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We are interested in

information filtering

✤ We wish to design an algorithm that 
forwards most of the relevant items, 
and few of the irrelevant ones.

Information 
Filtering 
Algorithm

Items

Discard

Forward

User

✤ We face a sequence of time-sensitive items (emails, blog posts, news articles).

✤ A human is interested in some of these items.

✤ But, the stream is too voluminous for her to look at all of them.



We are interested in

information filtering
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✤ If we had lots of historical data, we could train a machine learning 
classifier to predict which items would be relevant to this user.

✤ But what if we are doing information filtering for a new user, i.e., 
from a cold start?

✤ How can we quickly learn 
user preferences, without 
forwarding too many 
irrelevant items?



We are interested in

exploration vs. exploitation 
in information filtering

✤ What if we are filtering for a 
new user, or filtering items of a 
type we haven’t seen before?

✤ We may want to EXPLORE, 
i.e., forward a few items of 
unknown relevance, to allow 
learning.

✤ But, we may want to 
EXPLOIT what little training 
data we have, which may 
suggest these items type is 
irrelevant.

✤ What should we do?
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We develop an information filtering algorithm 
that trades exploration vs. exploitation
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✤ We use dynamic programming and a Bayesian analysis to provide an 
algorithm that is average-case optimal for a particular version of the 
information filtering problem.



We are motivated by an information 
filtering system we are building for arxiv.org

✤ arXiv.org is an electronic repository of 
scientific papers hosted by Cornell.

✤ Papers are in physics, math, CS, 
statistics, finance, and biology.

✤ arXiv currently has ≈800,000 articles, 
and 16 million unique users accessing 
the site each month.



Our goal is to improve
daily & weekly new-article feeds

✤ Many physicists visit the arXiv every 
day to browse the list of new papers, 
to stay aware of the latest research.

✤ There are lots of new papers: e.g., 15 
new papers / day in arxiv category 
astro.GA, “Astrophysics of Galaxies.”

✤ Problem 1: Browsing this many papers 
is a lot of work for researchers.

✤ Problem 2: Researchers still miss 
important developments.



Literature Review

✤ Exploration vs. exploitation has been studied extensively in the multi-
armed bandit problem:

✤ Bayesian treatments: [Gittins & Jones, 1974; Whittle 1980] ...

✤ non-Bayesian treatments: [Auer, Cesa-Bianchi, Freund, Schapire, 
1995; Auer, Cesa-Bianchi & Fischer, 2002] ...

✤ Exploration vs. exploitation has been studied in information retrieval: 
[Zhang, Xu & Callan 2003; Agarwal, Chen & Elango 2009; Yue, Broder, 
Kleinberg & Joachims 2009; Hofmann, Whitestone & Rijke 2012]



I’ll use a simple model to explain 
the main idea.
✤ Items are pre-categorized into one of k categories, and the category is the only 

information about them we use.

✤ Items within category x are relevant with probability θx.

✤ θx is unknown, but we have a Beta(α0x, β0x) prior on it, learned from historical data.

✤ We only observe relevance of forwarded items. [So the only way to learn is to 
forward.]

✤ For each forwarded item, we get a reward of 1-c if it is relevant, and pay a penalty of -c 
if it is irrelevant.

✤ The user spends a random geometrically-distributed amount of time using our system.

✤ We wish to maximize expected total reward over the user’s time using our system.



The optimal algorithm looks like this, and can be 
computed using stochastic dynamic programming.

✤ Theorem 1: There exists a 
function μ*(·) such that it is 
optimal to forward when μnx 
≥μ*(αnx+βnx) and to discard 
otherwise.

✤ Theorem 2: μ*(α+β) has the 
following properties:

✤ it is bounded above by c;
✤ it is increasing in α+β;
✤ it goes to c as α+β→∞.
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c
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Forward, V(αnx,βnx)>0

Discard, V(αnx,βnx)=0



Optimal outperforms myopic
in the multi-category problem,
in idealized and trace-driven simulations.



We build on this analysis to study 
more complex models
✤ Periodic review: If the user responds to forwarded items not 

immediately but only periodically when visiting our website, then 
our decision is the # of items from each category to show.

✤ Rankings: If the user does not tell us the cost of his time c, and 
instead examines papers from a ranked list on each visit until his 
“patience budget” is exhausted, then we can view c as a Lagrange 
multiplier, and use our analysis to provide a ranking.  [Analysis gives 
an upper bound on the value of the Bayes-optimal procedure.]

✤ Linear models: If items are described by feature vectors rather than 
categories, and user preference is described by a linear model, then 
upper bounds on the Bayes-optimal procedure may be derived.



Conclusion

✤ We presented an information filtering problem arising in the design of 
a recommender system for arXiv.org

✤ We gave details of a simple model, which assumed a known cost, 
and instantaneous feedback from the user.

✤ This model can be extended to periodic review, in which the user 
provides feedback on items in batches, and to provide rankings 
over items.

✤ We are in the process of testing this system, and rolling it out to users 
of the arXiv.


