Theory and Implementation of
Dynamic Data Structures for the GPU

John Owens Martin Farach-Colton
UC Davis Rutgers

NVIDIA OptiX & the BVH

Tero Karras. Maximizing parallelism in
the construction of BVHs, octrees, and k-
d trees. In High-Performance Graphics,
HPG’12, pages 33—-37, June 2012.

=g

The problem

e Many data structures are built on the CPU and used on the
GPU

e Very few data structures can be built on the GPU
e Sorted array
® (Cuckoo) hash table

e Several application-specific data structures (e.g., BVH tree)

e No data structures can be updated on the GPU

Scale of updates

e Update 1—few items

e Fall backto serial case, slow, probably don’t care
e Update very large number of items

e Rebuild whole data structure from scratch
e Middle ground: our goal

e Questions: How and when?

Approach

e Pick data structures useful in serial case, try to find
parallelizations?

e Pick what look like parallel-friendly data structures with
parallel-friendly updates?

Log-structured merge tree

merge

I —ill—

] [0]] [0]

e Supports dictionary and range queries

Michael A. Bender, Martin
Farach-Colton, Jeremy T.
Fineman, Yonatan R. Fogel,
Bradley C. Kuszmaul, and Jelani
Nelson. 2007. Cache-oblivious
Streaming B-trees. In
Proceedings of the Nineteenth
Annual ACM Symposium on
Parallel Algorithms and
Architectures (SPAA ’07). 81-92.

e log n sorted levels, each level 2x the size of the last

e [nsertinto a filled level results in a merge, possibly
cascaded. Operations are coarse (threads cooperate).

LSM results/questions

e Update rate of 225M elements/s
e 13.5x faster than merging with a sorted array
e Lookups: 7.5x/1.75x slower than hash table/sorted array
e Deletes using tombstones
e Semantics for parallel insert/delete operations?
e Minimum batch size?
e Atom size for searching?

e Fractional cascading?

Saman Ashkiani, Shengren Li, Martin Farach-Colton, Nina
Amenta, and John D. Owens. GPU COLA: A dynamic dictionary
data structure for the GPU. January 2017. Unpublished.

Quotient Filter

e Probabilistic
membership queries -
& lookups: false ‘ | |
pOSitiVES are _ \—>%|0|\el)jl1|@|0%|;|1=31|0|0i|;|150|1|1=61|]@c)|12|0|1%|i|1%|0|0
possible

-

N

L]

-
Im-nrncnm>\

)
AP WWWER PP
Q@ 0O QN T Q

Michael A. Bender, Martin Farach-Colton, Rob

® Comparable to a Johnson, Russell Kraner, Bradley C.

Kuszmaul, Dzejla Medjedovic, Pablo Montes,

Bloom filter but also o o oo
supports deletes and

Your Hash on Flash. Proceedings of the VLDB
Endowment 5, 11 (Aug. 2012), 1627-1637.
merges

QF results/questions

e Lookup perf. for point queries: 3.8—4.9x vs. BloomGPU
e Bulk build perf.: 2.4-2.7x vs. BloomGPU

e [nsertion is significantly faster for BloomGPU

e Similar memory footprint

e 3 novelimplementations of bulk build + 1 of insert

e Bulk build == non-associative scan

e [imited to byte granularity

Afton Geil, Martin Farach-Colton, and John D. Owens. GPU
Quotient Filters: Approximate Membership Queries on the
GPU. January 2017. Unpublished.

Cross-cutting issues

e Useful models for GPU memory hierarchy

e [ndependent threads vs. cooperative threads?
e More broadly, what’s the right work granularity?

e Memory allocation (& impact on hardware)

e (Cleanup operations, and programming model
implications

e [ntegration into higher-level programming environments

e Use cases! Chicken & egg problem

