?

Encoder

C
la

ss
ifi

er

Encoder classification
loss

Adversarial Discriminative Domain Adaptation (ADDA)

Discriminator Adversarial 
loss

Which loss?Shared or not?
Generative or
discriminative?

GAN

[Tzeng CVPR17]
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Applications to different types of domain shift
From dataset to dataset

From simulated to real control

From RGB to depth

From CAD models to real images 
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Fully Convolutional Network with Domain Confusion Loss

FCNs in the Wild: Pixel-level Adversarial and Constraint-based Adaptation, Judy Hoffman, Dequan Wang, Fisher Yu, Trevor Darrell, 
Arxiv 2016

[Hoffman 2016]
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Before domain 
confusion

After domain confusion

Results on Cityscapes to SF adaptation

FCNs in the Wild: Pixel-level Adversarial and Constraint-based Adaptation, Judy Hoffman, Dequan Wang, Fisher Yu, Trevor Darrell, 
Arxiv 2016

[Hoffman 2016]
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ADDA: Adaptation on digits [Tzeng CVPR17]
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Office dataset: historical progress

Unsupervised adaptation in 2016/2017

7

DDC

ADDA

DDC

backpack chair bike

Adapt

Amazon domain                                               “Robot” domain

ADDA
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Applications to different types of domain shift
From dataset to dataset

From simulated to real control

From RGB to depth

From CAD models to real images 
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ADDA: Adaptation on RGB-D

Train on RGB

Test on depth

[Tzeng CVPR17]
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Not covered today: simulation-to-real shifts
From dataset to dataset

From simulated to real control

From RGB to depth

From CAD models to real images 
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Thank you
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