Practical Foundations for
Sottware-Defined Network Optimization

CCF-1535917, 1536002
https:/ /users.ece.cmu.edu/ ~vsekar/aitf_sol.html

Anupam Gupta Michael K. Reiter Vyas Sekar
Carnegie Mellon University UNC Chapel Hill Carnegie Mellon University

A 20000 teet view of
Software-Defined Networking (SDN)

Centralized management + Open config APIs

OpenFlow: Controller
Pkt header, Interface

—> Forwarding interface

'_ «Flow” FwdAction

«“Flow” FwdAction

«“Flow” FwdAction

What SDN looks like tfunctionally?

SDN applications
@@ ,

‘Network data lNetwork routes

[Control Platform (e.g., ONOS, OpenDaylight)]

=

[Data plane =]

Network Optimizations are Common

* Maxflow, Tratfic engineering
* SIMPLE (SIGCOMM 2013)

* ElasticTree (NSDI 2010)

* Panopticon (Usenix ATC 2014)

* SWAN (SIGCOMM 2013)

Current Process

f:
Take theory & Formulate the Solve with a eI

problem solver

enough
e NP hard?

optimization
courses

\
Develop

Parse solution o
heuristic

Our Vision:

Practical Foundations for SDN optimization

r

SDN applications

_ B Bes

a

Optimization layer

Control Platform (e.g., ONOS, OpenDaylight)

4 A

* Focus on high-level
network goals

* Rapid prototyping

* App = 20 lines of

code

_ /

Project scope and goals

* Completed: Framework to simplify basic SDN app development

* New abstractions and rule synthesis tools

* [NSDI'16] paper and open source tool https://github.com/progwriter/SOL

* Future
* Support composition of applications
* Advanced abstractions beyond basic apps

* Support for stochastic/adversarial demands

SOL Framework to simplity worktlow

Approach Generality Efficiency
Frameworks v X
Custom solutions X v

SOL 4 v

SOL: SDN Optimization Layer

<[Diverse set]
v
|

AVALA[ALA] \JA.

SOL API

Optimization solver
SOL
[| | (e.g., CPLEX)]

‘Network data lNetwork routes

— [Logically centralized]

Control Platform (e.g., ONOS, OpenDaylight)

Insight: Path Abstraction

* Problems are recast to be path-based

* Policies are path predicates

Path-based Recasting: MaxFlow

Edge-based Path-based 1 3
f: amount of flow fp .

fel . fe3 + fe4 2
Y1 fpi = demand

N1—N5
Web, 100 Mbps
FW—Proxy

Policies as Path Predicates

{ Generality }

Valid paths:

* N1-N4-N5

* N1-N3-N4-N>5
Invalid paths:

* N1-N3-N5

12

Path Challenge

Exponential number of paths

¥

Large optimization size

¥

Long run time = Bad efficiency

13

Path generation

SOL. Process

Path

selection

Optimization

RUIE

generation

~

1. Enumerate all simple paths
2. Keep valid paths
(according to a predicate)
Offline step

(_/\

Pick a subset of paths

This acts as a heuristic

J

_

~

J

Eftticiency

—~ 2

1. Model resource usage
and constraints

2. Solve

. J

—~ A

Use a controller to

configure data plane paths

- J

14

Implementation

* Python library; interfaces with CPLEX solver and ONOS controller

* Prototyped applications
* MaxFlow, Traffic engineering, latency minimization

 ElasticTree (Heller et al.), Panopticon (Levin et al.), SIMPLE (Qazi et al.)

=

Example: MaxFlow

Topology input Path generation + selection

opt, pptc = initOptimization(Eopo, trafficClasse%}[nullPredicate, 'shortest', %D

bpt.allocateFlow(ppth] Traffic flows

linkcapfunc = lambda link, tc, path, resource:[tc.volBytes <] Resource

opt.caplLinks (pptc, 'bandwidth', linkConstrCaps, linkcapfunc)] Consuﬁq?don_

opt.maxFlow(pptc) | (Global goal (objective function)

S

opt.solve ()

v

16

Example: Tratfic Engineering

opt, pptc = initOptimization (topo, trafficClasses, nullPredicate, 'shortest', 5)
opt.allocateFlow (pptc)

linkcapfunc = lambda 1link, tc, path, resource: tc.volBytes

opt.capLinks (pptc, 'bandwidth', linkConstrCaps, linkcapfunc)

opt.routeAll (pptc) ~N
opt.minLinkLoad ('bandwidth') Route all traffic
opt.solve () Minimize bandwidth load

J

17

Development etfort

Application SOL lines of code

ElasticTree (Heller et al.) 16 21.8%
Panoption (Levin et al.) 13 25.7X%
SIMPLE (Qazi et al.) 21 18.6X

18

Log Scale

* Orders of magnitud
faster

* Less than 1% away
from optimal

Time (s)

nh+1m1/—7n+1r\n D11n+1mo

10*
103
102
10’
10°
10"
1072

10*
103
102
10’
10°

Panopticon

|

—®— Original

.
|

SIMPLE

Topology (number of switches)

haded: No solution
y the original within

30 minutes

Open questions and next steps?

* When/why does path pruning work?

* What is a good pruning strategy for a given objective/topology?
* Robustness to varying demands?

* Enabling composition of apps?

* Are paths sufficient or do we need richer abstractions?

Broader efforts in this space ..

AitF-funded workshop on Algorithms for Software-Defined Networking
Thanks to Mike Dinitz, Thyaga, Tracy, Rebecca Wright!
At DIMACS, Jun 2-3 2016

Program:
http://dimacs.rutgers.edu/Workshops/SDNAlgorithms/program.html

Videos!
https:/ /www.youtube.com/playlist?list=PLqxsGMRIY6u7Bhnl6JxShJHj_tYg-
11Qh

21

http://dimacs.rutgers.edu/Workshops/SDNAlgorithms/program.html
http://dimacs.rutgers.edu/Workshops/SDNAlgorithms/program.html

Conclusions

* SDN benefits in the field requires optimization

* Vision: Practical foundations for SDN optimization

Lower barrier of entry for developers

e Initial work on SOL.:

* Leverages the path abstraction: generation + selection

* Efficient: deploy in seconds!

e Fnabler for new directions

* E.g, seamless composition

* Many open theoretical questions with practical implications in SDN space

