
Optimizing Networked Systems with
Limited Information

Bruce Maggs
Duke University

Debmalya Panigrahi
Duke University

Rajmohan Rajaraman
Northeastern University

Ravi Sundaram
Northeastern University

Graduate Students

Samuel Haney
Duke University

Mehraneh Liaee
Northeastern University

Samuel Haney AitF March 30, 2017 1 / 24



Symmetric Matching Interdiction

Samuel Haney
Duke University

Bruce Maggs
Duke University

Biswaroop Maiti
Northeastern University

Debmalya Panigrahi
Duke University

Rajmohan Rajaraman
Northeastern University

Ravi Sundaram
Northeastern University

[in submission]

Samuel Haney AitF March 30, 2017 2 / 24



[IMC 2016]

A recent study of malicious network traffic observed at Microsoft
data centers made the surprising observation that a large volume
of attack traffic originated from virtual machines hosted within
the data centers themselves.
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It is usually difficult to distinguish between legitimate and malicious traffic.

What can we do?

real

malicious
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Symmetric Matching Interdiction
When each server has unit capacity, this formalization can be simply
stated as follows.

Definition (Symmetric Matching Interdiction (SMI))

Given a graph G , find matching M such that the maximum matching in
G \M in minimized.
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Claim

Any maximal matching is a 2-approximation to the optimal interdiction
matching.

Proof Sketch.

The optimal solution removes some of these edges (the edges
removed must satisfy matching constraints).

On the remaining graph, there is always a matching that is at least
half the size of the (original) number of blue edges.
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Symmetric Matching Interdiction Results

We give a non-trivial algorithm that finds a 3/2-approximation
(improving on the 2-approximation from the previous slide).

Symmetric matching interdiction is APX-hard, i.e. cannot be
approximated better than a constant.
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Why do we call it symmetric interdiction?
I standard interdiction: remove k edges to minimize some objective

Symmetric interdiction models denial of service attacks
I adversary and user have the same constraints

I other problems fit in the symmetric interdiction framework: flows,
b-matching, demand matching

We show that in general, an α-approximation to an optimization
problem is a (1 + α)-approximation to the corresponding interdiction
problem.
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The internet is growing fast

CDNs need to scale up capacities rapidly

This project explores how to plan expanded capacity using noisy
predictions of future need.
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“Overall, the U.S. economy seems likely to expand at a
moderate pace over the second half of 2007, with growth then
strengthening a bit in 2008 to a rate close to the economy’s
underlying trend.”

—Bernanke, 2007

Can we develop algorithms whose performance degrades gracefully
with decreasing accuracy of predictions?
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How do we place tasks to improve availability in presence of
failures?

Power/Network

Busduct

Rack

Machine
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Results

RobustFAP (nodes have reliability weight):

Problem is co-NP hard.

PTAS/approximation algorithms

ProbFAP (nodes have probability of failure):

PTAS based on Poisson approximation techniques
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Given cluster of nodes and VMs does there exist a packing such that
for all failures of k nodes there is a disruption-free repacking?

Sounds like a Σ3 complete problem. Actually in NP!

Given packing of VMs into nodes of a cluster, is there a
disruption-free repacking for all failures of k nodes?

Sounds like a Π2 complete problem. It probably is. We show
NP-hard and coNP-hard.

Industry standard is Martello-Toth, a heuristic for Multiple Knapsack.
How effective is it?

We propose a stochastic framework for comparing heuristics.
Show that water-filling is superior to Martello-Toth.
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• Service requests arrive over time
• Service can be delayed to facilitate 

batching with future requests in a nearby 
location …

• … but future is unknown!
• Dual objectives: minimize movement, 

minimize delay

• Result: We give an algorithm with 
polylog(n) competitive ratio for this 
problem

• Motivation: models  the fundamental 
tradeoff between batching requests and 
immediate response 
• Operating systems
• Operations research
• Scheduling theory
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• Service requests arrive over time
• Service can be delayed to facilitate 

batching with future requests in a nearby 
location …

• … but future is unknown!
• Dual objectives: minimize movement, 

minimize delay

• Result: We give an algorithm with 
k*polylog(n) competitive ratio for this 
problem

• Extension: what if there are multiple (k) 
repairmen (servers)?

• Algorithm decides not only when to serve 
a request, but also which person to 
dispatch
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Programmers/organizations want to use cloud services for jobs.

Latency between services mainly determines the performance of a job.
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Database

VM platform

ML service

task graphdatacenter network

Given a task graph and a datacenter network, can we produce a mapping
from the tasks to the datacenter nodes?
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Thank You!
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