PEARL: Perceptual Adaptive Representation Learning in the Wild Adversarial Domain Adaptation

Kate Saenko

Trevor Darrell

Eric Tzeng

Judy Hoffman

Has deep learning solved AI?

pedestrian detection FAIL

https://www.youtube.com/watch?v=w2pwxv8rFkU

"What you saw is not what you get"

What your net is trained on

What it's asked to label

"Dataset Bias" "Domain Shift" "Domain Adaptation" "Domain Transfer"

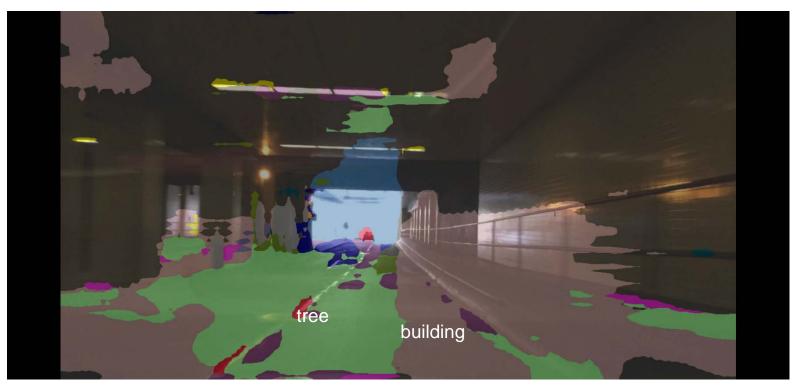
Example shift: scene segmentation

Train on Cityscapes, Test on Cityscapes

FCNs in the Wild: Pixel-level Adversarial and Constraint-based Adaptation, Judy Hoffman, Dequan Wang, Fisher Yu, Trevor Darrell, Arxiv 2016

Example shift: scene segmentation

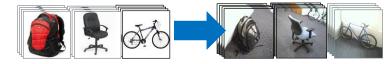
Train on Cityscapes, Test on San Francisco



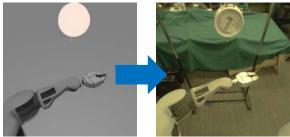
FCNs in the Wild: Pixel-level Adversarial and Constraint-based Adaptation, Judy Hoffman, Dequan Wang, Fisher Yu, Trevor Darrell, Arxiv 2016

Today: solving the domain shift problem

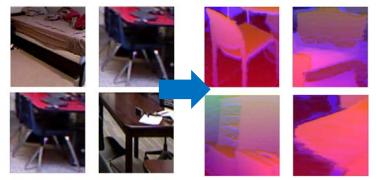
From dataset to dataset



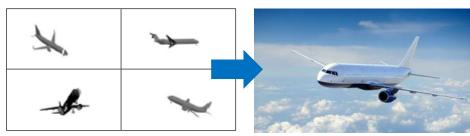
From simulated to real control



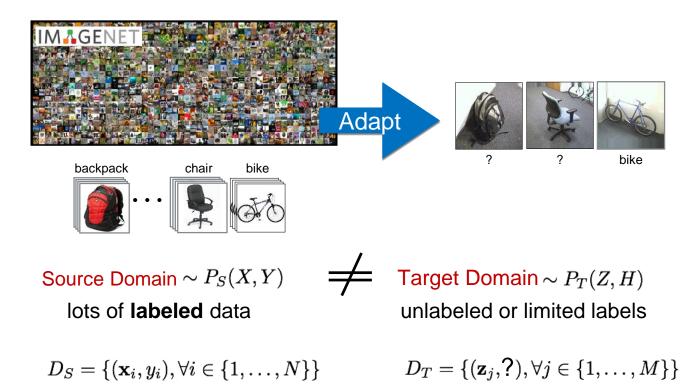
From RGB to depth



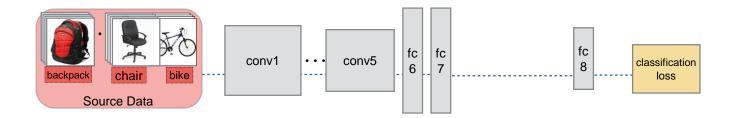
From CAD models to real images



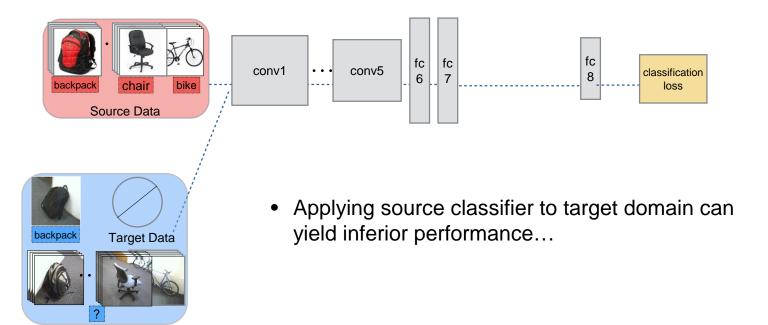
Background: Domain Adaptation from source to target distribution



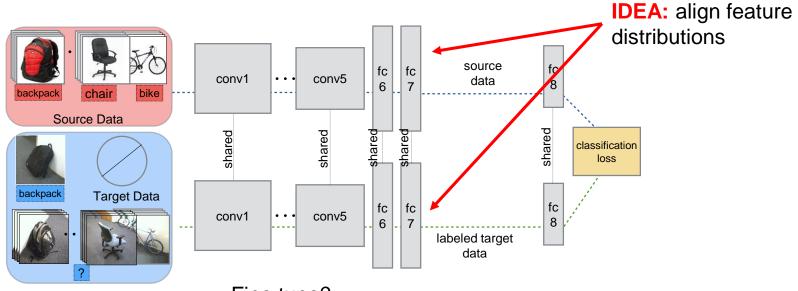
How to adapt a deep network?



How to adapt a deep network?



How to adapt a deep network?

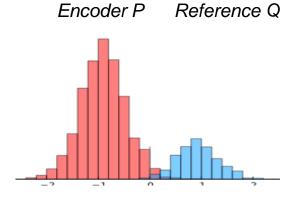


• Fine tune?

.....Zero or few labels in target domain

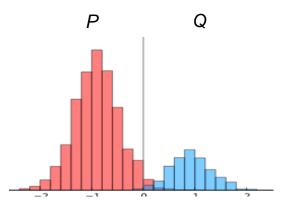
Adversarial networks

Adversarial networks



Encoder

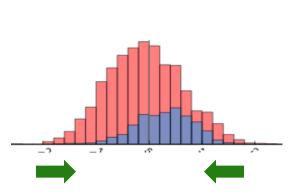
Generates features such that their distribution P matches reference distribution Q



Adversary

Tries to discriminate between samples from P and samples from Q

Adversarial networks



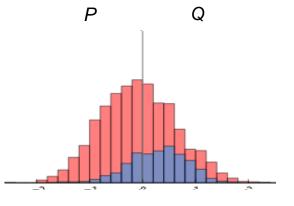
Reference Q

Encoder

Encoder P

Generates features such that their distribution P matches reference distribution Q

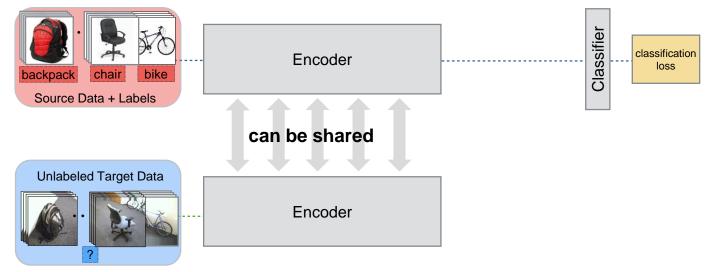
fools adversary



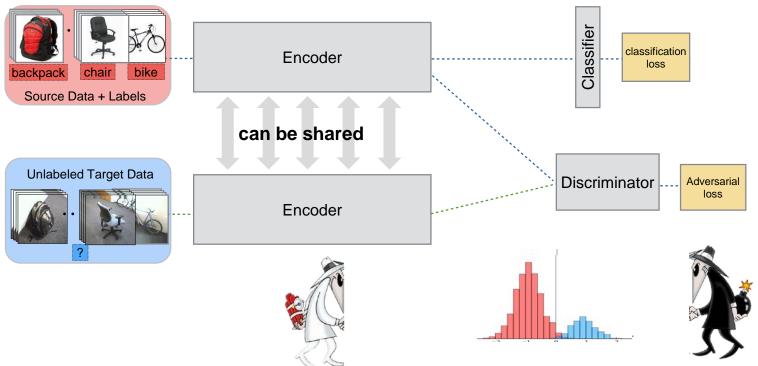
Adversary

Tries to discriminate between samples from P and samples from Q *tries harder*

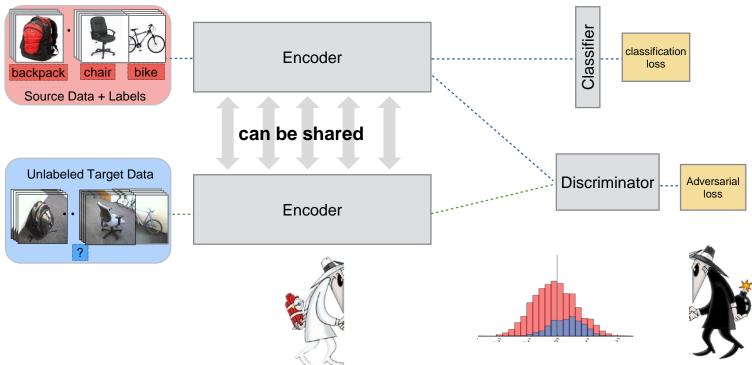
Adversarial domain adaptation



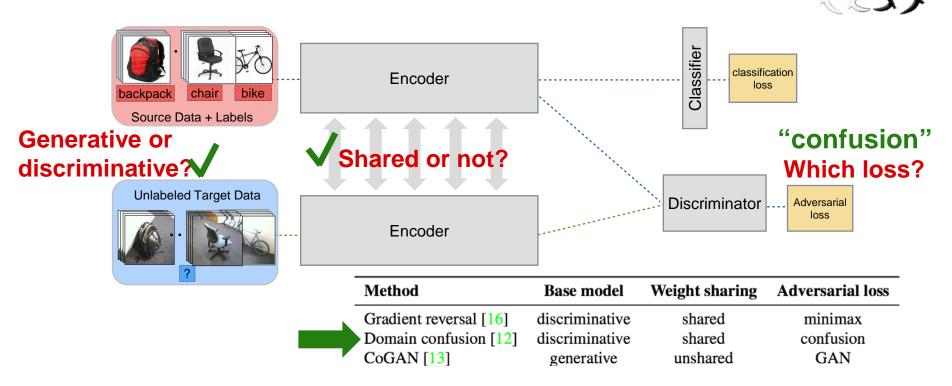
Adversarial domain adaptation



Adversarial domain adaptation



Design choices in adversarial adaptation

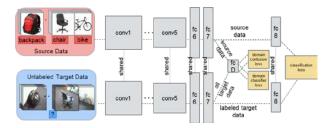


[13] Ming-Yu Liu and Oncel Tuzel. Coupled generative adversarial networks, NIPS 2016

Deep domain confusion

[Tzeng ICCV15]

Train a network to minimize classification loss AND confuse two domains

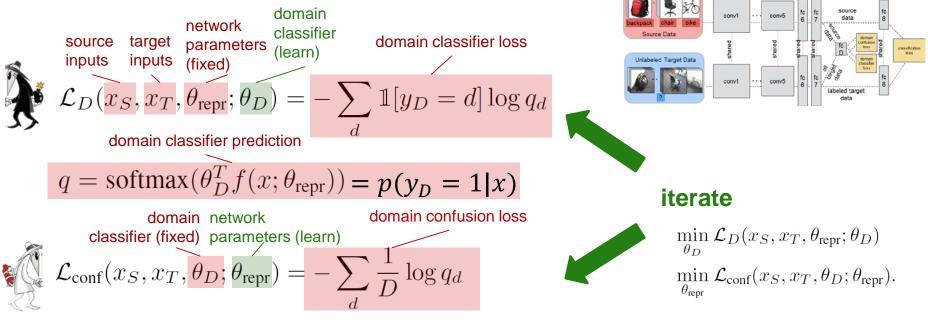


 $\min_{\theta_D} \mathcal{L}_D(x_S, x_T, \theta_{\text{repr}}; \theta_D)$ $\min_{\theta_{\text{repr}}} \mathcal{L}_{\text{conf}}(x_S, x_T, \theta_D; \theta_{\text{repr}}).$

Deep domain confusion

[Tzeng ICCV15]

Train a network to minimize classification loss AND confuse two domains



(cross-entropy with uniform distribution)

What is a good adversarial loss function?

$$\begin{array}{l} \mathbf{Confusion loss} \quad \text{[Tzeng 2015]} \\ \max_{D} \mathbb{E}_{\mathbf{x} \sim p_{S}(\mathbf{x})} \left[\log D(M_{S}(\mathbf{x})) \right] + \mathbb{E}_{\mathbf{x} \sim p_{T}(\mathbf{x})} \left[\log(1 - D(M_{T}(\mathbf{x}))) \right] \\ \max_{M_{S}, M_{T}} \sum_{d \in \{S, T\}} \mathbb{E}_{\mathbf{x} \sim p_{d}(\mathbf{x})} \left[\frac{1}{2} \log D(M_{d}(\mathbf{x})) + \frac{1}{2} \log(1 - D(M_{d}(\mathbf{x}))) \right] \end{array}$$

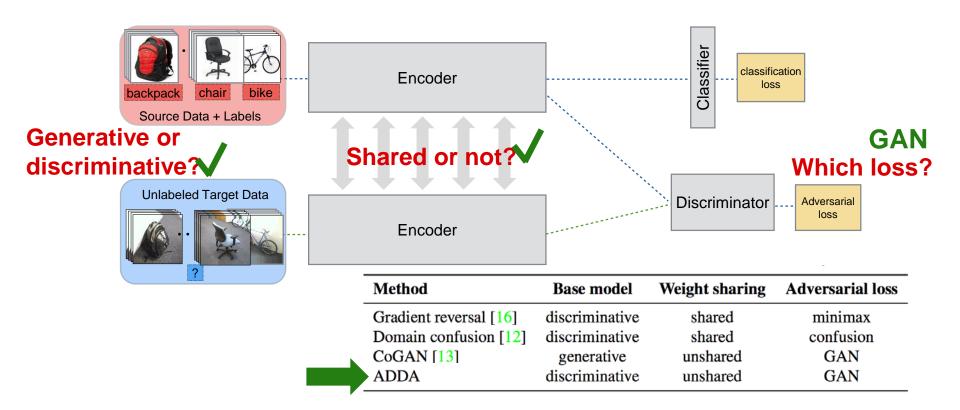
Minimax loss [Ganin 2015]

 $\min_{M_S, M_T} \max_{D} V(D, M_S, M_T) = \mathbb{E}_{\mathbf{x} \sim p_S(\mathbf{x})} [\log D(M_S(\mathbf{x}))] + \mathbb{E}_{\mathbf{x} \sim p_T(\mathbf{x})} [\log(1 - D(M_T(\mathbf{x})))]$

GAN loss [Goodfellow 2014]

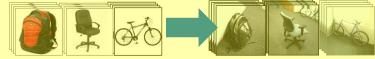
$$\max_{D} \mathbb{E}_{\mathbf{x} \sim p_{S}(\mathbf{x})} [\log D(M_{S}(\mathbf{x}))] + \mathbb{E}_{\mathbf{x} \sim p_{T}(\mathbf{x})} [\log (1 - D(M_{T}(\mathbf{x})))]$$
 "stronger gradients"
$$\max_{M_{T}} \mathbb{E}_{\mathbf{x} \sim p_{T}(\mathbf{x})} [\log D(M_{T}(\mathbf{x}))].$$

Adversarial Discriminative Domain Adaptation (ADDA) [Tzeng CVPR17]

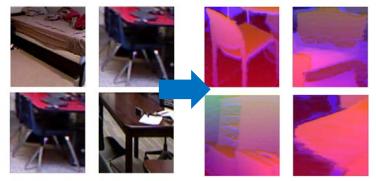


Applications to different types of domain shift

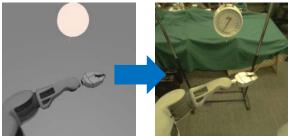
From dataset to dataset



From RGB to depth



From simulated to real control



From CAD models to real images



Fully Convolutional Network with Domain Confusion Loss [Hoffman 2016]



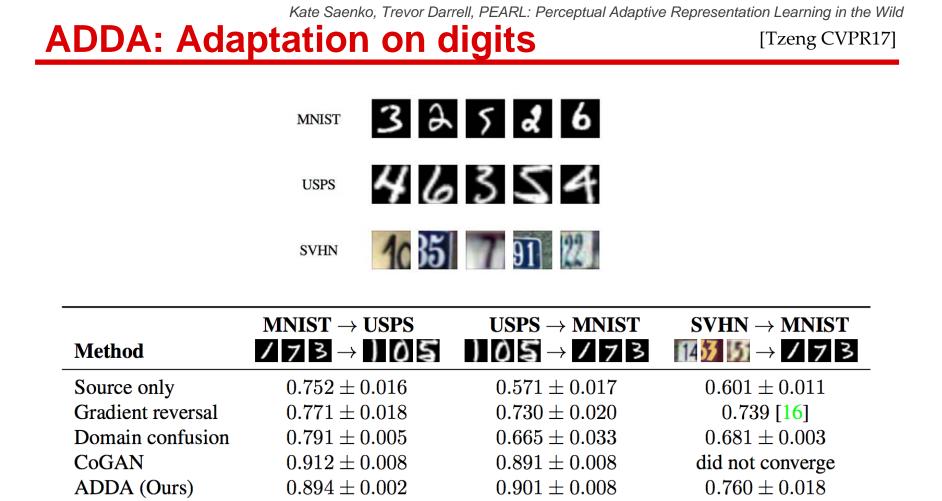
FCNs in the Wild: Pixel-level Adversarial and Constraint-based Adaptation, Judy Hoffman, Dequan Wang, Fisher Yu, Trevor Darrell, Arxiv 2016

Results on Cityscapes to SF adaptation [Hoffman 2016]

Before domain confusion

After domain confusion

FCNs in the Wild: Pixel-level Adversarial and Constraint-based Adaptation, Judy Hoffman, Dequan Wang, Fisher Yu, Trevor Darrell, Arxiv 2016



Office dataset: historical progress

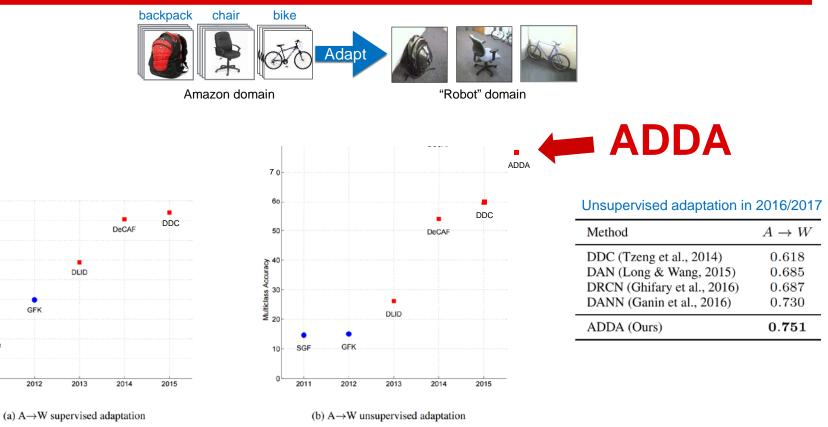
90

80

70

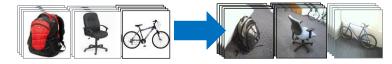
20 SVM

10 0_____2011



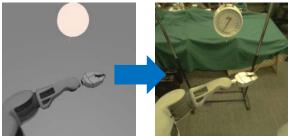
Applications to different types of domain shift

From dataset to dataset

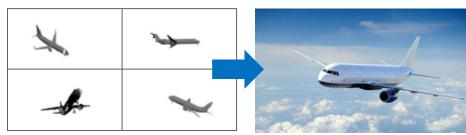


From RGB to depth

From simulated to real control



From CAD models to real images

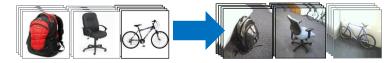


ADDA: Adaptation on RGB-D

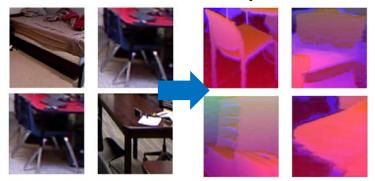
Tı	rain d	on R(GB				1													
Т																				
	bathtub	bed	bookshelf	box	chair	counter	desk	door	dresser	garbage bin	lamp	monitor	night stand	pillow	sink	sofa	table	television	toilet	overall
# of instances	19	96	87	210	611	103	122	129	25	55	144	37	51	276	47	129	210	33	17	2401
Source only ADDA (Ours)																			0.000 0.000	
Train on target	0.105	0.531	0.494	0.295	0.619	0.573	0.057	0.636	0.120	0.291	0.576	0.189	0.235	0.630	0.362	0.248	0.357	0.303	0.647	0.468

Not covered today: simulation-to-real shifts

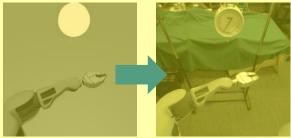
From dataset to dataset



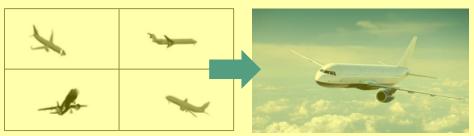
From RGB to depth



From simulated to real control



From CAD models to real images



Thank you

References

- Eric Tzeng, Judy Hoffman, Trevor Darrell, Kate Saenko, Simultaneous Deep Transfer Across Domains and Tasks, ICCV 2015
- Eric Tzeng, Coline Devin, Judy Hoffman, Chelsea Finn, Pieter Abbeel, Sergey Levine, Kate Saenko, Trevor Darrell, Adapting Deep Visuomotor Representations with Weak Pairwise Constraints, WAFR 2016
- Baochen Sun, Jiashi Feng, Kate Saenko, Return of Frustratingly Easy Domain Adaptation, AAAI 2016
- Baochen Sun, Kate Saenko, Deep CORAL: Correlation Alignment for Deep Domain Adaptation, TASK-CV Workshop at ICCV 2016
- Eric Tzeng, Judy Hoffman, Trevor Darrell, Kate Saenko, Adversarial Discriminative Domain Adaptation, accepted to CVPR 2017
- Synthetic to Real Adaptation with Deep Generative Correlation Alignment Networks, arxiv.org