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Active Matter

“Condensed matter in a fundamentally new nonequilibrium regime:

• The energy input takes place directly at the scale of each active 

particle and is thus homogeneously distributed through the bulk of the 

system, unlike sheared fluids or three-dimensional bulk granular 

matter, where the forcing is applied at the boundaries. 

• Self-propelled motion, unlike sedimentation, is force free: The forces 

that the particle and fluid exert on each other cancel. 

• The direction of self-propelled motion is set by the orientation of the 

particle itself, not fixed by an external field” 

[S. Ramaswamy. The mechanics and statistics of active matter. Annual Review 

of Condensed Matter Physics, 1(1):323–345, 2010]



Programmable Active Matter

• Swarm robotics systems of programmable particles (smarticles) with 

close analogies to physical systems. 

• Smarticles are small in scale, ranging in size from millimeters to 

centimeters,

• crowded (i.e., dense) environments

• behave as active matter

• “task-oriented” approach:

• start from desired macroscopic emergent collective behavior, and 

develop the distributed and stochastic algorithmic underpinnings

that each robot (smarticle) will run

• provide the understanding for yet unexplored collective and emergent

systems. 



U-shaped Smarticles

Goals: control entanglement or jamming 

by varying angles of the “U”



Other Programmable Matter

• Modular and swarm robotics

• DNA computing: not self-propelled

• Smart materials

Kilobots:

DNA self-assembly:

• Self-organizing particle systems: Collection of simple computational 

elements that self-organize to solve system-wide problems of movement, 

configuration, and coordination

• constant memory

• fully distributed, local algorithms

• Amoebot model
[Derakhshandeh, Gmyr, R, Schedeiler, Strothman]



 Understand minimal computational requirements for certain 
“tasks”

 Learn to program the ensemble to control emergent collective 
behavior

 Remove centralized control by having the particles locally 
respond to their environment

 Provide a stochastic distributed algorithmic framework for 
(programmable) active matter

AitF Collaboration: Goals



Collective Behaviors

1. Compression 2. Bridging

3. Alignment 4. Locomotion



Action 1: Compression

Not compressed:  

p = 126

Compressed:

p = 51

Def’n:   A particle configuration is a-compressed if its perimeter is at 

most a times the minimum perimeter  for these particles.

p(s) = 3n – e(s) - 3

Q:  Under local, distributed rules, can a connected set of particles “gather” 

or “compress” to reduce their perimeter?



Compression Algorithm

[Cannon, Daymude, Randall, Richa, PODC ‘16]:  

A distributed, stochastic algorithm based on the amoebot model that:

1. Maintains simply connected configurations in the triangular lattice

2. Uses Poisson clocks to find potential moves asynchronously

3. Accepts moves with Metropolis prob. to converge to  p(s) = le(s) / Z

l = 4

100 particles after:

a) 1 million

b) 2 million

c) 3 million

d) 4 million

e) 5 million

iterations.



Compression Algorithm

[Cannon, Daymude, Randall, Richa, PODC ‘16]:  

A distributed, stochastic algorithm based on the amoebot model that:

1. Maintains simply connected configurations in the triangular lattice

2. Uses Poisson clocks to find potential moves asynchronously

3. Accepts moves with Metropolis probs to converge to  p(s) = le(s) / Z

l = 2

100 particles after:

a) 10 million

b) 20 million

iterations.

No compression.



Compression: Theorems
[CDRR’16]

Thm: When l > 2 + √2, there exists a = a(l) s.t. particles are 

a-compressed at stationarity with all but an exp. small probability.

(When  l = 4, a = 9.)

Def’n: A particle configuration is a-compressed if its perimeter is at 

most a times the minimum perimeter for these particles.

Thm: When l < 2.17, for any a > 1, the probability that particles are 

a-compressed at stationarity is exponentially small.

λ 2.17

?

2 + 2

no compression compression

Note:  Expansion works similarly for smaller l.                        [CDRR’16]



Action 2: Bridging

• Use similar local compression rules favoring neighbors.  

• Penalize particles in the gap on the perimeter (for poorer stability).

[Arroyo, Cannon, Daymude, Randall, Richa ‘17]

[Lutz and Reid ‘15]

• Army ants construct 

living bridges to 

minimize the number of 

nonworking members of 

the colony.

• Long bridges are more 

precarious.



Bridging

30 degrees             60 degrees            90 degrees

For a fixed angle, the thickness and position of the bridge depends on the 

clustering and gap parameters:



Action 3: Alignment

Thm:  We get large regions of alignment with mostly vertical or horizontal 

smarticles.  

Conj:  Also get alignment with limited latent smarticles.

(*Partial proofs)

Smarticles confined to Z2  that elongate or flatten as they move.

Latent smarticles

Active

smarticles



Alignment

Large l Small l



Action 4: Locomotion

SuperSmarticles

[GLS], [CDGLRRS]  (*in progress)

A robot made of robots

Confine several smarticles in a ring.

• One smarticle: no locomotion

• Allow them to interact through movements:      Brownian motion

• Allow interaction, with one inactive smarticle:   Brownian motion w/ drift

(directed toward inactive smarticle)



Locomotion



Next Steps

1. Composite algorithms that automate transitions in response to the 

environment.

Ex. Foraging:  

• Use compression around a food source until it’s depleted;

• Transition to expansion when depleted to find a new source;

• Repeat

2. Build prototypes to refine algorithms (alignment, compression, bridging) 

• New challenges: real space, imperfect interactions, etc.

• Refines types of interactions between particles.

3. Explore algorithmic foundations underlying:

• Locomotion

• “Jamming”

• Entanglement



Thank you!


