
Practical Foundations for
Software-Defined Network Optimization

CCF-1535917, 1536002

https://users.ece.cmu.edu/~vsekar/aitf_sol.html

Anupam Gupta Michael K. Reiter Vyas Sekar

Carnegie Mellon University UNC Chapel Hill Carnegie Mellon University

2

Centralized management + Open config APIs

Controller

“Flow” FwdAction
… …

“Flow” FwdAction
… …

“Flow” FwdAction
… …

OpenFlow:

Pkt header, Interface

 Forwarding interface

A 20000 feet view of
Software-Defined Networking (SDN)

What SDN looks like functionally?

3

Control Platform (e.g., ONOS, OpenDaylight)

SDN applications

Network data Network routes

A A A A A A A

Data plane

Network Optimizations are Common

• Maxflow, Traffic engineering

• SIMPLE (SIGCOMM 2013)

• ElasticTree (NSDI 2010)

• Panopticon (Usenix ATC 2014)

• SWAN (SIGCOMM 2013)

4

Current Process

Take theory &
optimization

courses

Formulate the
problem

Solve with a
solver

Not fast
enough

• NP hard?

Develop
heuristic

Parse solution Deploy

5

SDN applications

Control Platform (e.g., ONOS, OpenDaylight)

Network data Network routes Optimization layer

• Focus on high-level

network goals

• Rapid prototyping

• App = 20 lines of

code

Our Vision:
Practical Foundations for SDN optimization

6

A A A A A A A

Project scope and goals

• Completed: Framework to simplify basic SDN app development

• New abstractions and rule synthesis tools

• [NSDI’16] paper and open source tool https://github.com/progwriter/SOL

• Future

• Support composition of applications

• Advanced abstractions beyond basic apps

• Support for stochastic/adversarial demands

7

SOL Framework to simplify workflow

Approach Generality Efficiency

Frameworks ✓ ✗

Custom solutions ✗ ✓

SOL ✓ ✓

S
O

L
 A

P
I

SOL: SDN Optimization Layer

9

Logically centralized

Diverse set

SOL
Optimization solver

(e.g., CPLEX)

Control Platform (e.g., ONOS, OpenDaylight)

SDN applications

Network data Network routes

A A A A A A A

Insight: Path Abstraction

• Problems are recast to be path-based

• Policies are path predicates

10

s t
1 3

2 4

Path-based Recasting: MaxFlow

Edge-based Path-based

11

𝑓𝑝1

𝑓𝑝2

𝑓𝑝𝑘

𝑓𝑒1
𝑓𝑒3

𝑓𝑒2

𝑓𝑒4
𝑓𝑒5

𝑓𝑒6
𝑓𝑒8

𝑓𝑒7

s t

1 3

s t

1

4

s t
1 3

2 4

…

𝑓: amount of flow

𝑓𝑒1 = 𝑓𝑒3 + 𝑓𝑒4
 𝑓𝑝𝑖
𝑘
𝑖=1 = demand

Policies as Path Predicates

12

Valid paths:

• N1-N4-N5

• N1-N3-N4-N5

Invalid paths:

• N1-N3-N5

IPS

N1 N3

N4N2

N5

IPS
FW

Proxy

N1→N5

Web, 100 Mbps

FW→Proxy

Generality

Path Challenge

13

Exponential number of paths

Large optimization size

Long run time = Bad efficiency

SOL Process

14

Path generation
Path

selection
Optimization

Rule
generation

1. Enumerate all simple paths

2. Keep valid paths

(according to a predicate)

Offline step

Pick a subset of paths

This acts as a heuristic

1. Model resource usage

and constraints

2. Solve

Use a controller to

configure data plane paths

Efficiency

Implementation

• Python library; interfaces with CPLEX solver and ONOS controller

• Prototyped applications

• MaxFlow, Traffic engineering, latency minimization

• ElasticTree (Heller et al.), Panopticon (Levin et al.), SIMPLE (Qazi et al.)

15

Example: MaxFlow

1. opt, pptc = initOptimization(topo, trafficClasses, nullPredicate, 'shortest', 5)

2. opt.allocateFlow(pptc)

3. linkcapfunc = lambda link, tc, path, resource: tc.volBytes

4. opt.capLinks(pptc, 'bandwidth', linkConstrCaps, linkcapfunc)

5. opt.maxFlow(pptc)

6. opt.solve()

16

Topology input Path generation + selection

Traffic flows

Resource

consumption

Global goal (objective function)

Example: Traffic Engineering

1. opt, pptc = initOptimization(topo, trafficClasses, nullPredicate, 'shortest', 5)

2. opt.allocateFlow(pptc)

3. linkcapfunc = lambda link, tc, path, resource: tc.volBytes

4. opt.capLinks(pptc, 'bandwidth', linkConstrCaps, linkcapfunc)

5. opt.routeAll(pptc)

6. opt.minLinkLoad('bandwidth')

7. opt.solve()

17

Route all traffic

Minimize bandwidth load

Development effort

Application SOL lines of code Estimated improvement

ElasticTree (Heller et al.) 16 21.8×

Panoption (Levin et al.) 13 25.7×

SIMPLE (Qazi et al.) 21 18.6×

18

Optimization Runtime

19

Log Scale

Shaded: No solution

by the original within

30 minutes

Topology (number of switches)

• Orders of magnitude

faster

• Less than 1% away

from optimal

Open questions and next steps?

• When/why does path pruning work?

• What is a good pruning strategy for a given objective/topology?

• Robustness to varying demands?

• Enabling composition of apps?

• Are paths sufficient or do we need richer abstractions?

20

Broader efforts in this space ..

AitF-funded workshop on Algorithms for Software-Defined Networking

Thanks to Mike Dinitz,Thyaga, Tracy, Rebecca Wright!

At DIMACS, Jun 2-3 2016

Program:
http://dimacs.rutgers.edu/Workshops/SDNAlgorithms/program.html

Videos!
https://www.youtube.com/playlist?list=PLqxsGMRlY6u7BhnI6JxShJHj_tYg-
i1Qh

21

http://dimacs.rutgers.edu/Workshops/SDNAlgorithms/program.html
http://dimacs.rutgers.edu/Workshops/SDNAlgorithms/program.html

Conclusions
• SDN benefits in the field requires optimization

• Vision: Practical foundations for SDN optimization

Lower barrier of entry for developers

• Initial work on SOL:

• Leverages the path abstraction: generation + selection

• Efficient: deploy in seconds!

• Enabler for new directions

• E.g., seamless composition

• Many open theoretical questions with practical implications in SDN space

22

