
Theory and Implementation of 
Dynamic Data Structures for the GPU

John Owens 
UC Davis

Martín Farach-Colton 
Rutgers



NVIDIA OptiX & the BVH

Tero Karras. Maximizing parallelism in 
the construction of BVHs, octrees, and k-
d trees. In High-Performance Graphics, 
HPG ’12, pages 33–37, June 2012.



The problem

• Many data structures are built on the CPU and used on the 
GPU 

• Very few data structures can be built on the GPU 

• Sorted array 

• (Cuckoo) hash table 

• Several application-specific data structures (e.g., BVH tree) 

• No data structures can be updated on the GPU



Scale of updates

• Update 1–few items 

• Fall back to serial case, slow, probably don’t care 

• Update very large number of items 

• Rebuild whole data structure from scratch 

• Middle ground: our goal 

• Questions: How and when?



Approach

• Pick data structures useful in serial case, try to find 
parallelizations? 

• Pick what look like parallel-friendly data structures with 
parallel-friendly updates?



Log-structured merge tree

• Supports dictionary and range queries 

• log n sorted levels, each level 2x the size of the last 

• Insert into a filled level results in a merge, possibly 
cascaded. Operations are coarse (threads cooperate).

ICS’17, June 2017, Chicago, Illinois USA S. Ashkiani et al.

2 1 0

merge

2 1 0 2 1 0

Figure 1: Insertion example inGPULSM; adding a newbatch
of b elements into a GPU LSMwith 5b elements. Blocks with
similar colors are sorted among themselves.

notion of time is discretized based on the order of batch
insertions.

(4) If we insert multiple items with the same key in the same
batch, an arbitrary one is chosen as the current valid item.

(5) A�er deleting a key, all instances of that key inserted pre-
viously are considered deleted and become stale. Multiple
deletions of the same key within a batch have the same
e�ect as one deletion.

(6) A key that is inserted and deleted within the same batch is
considered deleted.

Our strategy for implementing these semantics is to tolerate stale
elements (deleted elements and duplicate insertions) in the data
structure, but to guarantee that they do not a�ect query results. Pe-
riodically, the user can choose to clean up (�ush) the data structure,
removing all stale elements and improving query e�ciency (as a
direct result of size reduction).

3.2 Insertion
Insertions are where LSMs and COLAs really shine, and in external
memory, their insertion performance far outperforms B-trees.

In the GPU LSM, since we assumed all insertions are in units of b
elements, the size of level i in the GPU LSM is b2i , and at any time
the whole data structure can accommodate multiples of b elements.
Each level is completely full or completely empty. To insert a batch
of size b, the batch is �rst sorted. If the �rst level is empty, the
batch becomes the new �rst level. Otherwise, we merge the sorted
batch with the sorted list already residing in the �rst level, forming
a sorted array of size 2b, and proceed. Figure 1 schematically shows
the insertion process in the GPU LSM.

Note that in a GPU LSMwith n = rb elements (resident elements),
the levels that contain sorted lists correspond to the set bits in the
the binary representation of the integer r . �e insertion process
corresponds to incrementing r , with binary additions and carries
corresponding to the merging procedure described above. �e
larger our choice of b is, the more parallelism can be exploited in
our insertion process by the GPU. Smallerb sizes lead to ine�ciency
in the �rst few levels for each operation, and indirectly increase the
total number of levels (r ) in the data structure. Also note that since
we start insertion from lower indexed (smaller) levels, any item

residing in larger levels is certainly inserted before any element in a
smaller level. We also make sure that a�er merging, insertion order
is preserved among all elements within the same level (Section 4.1).

LSMs and COLAs were designed to exploit I/O parallelism (with
an analysis based on memory block size) [4]. Similarly, we can
analyze the GPU LSM’s insertions to show that any sequence of
r insertions of batches of size b requires at most O (rb log r ) work,
that is, O (log r ) work per item. While a worst-case individual
insertion will require a cascade of merges, ultimately placing the
�nal list in the level corresponding to the most signi�cant bit of r ,
and hence time �(rb), such a worst-case operation can only occur
infrequently. In particular, an element that gets stored in a list of
lengthO (2ib) has participated inO (i )  O (log r ) merge operations,
so the total work performed over all rb elements in the GPU LSM
at any time is O (rb log r ).

3.3 Deletion
Deletionwas not initially included in the COLA. To include deletion,
we need to make sure item 5 in Section 3.1 is satis�ed. �e standard
way to delete an item is to insert a tombstone item with the same
key, indicating that previously inserted items with that key, if any,
should be considered deleted. Since deletion, then, is the insertion
of a tombstone, deletion and insertion are in practice the same, and
we can combine any insertion and deletion requests into a mixed
batch. As we shall see, this tombstoning scheme allows the GPU
LSM to perform insertions and deletions very e�ciently, at the cost
of accumulating stale elements.

3.4 Lookup
Recall that ������(k ) should return the most recently inserted
value corresponding to k , if it was not subsequently deleted, or
otherwise report that such a key does not exist. To ensure this, we
guarantee the following building invariants during insertion and
deletion.

(1) Within each level, all elements are sorted by key and thus
all elements with the same key are next to each other
(segmented);

(2) Every tombstone at each level is placed as the �rst element
of its segment; and

(3) All elements of each segment (regular elements and tomb-
stones) are ordered from the lowest index to the highest
based on their insertion time (from least recent to most
recent).

With these invariants, it su�ces to start our lookup process from
the smallest full level (most recent) and look for the �rst index with
key greater than or equal to k . If we �nd a key equal to k , we return
it and are done, otherwise we continue to the next full level. If we
�nd a tombstone with key k at any time during our search, then k
is deleted and our lookup returns no results.

With n = rb total elements, �nding the lower bound (a modi�ed
binary search) in each level takesO (log(b2i )) steps over log r steps,
which in the worst case results in O (log2 (r ) + log(r ) log(b)) indi-
vidual memory accesses per query (the same cost as in the basic
LSM).

 . Michael A. Bender, Martin 
Farach-Colton, Jeremy T. 
Fineman, Yonatan R. Fogel, 
Bradley C. Kuszmaul, and Jelani 
Nelson. 2007. Cache-oblivious 
Streaming B-trees. In 
Proceedings of the Nineteenth 
Annual ACM Symposium on 
Parallel Algorithms and 
Architectures (SPAA ’07). 81–92. 



LSM results/questions

• Update rate of 225M elements/s 

• 13.5x faster than merging with a sorted array 

• Lookups: 7.5x/1.75x slower than hash table/sorted array 

• Deletes using tombstones 

• Semantics for parallel insert/delete operations? 

• Minimum batch size? 

• Atom size for searching? 

• Fractional cascading?
Saman Ashkiani, Shengren Li, Martin Farach-Colton, Nina 
Amenta, and John D. Owens. GPU COLA: A dynamic dictionary 
data structure for the GPU. January 2017. Unpublished. 



Quotient Filter

• Probabilistic 
membership queries 
& lookups: false 
positives are 
possible 

• Comparable to a 
Bloom filter but also 
supports deletes and 
merges

0 0 0
0

1 0 0
a

1
0 1 1

b

2
1 0 0

c

3
1 1 1

d

4
0 1 1

e

5
1 0 1

f

6
0 0 1

g

7
0 1 1

h

8
0 0 0
9

0 1 2 3 4 5 6 7 8 9

a

b

c

d

e

f g

h

run
cluster

is_occupied

is_continuation

is_shifted

1
1
3
3
3
4
6
6

a
b
c
d
e
f
g
h

A
B
C
D
E
F
G
H

f fq fr

 . Michael A. Bender, Martin Farach-Colton, Rob 
Johnson, Russell Kraner, Bradley C. 
Kuszmaul, Dzejla Medjedovic, Pablo Montes, 
Pradeep Shetty, Richard P. Spillane, and Erez 
Zadok. 2012. Don’t Thrash: How to Cache 
Your Hash on Flash. Proceedings of the VLDB 
Endowment 5, 11 (Aug. 2012), 1627–1637. 



QF results/questions

• Lookup perf. for point queries: 3.8–4.9x vs. BloomGPU 

• Bulk build perf.: 2.4–2.7x vs. BloomGPU 

• Insertion is significantly faster for BloomGPU 

• Similar memory footprint 

• 3 novel implementations of bulk build + 1 of insert 

• Bulk build == non-associative scan 

• Limited to byte granularity
Afton Geil, Martin Farach-Colton, and John D. Owens. GPU 
Quotient Filters: Approximate Membership Queries on the 
GPU. January 2017. Unpublished. 



Cross-cutting issues

• Useful models for GPU memory hierarchy 

• Independent threads vs. cooperative threads? 

• More broadly, what’s the right work granularity? 

• Memory allocation (& impact on hardware) 

• Cleanup operations, and programming model 
implications 

• Integration into higher-level programming environments 

• Use cases! Chicken & egg problem


