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Centralized management + Open config APIs 

Controller  

“Flow” FwdAction 
… … 

“Flow” FwdAction 
… … 

“Flow” FwdAction 
… … 

OpenFlow:  

Pkt header, Interface  

 Forwarding interface 

A 20000 feet view of   
Software-Defined Networking (SDN) 



What SDN looks like functionally? 
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Control Platform (e.g., ONOS, OpenDaylight) 

SDN applications 

Network data Network routes 

A A A A A A A 

Data plane 



Network Optimizations are Common 

• Maxflow, Traffic engineering 

• SIMPLE (SIGCOMM 2013) 

• ElasticTree (NSDI 2010) 

• Panopticon (Usenix ATC 2014) 

• SWAN (SIGCOMM 2013) 
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Current Process 

Take theory & 
optimization 

courses 

Formulate the 
problem 

Solve with a 
solver 

Not fast 
enough 

• NP hard? 

Develop 
heuristic 

Parse solution Deploy 
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SDN applications 

Control Platform (e.g., ONOS, OpenDaylight) 

Network data Network routes Optimization layer 

• Focus on high-level 

network goals 

• Rapid prototyping 

• App = 20 lines of  

code 

Our Vision:  
Practical Foundations for SDN optimization 
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Project scope and goals 

• Completed: Framework to simplify basic SDN app development 

• New abstractions and rule synthesis tools 

• [NSDI’16] paper and open source tool https://github.com/progwriter/SOL 

• Future 

• Support composition of  applications 

• Advanced abstractions beyond basic apps 

• Support for stochastic/adversarial demands 
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SOL Framework to simplify workflow 

Approach Generality Efficiency 

Frameworks ✓ ✗ 

Custom solutions ✗ ✓ 

SOL ✓ ✓ 
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SOL: SDN Optimization Layer 
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Logically centralized 

Diverse set 

SOL 
Optimization solver  

(e.g., CPLEX) 

Control Platform (e.g., ONOS, OpenDaylight) 

SDN applications 

 

Network data Network routes 

A A A A A A A 



Insight: Path Abstraction 

• Problems are recast to be path-based 

• Policies are path predicates 
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Path-based Recasting: MaxFlow 

Edge-based Path-based 
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𝑓𝑝1 

𝑓𝑝2 

𝑓𝑝𝑘 

𝑓𝑒1 
𝑓𝑒3 

𝑓𝑒2 

𝑓𝑒4 
𝑓𝑒5 

𝑓𝑒6 
𝑓𝑒8 

𝑓𝑒7 
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𝑓: amount of  flow 

𝑓𝑒1 = 𝑓𝑒3 + 𝑓𝑒4 
 𝑓𝑝𝑖
𝑘
𝑖=1  = demand 



Policies as Path Predicates 
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Valid paths: 

• N1-N4-N5 

• N1-N3-N4-N5 

Invalid paths: 

• N1-N3-N5 
 

IPS

N1 N3

N4N2

N5

IPS
FW

Proxy

N1→N5 

Web, 100 Mbps 

FW→Proxy 

Generality 



Path Challenge 
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Exponential number of  paths 

Large optimization size 

Long run time = Bad efficiency 



SOL Process  
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Path generation 
Path 

selection 
Optimization 

Rule 
generation 

1. Enumerate all simple paths 

2. Keep valid paths 

(according to a predicate) 

Offline step 

Pick a subset of  paths 

 

This acts as a heuristic 

1. Model resource usage 

and constraints 

2. Solve 

Use a controller to 

configure data plane paths 

Efficiency 



Implementation 

• Python library; interfaces with CPLEX solver and ONOS controller 

• Prototyped applications 

• MaxFlow, Traffic engineering, latency minimization 

• ElasticTree (Heller et al.), Panopticon (Levin et al.), SIMPLE (Qazi et al.) 
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Example: MaxFlow 

1. opt, pptc = initOptimization(topo, trafficClasses, nullPredicate, 'shortest', 5) 

2. opt.allocateFlow(pptc) 

3. linkcapfunc = lambda link, tc, path, resource: tc.volBytes  

4. opt.capLinks(pptc, 'bandwidth', linkConstrCaps, linkcapfunc) 

5. opt.maxFlow(pptc) 

6. opt.solve() 
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Topology input Path generation + selection 

Traffic flows 

Resource 

consumption 

Global goal (objective function) 



Example: Traffic Engineering 

1. opt, pptc = initOptimization(topo, trafficClasses, nullPredicate, 'shortest', 5) 

2. opt.allocateFlow(pptc) 

3. linkcapfunc = lambda link, tc, path, resource: tc.volBytes  

4. opt.capLinks(pptc, 'bandwidth', linkConstrCaps, linkcapfunc) 

5. opt.routeAll(pptc) 

6. opt.minLinkLoad('bandwidth') 

7. opt.solve() 
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Route all traffic 

Minimize bandwidth load 



Development effort 

Application SOL lines of  code Estimated improvement 

ElasticTree (Heller et al.) 16 21.8× 

Panoption (Levin et al.) 13 25.7× 

SIMPLE (Qazi et al.) 21 18.6× 
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Optimization Runtime 
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Log Scale 

Shaded: No solution 

by the original within 

30 minutes 

Topology (number of  switches) 

• Orders of  magnitude 

faster 

• Less than 1% away 

from optimal 



Open questions and next steps? 

• When/why does path pruning work? 

• What is a good pruning strategy for a given objective/topology? 

• Robustness to varying demands? 

• Enabling composition of  apps? 

• Are paths sufficient or do we need richer abstractions? 
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Broader efforts in this space .. 

AitF-funded workshop on Algorithms for Software-Defined Networking 
 
Thanks to Mike Dinitz,Thyaga, Tracy, Rebecca Wright! 
 
At DIMACS, Jun 2-3 2016 
 
Program: 
http://dimacs.rutgers.edu/Workshops/SDNAlgorithms/program.html 
 
Videos!  
https://www.youtube.com/playlist?list=PLqxsGMRlY6u7BhnI6JxShJHj_tYg-
i1Qh 
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http://dimacs.rutgers.edu/Workshops/SDNAlgorithms/program.html
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Conclusions 
• SDN benefits in the field requires optimization 

• Vision: Practical foundations for SDN optimization  

Lower barrier of  entry for developers 

• Initial work on SOL: 

• Leverages the path abstraction: generation + selection 

• Efficient: deploy in seconds! 

• Enabler for new directions 

• E.g., seamless composition 

• Many open theoretical questions with practical implications in SDN space 
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