
High Performance Linear System Solvers
with Focus on Graph Laplacians

Richard Peng

Georgia Tech

Co-PIs: John Gilbert (UCSB),

Gary Miller (CMU)

OUTLINE

• Problem of Lx = b

• Benchmarks and Evaluations

• Tree Based Solvers

GRAPH LAPLACIANS

1

1

2 -1 -1

-1 1 0

-1 0 1

Matrices that correspond to undirected graphs

• Variables vertices

• Non-zeros edges

SOLVING Lx = b

• [ST`04]: O(mlogcnlog(1/ε)) time

• 2004 – 2014: c halved every 2 years

• Multigrid methods widely used in scientific computing

• Good runtimes for systems with as many as 109 nonzeros

• MATLAB: pcg(L, ichol(L), b, ε) ‘works’ for 106 nonzeros

loglogc:

2004year:

70

2006 2008 2009

32 15 6

2010

2

2011

1

2014

1/2

THE LAPLACIAN PARADIGM

Directly related:

Elliptic systems

Few iterations:

Eigenvectors,

Heat kernels

Many iterations /

modify algorithm

Graph problems

Image processing

NEW WAYS OF USING SOLVERS

Problem

Lx=b

Sequence of (adaptively)

generated linear systems:

• Power iteration

• Interior point method

• Iterative least squares

What makes such L and b hard:

• Widely varying weights

• Multiscale behavior

• Difficulties of the graph problems

OUTLINE

• Problem of Lx = b

• Benchmarks and Evaluations

• Tree Based Solvers

[KRS`15]: ISOTONIC REGRESSION

README file
we suggest rerunning the

program a few times and /

or using a different solver.

An alternate solver based

on incomplete Cholesky is

provided with the code.

https://github.com/sachdevasushant/Isotonic

GOAL: BENCHMARKS

Structured graphs

• Grids / cubes

• Cayley graphs

• Graph products

Hard graph problems

• Maxflow problems from DIMACS

implementation challenges

• Linear systems arising from second-

order optimization (IPM)

NUMERICS + COMBINATORICS:

Spanning trees:

• finite approximation

• linear time solve

Numerical methods (e.g. CG)

rely on preconditioners

• Good approximation to L

• Easy (easier) to solve on

NUMERICS + COMBINATORICS

Better convergence using 1024 bit MPFR

floats compared to 53 bit C++ double

Conjugate gradient (CG) with tree preconditioner:

• [textbook]: m1/2 iters, even with round-off errors

• [SW`09]: with exact arithmetic, takes m1/3 iters

https://github.com/serbanstan/TreePCG

https://github.com/danspielman/Laplacians.jl

QUESTION: NUMERICAL PRECISION

• Can numerical precision be analyzed

through the graph theoretic components?

• Primal-dual view of precision? CG?

https://github.com/serbanstan/TreePCG

https://github.com/danspielman/Laplacians.jl

OUTLINE

• Problem of Lx = b

• Benchmarks and Evaluations

• Tree Based Solvers

GOAL: FAST TREE-BASED SOLVERS

Gradually transform a tree-based solution

to a solution on the entire graph

Method Cycle Toggle Ultrasparsifier

Cost / Iter logn m + (m/k)2

Iters mlog1/2nlog(1/ε) k1/2log(1/ε)

Related to SGD Grad. descent

Step uses Data structures Mat-Vec multiply

Claim: these ideas lead to code that can solve any

Lx = b with 109 edges in ≤ 10 seconds on ≤ 64 cores

CYCLE TOGGLING
• Pick one off tree edge e at a time, make

progress using T + e as preconditioner

• Speed up calculations using data structures

• [KOSZ `13]: akin to toggling

dual flow along cycle, mlogn

toggles, each costing O(logn)

• [LS `13]: CG-like acceleration

to O(mlog1/2n) toggles

AUGMENTED TREES

• Add some edges to a tree to form a

`batched’ preconditioner

• Use exact methods on preconditioner

• [Vaidya `91]: MST + edges

• [KMP`10]: O(mlog2n/k)
edges k1/2 iters

• Optimize: m5/4log1/2n

Exists recursive versions, but those

gains only kick in at around 109 edges

MOVING PIECES

• Trees: MST / bottom-up / top-down / adaptive

• Data structures: offline / static / dynamic

• Numerics: batched / local, accelerated / CG

• Initialization: tree solution / recursive

Method Cycle Toggle Ultrasparsifier

Cost / Iter logn m + (m/k)2

Iters mlog1/2nlog(1/ε) k1/2log(1/ε)

Related to SGD Grad. descent

Step uses Data structures Mat-Vec multiply

vs

BENCHMARK FOR TREE BASED ALGOS:
HEAVY PATH GRAPHS

• Bad case for PCG,

• `easy’ for tree data structures

Pick a Hamiltonian path, weight all

other edges so each has stretch 1

CYCLE TOGGLING VS. PCG

https://arxiv.org/abs/1609.02957

https://github.com/sxu/cycleToggling

VARIANTS OF CYCLE TOGGLING

https://arxiv.org/abs/1609.02957

https://github.com/sxu/cycleToggling

THANK YOU
• Collaborators:

• Hui Han Chin (CMU),

• Kevin Deweese (UCSB),

• John Gilbert (UCSB),

• Gary Miller (CMU),

• Saurabh Sawlani (GaTech),

• Serban Stan (Yale),

• Haoran Xu (MIT),

• Shen Chen Xu (CMU)

• Repos & Papers:

• https://github.com/sxu/cycleToggling

• https://github.com/serbanstan/TreePCG

• https://github.com/danspielman/Laplacians.jl

• https://arxiv.org/abs/1609.02957

