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Abstract

This paper studies Algorithmic Mechanism Design where the bidders are “single-parameter”
(have the same private value for all desired outcomes), with a focus on Combinatorial Auctions
(CA). We study four variants of the CA model: where each player desires a single bundle
(“single-minded”) or he desires any one of several bundles (“multi-minded”), and where the
desired bundles are public information (“known”) or private information (“unknown”). We
provide several mechanisms and examples in these settings. Our first main result is a general
technique to convert any algorithm to a truthful ascending mechanism for “known” domains (not
only for CA). For the “known” single-minded CA domain, it almost preserves the approximation
ratio of the original algorithm. Our second main result provides the first computationally
efficient mechanism for the case of “unknown” single-parameter multi-minded bidders, with
close to optimal welfare approximation. This mechanism also works in general, non single-
parameter, combinatorial auctions, with some additional approximation loss. This mechanism
is a computationally feasible implementation in undominated strategies, a notion that we define
and justify, and which we believe is of independent interest.

1 Introduction

The field of Algorithmic Mechanism Design [15] studies the design of computationally efficient
algorithms under the assumption that the input is distributed among a set of rational selfish
players. One successful approach to this problem is to design truthful mechanisms, in which a
player always maximizes his utility by simply revealing his true input (incentive-compatible in
dominant strategies). The VCG [5, 6, 18] scheme is the only general technique, known to date, to
create truthful mechanisms, but it is computationally infeasible in many interesting domains (e.g.
Combinatorial Auctions). Numerous papers e.g. [12, 2, 1, 4] written over the past several years
demonstrate that the problem of designing truthful, computationally efficient mechanisms can be
overcome for domains in which the secret input of each player is one single number. Such domains
were termed “one parameter domains” 1 by Archer and Tardos [2].

Much of the recent research in the field focuses on Combinatorial Auctions (CA): m heterogenous
items are to be partitioned among n players and the seller, and each player values (either one or
several) subsets of items (“bundles”) 2. This model generalizes many classic resource allocation
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2The seller has zero valuation for the goods. Players value the empty set for zero, each player care only about the
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problems, e.g. scheduling, network routing, and more. We distinguish between four categories
of Single-Parameter (SP) CAs, defined by two orthogonal characteristics. The first characteristic
concerns each player set of desired outcomes. In a Single-Minded (SM) CA, each player i has a
value of v̄i > 0 for any bundle containing one specific bundle s̄i he desires (and zero for any other
bundle). In contrast, in a single-parameter Multi-Minded (MM) CA, each player has a set of desired
bundles (not all containing the same desired bundle), all with the same value, and other bundles
have zero value. (A natural example for SP multi-minded CA is the Edge-Disjoint Paths problem,
we later describe.) The second characteristic concerns the information model. In a “Known” CA
domain, the set of bundles that each player desires is publicly known and the value v̄i is the only
private information of player i, while in an “Unknown” CA domain, both the set of bundles as well
as v̄i are private information of player i.

The unknown single-minded (USM) domain was suggested and first studied by Lehmann,
O’Callaghan, and Shoham [12], which presented a specific greedy mechanism that is incentive-
compatible in dominant strategies and achieves a

√
m-approximation to the social welfare (the sum

of the players valuations for the outcome). They also showed that the algorithmic bound (even
without taking incentives into account, and when all players have v̄i = 1) is m1/2−ε for any ε > 0
(unless ZPP=NP). Mu’alem and Nisan [13] looked at the Known Single-Minded (KSM) domain,
this enabled them to achieve an ε

√
m-approximation for any fixed ε. In order to break the lower

bound for KSM domain, Archer et al. [1] relaxed the solution concept and assumed that there are
multiple copies of each good. We are not aware of any positive results (non-trivial computationally
efficient mechanisms that guarantees good welfare approximation) for general CA, or for the easier
case of unknown single parameter multi-minded CA.

1.1 Our Results

We start our study with Known Single-Parameter (KSP) domains. We present a general method
to convert any given algorithm into a truthful (“value monotonic”) ascending mechanism for any
KSP domain (not only CA). However, for combinatorial auctions with single minded bidders, we
are also able to show that this method approximately preserves the original approximation ratio.
This is especially useful since many well-known techniques for this problem domain are not truthful
to begin with (e.g. LP-based or branch and bound methods):

Theorem. Any (deterministic) algorithm for a single-parameter domain can be converted into a
truthful (deterministic) mechanism for KSP bidders.

Additionally, any c-approximation algorithm for single-minded CA can be converted into a truth-
ful O(log(v̄max) · c)-approximation mechanism for KSM bidders. 3 4

At first look, it seems that our result is inferior to the
√

m-approximation for KSM of [12],
which is optimal. Nevertheless, Sandholm [17] enumerates many special cases (where there is some
additional structure on the bids) in which there exist algorithms defeating this bound (e.g. when
each bid has at most ω items, when each bid shares items with at most ∆ other bids, etc.). In
each such a case, our method creates a truthful mechanism (even if the original algorithm is not
”value monotonic”) with only O(ln v̄max) additional approximation loss! We also get the same
loss for a “combined” algorithm, which takes the best allocation over some set of polynomial time

3Throughout this paper we assume that for any i, v̄i ≥ 1 (that is, the minimal a-priori value is at least 1) and we
denote by v̄max the maximal observed value of any player.

4The mechanism is also an O(min(m, n))-approximation.
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approximation algorithms (randomized or deterministic, general or for special cases). Moreover, if
the algorithm is randomized, then the resulting mechanism is randomized, nevertheless, each player
has a dominant strategy for any realization of the coins (which is stronger than having a strategy
that maximizes the expected utility).

This method also improves upon a previous similar result5 of Awerbuch, Azar, and Meyerson [3],
in two aspects: (1) if the original algorithm is deterministic, then our mechanism is also determin-
istic, and, (2) our method does not require a-priori knowledge of v̄max. One additional interesting
property of our method is that it produces a mechanism with the classic economic structure of an
ascending auction: players compete by gradually increasing their offers, and the winners pay their
bid. It has been argued many times [16] that such indirect mechanisms should be preferred over
the more common “direct revelation” mechanisms, where players simply reveal their true value.

Next ,we turn to multi-minded CA domains. Although the above technique creates a truthful
mechanism for the KSP multi-minded CA domain, its approximation ratio is poor. We provide a
truthful mechanism based on the greedy mechanism of Lehmann et al. [12] that achieves a

√
m+1-

approximation for KSP multi-minded CA. We then concentrate on the Edge-Disjoint Paths (EDP)
domain, which is a natural SP multi-minded CA domain – each player desires a path from his
source node to his target node in some underlying graph with m edges (goods), where any such
path is worth v̄i to him. Even though the number of such paths might be exponential, we can
modify our mechanism for KSP multi-minded players mentioned above, to run in polynomial time,
and keep the same approximation ratio 6. Although the original mechanism of [12] was truthful
for the unknown (single-minded) domain, it turns out that our modification is not truthful for
unknown SP multi-minded CA. We provide a characterization of direct revelation mechanisms that
are truthful for general Unknown Single-Parameter (USP) domains7 (not only CA domains), and
show that the above mechanism violates our characterization. Our characterization generalizes the
characterization of [2] for the KSP domains, as well as the characterization of [12] for USM CA,
and sheds some surprising light on the requirements needed for truthfulness for the general USP
domains.

Like all previous papers, we were not able to provide a dominant strategies truthful mechanism
for the multi-minded CA domains, and in particular to the USP multi-minded CA domain. In order
to achieve positive results for this case we turn to the previously studied game-theoretic concept of
“implementation in undominated strategies” [9]: Let ui(si, s−i) denote the resulting utility of player
i when he plays the strategy si and the other players play s−i. A strategy s′i of player i is dominated
by another strategy si if, for every s−i, ui(si, s−i) ≥ ui(s

′
i, s−i), and this inequality is strict for at

least one specific s−i. A strategy is undominated if it is not dominated by any other strategy. By
the concept of implementation in undominated strategies, there is a non-empty set of strategies
that jointly dominate all the other strategies, rather than one single strategy that dominates all
the rest. This set of strategies is the set of all undominated strategies. The game-theoretic analysis
will not be able to exactly tell us which strategy out of this set will be chosen by the player, but
ensures that the chosen strategy will belong to this set. More formally, we define the concept of a
(computationally efficient) “c-approximation in undominated strategies” as follows:

Definition. A mechanism M implements a c-approximation in undominated strategies if:

5their result is for the online setting while ours is for the offline setting.
6This is an asymptotically optimal result, since for directed graphs, it is NP-hard to obtain an approximation

ratio of Ω(m1/2−ε) for any ε > 0 [7]
7One of the contributions of this paper is a formal definition of the general (non CA) USP domains.
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• For any combination of undominated strategies of the players, M outputs a c-approximation
outcome, in polynomial time.

• A player can never end up with a negative utility when playing any undominated strategy (i.e.
the mechanism is ex-post individually rational).

• For any dominated strategy, a player can efficiently compute an undominated strategy that
dominates it.

We argue that this concept captures all the truly important ingredients of the computationally
efficient dominant strategies solution concept: First, it does not require any form of coordination
among the players (unlike Nash equilibrium), or that players have any assumptions on the rational-
ity behavior of the others. The only assumption is that a player does not play a dominated strategy
– indeed, given such a strategy he can easily compute another strategy, that guarantees the at least
the same utility even in the worst-case! Thus, we think that this assumption is as reasonable as
the assumption that a player will play his dominant strategy, if he has one. Second, we ensure that
players have no risk in participating in the auction, as their resulting utility cannot be negative,
and, finally, we strictly maintain all aspects of computational feasibility. This game-theoretic re-
laxation forces us, on the other side of the equation, to strengthen the algorithmic analysis, as we
now have to show that the resulting outcome of the mechanism will be approximately optimal for
every choice of undominated strategies that the players make, and not only for the specific choice
of dominant strategies, as in truthful mechanisms. Such a trade-off has been recently suggested
by Lavi and Nisan [11], but their game-theoretic notions were significantly weaker than the ones
suggested here.

It should be noted that, although implementation in undominated strategies is a well-known
game-theoretic concept, very few positive results have been achieved by using it [9]; We are not
aware of any positive results in this framework for games with incomplete information, and, in
particular, we are the first to use it in the context of computationally efficient approximation
algorithms with worst-case guarantees. We believe that our definitions and techniques will turn
out to be useful for many other settings as well, thus offering a new method to bypass the inherent
difficulties of the truthfulness concept, in a way that suits the worst-case notions of the CS literature.

Using this concept, we design the “1-CA Japanese Mechanism” for combinatorial auctions with
single parameter (multi-minded) players:

Main Theorem. The 1-CA Japanese Mechanism implements an O(log2(v̄max)
√

m) approximation
in undominated strategies, for the Unknown Single-Parameter multi-minded CA domain. 8

To the best of our knowledge, this is the first non-trivial computationally efficient mechanism
for the USP multi-minded CA domain. The mechanism achieves an approximation guarantee
for the social welfare that is close to the computational bound of m1/2−ε. Nisan and Segal [14]
proved that min (n1−ε,m1/2−ε) is an upper bound on the approximation achievable in polynomial
communication9 (even for SP multi-minded CA with v̄i = 1 for any player i). Our result almost
matches this bound. The “1-CA Japanese Mechanism” is in fact more robust, and handles players
that are “approximately single parameter”: For each player, the ratio between his maximal value
for any bundle and his minimal positive value for any bundle is at most δ (any combinatorial

8The mechanism is also an O(min(m, n))-approximation.
9independent of the computational complexity, it holds even if ZPP=NP.
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auctions satisfies this with the appropriate value of δ). The proof shows that, for such players,
given that they play any combination of undominated strategies, the resulting outcome will be an
O(δ · log2(v̄max) · √m) approximation to the optimal welfare.

We also present an additional, different technique for implementation in undominated strategies.
This technique makes formal the idea that by a careful extension of the strategy space, we can allow
players to place “lies” about their bundles, in addition to the truth revelation. We exploit this
technique to close an exponential gap in the approximation ratio left by Babaioff and Blumrosen [4]
between the cases of “known” and “unknown” single-minded CA for axis-parallel rectangles in the
plane.

The rest of this paper is organized as follows. In section 2 we define single parameter domains,
give necessary and sufficient conditions for truthfulness, and discuss the specific EDP example.
In section 3 we focus on the case of “known” domains, describing our technique to convert ap-
proximation algorithms to truthful mechanisms, and section 4 describes our main results about
implementations in undominated strategies. All proofs and some additional results appear in the
Appendix.

2 Single Parameter Domains and Truthful Mechanisms

In a Single-Parameter Domain, there is a finite set of players N (|N | = n) and a set of outcomes
Ω. Each player i ∈ N has a value v̄i ∈ <++ (we assume that v̄i ≥ 1), and a satisfying set Āi ⊂ Ω.
The interpretation is that i obtains a value v̄i from any outcome ω ∈ Āi (in this case we say that
i is satisfied by ω), and 0 otherwise. The set Āi belongs to a predefined family of valid outcome
subsets Ai. Let t̄i = (v̄i, Āi) ∈ <++ ×Ai denote the type of player i, and T = <n

++ ×A denote the
domain of all player types, where A = A1×, . . . ,×An.

For example, the Edge-Disjoint Paths (EDP) domain described in the Introduction is a single
parameter domain: if player i desires a path from si to ti (his type is a value v̄i and some specific
pair of nodes si and ti), then Ai is the set of all allocations in which i receives a bundle that
contains a path from si to ti. Ai is the set of all such Ai, for any possible pair of source-target
nodes. Although this example is a special case of combinatorial auctions, it clarifies the difference
between single minded players (which are players that desire only one specific subset of items)
and single parameter players: the players in the EDP problem are not single minded, as any path
between their source and target nodes will satisfy them, but they are indeed single parameter.

Definition 1 (“Known” and “Unknown” Single Parameter domains). A Known Single Parameter
(KSP) domain T is a single parameter domain in which all information is public, except the players’
values {v̄i}i∈N : each v̄i is known only to player i.

An Unknown Single Parameter domain (USP) T is a single parameter domain in which the
entire type (value and satisfying set) is known only to the player himself (private information).

A strategic mechanism M is constructed from a strategy space S = S1×, . . . ,×Sn, an allocation
rule G : S → Ω, and a payment rule P : S → <n

++. Each player i acts strategically in order to
maximize his utility: ui(s, t̄i) = vi(G(s), t̄i) − Pi(s). In direct revelation mechanisms, players are
required to reveal their type, i.e. Si = Ti.

Definition 2 (Truthfulness). A direct revelation mechanism M is truthful if, for any i, any true
type t̄i ∈ Ti, and any reported types t ∈ T : ui((t̄i, t−i), t̄i) ≥ ui(t, t̄i), and ui((t̄i, t−i), t̄i) ≥ 0.10

10Throughout the paper we use the notation x−i = (x1, ..., xi−1, xi+1, ..., xn).
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An allocation rule is truthfully implementable (in dominant strategies) if there are payments P
such that the direct revelation mechanism M = (G,P ) is truthful.

The following monotonicity condition, which was repeatedly identified in recent years ([12, 2, 13],
etc...), completely characterizes truthful mechanisms for KSP domains.

Definition 3 (Value monotonicity). An algorithm G is value monotonic if for all i ∈ N , A ∈ A,
and v ∈ <n

++: if G(v,A) ∈ Ai and v′i > vi then G(v′, A) ∈ Ai, where v′ = (v′i, v−i).

The definition of critical value of [12] is phrased, in our notation, as:

Observation 1 (Critical value). If an algorithm G is value monotonic then for all i ∈ N , A ∈
A, v−i ∈ <n−1

++ , there exists a critical value ci(Ai|v−i, A) ≥ 0, such that,

• if vi > ci(Ai|v−i, A) then G(v,A) ∈ Ai (“i is a winner”).

• if vi < ci(Ai|v−i, A) then G(v,A) /∈ Ai (“i is a loser”).

The critical value ci(Ai|v−i, A) is the “minimal” value player i needs to report in order for an
outcome in Ai to be chosen, when the bids are A ∈ A and v−i ∈ <n−1

++ . In a normalized mechanism
for single-parameter domain, the payment rule ensures that a loser i pays 0.

Theorem 1 ( [12, 2, 13], etc...). A direct revelation normalized mechanism for a KSP domain is
truthful if and only if its allocation rule G is value monotonic, and any winner i pays ci(Āi|v−i, Ā).

Note that the critical value of each winner can be calculated efficiently using a binary search.
As an example for a monotonic allocation rule for a general single parameter domain, we analyze

the EDP problem. Although this is a special case of the more general combinatorial auction
problem, we cannot use any of the existing algorithms for that problem, as (i) they are designed
for single minded bidders, and, (ii) when transformed to a multi minded setting in the straight-
forward way, they require each player to declare all his bundles. In Figure 1 we present a polynomial
time allocation algorithm for the EDP problem11. This is a modification to the greedy algorithm
of [12] for CA with unknown single minded bidders. Our modification is polynomial even though
the number of satisfying bundles of a player might be exponentially large, as there may be an
exponential number of paths between the source and target nodes.

Theorem 2. For the “known” EDP domain, the EDP greedy allocation algorithm is truthful, and
obtains a (

√
m + 1)-approximation in polynomial time.

Unfortunately, designing truthful mechanisms for unknown domains seems to be much harder.
The greedy algorithm of [12] is one of the rare examples for truthfulness in unknown domains.
Somewhat surprisingly, it turns out that the above modification to it, for the EDP problem, stops
being truthful for the unknown case:

Proposition 1. The EDP Greedy Mechanism is not truthful for the Unknown EDP problem.

11Figure 6 in the Appendix presents a similar mechanism for the general SP multi-minded CA domain. Unlike the
EDP mechanism, this mechanism running time is dependent on the number of desired bundles.
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The EDP greedy allocation algorithm :
Input : For each player i, a value vi and a pair of source-target nodes (si, ti).
Allocation :

1. Let E0 = E, j = 0, W = ∅.
2. Calculate the all pairs shortest path for the graph Gj = (V, Ej).

Let dj
i be the distance (number of edges) of the shortest path pj

i from si to ti in Gj .

3. If there exist a player i /∈ W with dj
i ≤ |V | (finite distance), then

let W = W ∪ {i} where player i has the maximal value of vi/
√

dj
i .

Let Ej+1 = Ej \ pj
i , j = j + 1. Return to stage 2.

Figure 1: The EDP greedy allocation algorithm. It is value monotonic, thus can be made truthful for the
KSP domain in which players only report their value. It is not truthful for “Unknown” players.

This is quite surprising, as one can show that the following claim still holds: if a player is
satisfied with some type declaration then he will still be satisfied with his true type declaration.
Although this condition characterizes truthful mechanisms for “unknown” single minded bidders,
it is, apparently, not enough in general. Indeed, the necessary and sufficient condition is a bit more
subtle:

Definition 4. An algorithm G ensures minimal payments if it is value monotonic, and, for all
i ∈ N,A ∈ A, v ∈ <n

++, Āi ∈ Ai, if i bids vi > ci(Ai|v−i, A) and Ai such that G(v,A) ∈ Ai ∩ Āi (i
is satisfied and he wins) then ci(Āi|v−i, (Āi, A−i)) ≤ ci(Ai|v−i, A).

We also need a technical, but important, condition, which is w.l.o.g for combinatorial auctions and
all their special cases:

Definition 5. An algorithm G ensures losers unsatisfaction if for all i ∈ N,A ∈ A, v ∈
<n

++, Āi ∈ Ai, if G(v,A) /∈ Ai then G(v,A) /∈ Āi.

Theorem 3. An allocation rule G is truthfully implementable (in dominant strategies) for USP
domains if and only if it ensures minimal payments and it ensures losers unsatisfaction.

As in the KSP domain, the appropriate payments are by critical value.

3 The Japanese Wrapper Mechanism for KSP domains

In this section we present a method to obtain a truthful approximation mechanism from any al-
gorithmic procedure (given as a black-box), for a KSP domain. This method converts a given
procedure to an ascending Japanese auction (players compete by gradually raising their bids; win-
ners pay their bids). If the number of iterations is small then the original approximation ratio
does not deteriorate too much. This method will also be used as basic building blocks for our
constructions for Unknown Single Parameter domains in section 4 below.

A formal description of our method is given in Figure 2. Let us now describe it informally:
Suppose that ALG is an algorithmic procedure for some Known Single Parameter domain, that,
when given as input a set of player values, outputs a c-approximation to the social welfare. The
Japanese Wrapper Mechanism is a simple wrapper to ALG: A vector of player values, initialized to
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ALG* . 
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V1 

V2 

Vn 

W 

L 

Same value 

Double value 
or drop 

(*) Here, ALG captures both steps 4 and 5 of our method 

The Japanese Wrapper Mechanism:

Allocation :
1: Let j = 0, Wj = ∅, Lj = ∅.
2: For any player i ∈ N let v0

i = 1.
3: While (Wj ∪ Lj 6= N)
4: Wj+1 = ALG(vj)
5: if v(Wj+1, v

j) < v(Wj , v
j) then Wj+1 = Wj .

6: For any i /∈ Wj+1,

i chooses vj+1

i = evj
i or vj

i = 0 (retire).

7: Lj = {i ∈ N |vj
i = 0}, j=j+1

8: J=j

Payments :
Each winner i ∈ WJ pays his reported value vJ

i ,
losers pay 0.

Figure 2: The Japanese Wrapper Mechanism for KSP domains

v0 = ~1, is iteratively handed in as input to ALG, who, in return, outputs a set of winners ωj (where
j is the iteration number). The new allocation Wj+1 is taken to be the one with the maximal value
among Wj , ωj (step 5). Every loser is then required to either increase his value by a factor of e (e

is the base of the natural logarithm) or to permanently drop (this is denoted by v j
i = 0). This is

iterated until all remaining players are declared winners by ALG. This set of players is the set of
winners of the mechanism. Each of the winners pays his last bid, vJ

i , where J denotes the total
number of iterations. It can be easily verified that, if ALG has polynomial running time then the
Japanese Wrapper Mechanism also has a polynomial running time.

Proposition 2. The dominant strategy of any player is to increase his reported value when asked,
as long as the increased value is lower then his true value v̄i.

Note that this is true even if the underlying algorithm, ALG, is not value monotonic. Indeed,
many natural methods are not value monotonic, e.g. taking maximum over two algorithms is not
monotonic in general.

In order to analyze the approximation bounds of this resulting mechanism, the crucial point is
that the number of iterations will be low:

Lemma 1. Assume that ALG is a c-approximation algorithm. Then the Japanese Wrapper Mech-
anism achieves an (e · c · J + 1)-approximation in dominant strategies, where J is the number of
iterations performed.

For single-minded CA domain, we are able to bound the maximal number of iterations: even
in the worst case, J ≤ 2 · ln v̄max + 1. 12 Interestingly, this bound on the number of iterations is
independent of the number of players. Thus we have:

Theorem 4. Given any c-approximation algorithm for single-minded CA, the Japanese Wrapper
Mechanism obtains an O(ln v̄max · c)-approximation in dominant strategies, in polynomial time.13

12This assumes, without loss of generality, that the algorithm always outputs a set of winners that is maximal to
containment.

13With minor changes to the algorithm the mechanism also becomes an O(min(m, n))-approximation.
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In Appendix B.1 we give an abstract condition that enables us to bound the maximal number of
iterations in single-minded CA, and derive results for other domains. Unfortunately, we also show,
by example, that in combinatorial auctions with double minded players, the number of iterations
that our mechanism may perform may be even n ln v̄max. However, by refining our techniques, we
show a similar method for the general single parameter (multi-minded) CA domain, that achieves
O(ln2 v̄max · √m)-approximation using some specific

√
m-approximation algorithm.

4 “Unknown” Single-Parameter Combinatorial Auctions and Un-

dominated Strategies Implementation

In this section we present our main results – implementations in undominated strategies for un-
known general single parameter players. We begin with a formal discussion of the concept of
implementation in undominated strategies.

Definition 6. A strategy si ∈ Si dominates the strategy s′i ∈ Si of player i with type t̄i, if for any
s−i ∈ S−i, ui((si, s−i), t̄i) ≥ ui((s

′
i, s−i), t̄i), and this inequality is strict for at least one instance of

s−i ∈ S−i. A strategy si ∈ Si is undominated for player i if it is not dominated by any other
strategy of player i.

Clearly, a player that aims to maximize his utility will not play a dominated strategy, if he is
able to quickly find a strategy that dominates it:

Definition 7. A strategic mechanism has the fast undominance recognition property if, given
any strategy s′i ∈ Si of any player i, there exists a polynomial-time procedure that determines if s ′i
is undominated, and, if not, finds an undominated strategy si ∈ Si that dominates s′i.

We will also require that a player will never regret taking part in the mechanism, i.e. that any
undominated strategy will ensure a non-negative utility:

Definition 8. A mechanism M is Ex-post individually rational if for any i ∈ N, t̄i ∈ Ti, if
player i has type t̄i then (1) there exists at least one undominated strategy for player i.14 (2) for
any undominated strategy si ∈ Si, ui((si, s−i), t̄i) ≥ 0 for all s−i ∈ S−i.

We are now ready the define the main new concept we suggest in this paper.

Definition 9. A strategic mechanism M implements a c-approximation in undominated

strategies if for any types t̄ ∈ T :

• For any tuple of undominated strategies s ∈ S (i.e. si is undominated for any i), M outputs
a c-approximation outcome with respect to t̄ in polynomial time.

• The mechanism has the fast undominance recognition property.

• The mechanism is Ex-post individually rational.

14if the number of strategies is finite, this always holds.
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The Japanese Wrapper Mechanism for “Unknown” CAs:

Allocation :

1. Let j = 0, Wj = ∅, Lj = ∅. For any player i ∈ N let v0
i = 1, s0

i = G.

2. While (Wj ∪ Lj 6= N):

• (Wj , s
j+1) =Proper Sub Game(vj , sj , Wj−1).

• For any i /∈ Wj+1, i chooses if vj+1

i = evj
i or vj

i = 0 (retire).

• Lj = {i ∈ N |vj
i = 0}, j=j+1.

3. J=j.

Payments :

Each winner i ∈ WJ receives the bundle sJ
i and pays his last bid vJ

i , a loser receives ∅ and pays 0.

Figure 3: The Japanese Wrapper Mechanism for combinatorial auctions with multi-minded players.

Mechanisms in dominant strategies are a special case of this definition, as their set of undominated
strategies contains exactly one strategy: the dominant strategy. This game theoretic relaxation
allows the mechanism designer to “leave in” several undominated strategies, from which the actual
strategy that the player will choose is not known. However, it also implies an increasing algorithmic
difficulty, as the outcome must be an approximately optimal one, for any choice of undominated
strategies that the players make. The definition also includes a direct computational explanation
as to why the players will indeed choose one of their undominated strategies: given any domi-
nated strategy that some player considers as an option, it is computationally easy to find another,
undominated, strategy. That strategy is guaranteed to make the player better-off, in the worst case.

4.1 The Japanese Wrapper Mechanism revisited

In this section, we enhance our Japanese Wrapper Mechanism in order to implement an O(log2(v̄max)·√
m) approximation in undominated strategies, for combinatorial auctions with unknown (single-

parameter) multi-minded players.
The first step to handle the “unknown” situation is to maintain an “active bundle” for each

player. In a similar manner to the current value maintained by the Japanese Wrapper Mechanism,
this “active bundle” will keep approaching to one of the true bundles of the player. Figure 3
essentially describes the original Japanese Wrapper Mechanism, with this additional “active bundle”
feature. Since every winner will get his active bundle and will pay his last bid, players will bid of
to their value and will never report a bundle that they do not value.

However, it turns out that we cannot just “plug-in” any algorithm to this modified wrapping
procedure. To ensure the approximation ratio, we require the following condition on the active
bundle: if a player is about to retire, and knows “for sure” that he will lose if his bundle will
not change, then, if he has some desired bundle which is available, he will bid on it. This rather
weak condition still enables us to upper bound the value of the losers by the value of the winners.
Unfortunately, most procedures will not satisfy it. This is because, even in the unknown single-
minded case, a player with a true value has sometimes an incentive to declare a bundle that strictly
contains his own. Some types of “proper-subgames” (see Appendix C), however, does enable us
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The 1-CA-SUB sub-game:
Input :

A vector of values vj and a vector of bundles sj (with one element for each player).
An allocation Wj−1 which is legal w.r.t. sj .

Procedure :

1. Wj(1) = argmaxi∈N{ vj
i }; Wj(2) = ∅.

2. Go over the players with vj
i > 0 in descending order of values. Let player i be the current player.

• If i /∈ Wj−1 allow him to pick a bundlea sj+1

i ⊆ Free(Wj(2), sj+1)∩sj
i such that |sj+1

i | ≤ √
m,

in any other case (i ∈ Wj−1 or i does not pick) sj+1

i = sj
i .

• If |sj+1

i | ≤ √
m, add i to any of the allocations W ∈ {Wj−1, Wj(1), Wj(2)} for which sj+1

i ⊆
Free(W, sj+1).

Output :

The vector of bundles sj+1 and an allocation W ∈ {Wj−1, Wj(1), Wj(2)} with maximal value of
∑

i∈W vj
i .

aFree(Wj(2), s
j+1) denotes the set of free goods, goods that are not in ∪i∈Wj (2)s

j+1
i

Figure 4: The 1-CA-SUB sub-game for combinatorial auctions. This sub-game is a “proper” sub-game.

to proceed. A main example for this is the procedure in Figure 4. This is essentially the 1-CA
procedure15 with the following twist: players are not required to declare their bundles in advance,
but are rather approached in a certain carefully chosen time point in the middle of the run time
of the procedure (this is step 2a in the figure). As we show in the appendix, this time point does
satisfy the above requirement.

For the case of unknown single minded bidders we can show that the 1-CA Japanese Mechanism
essentially reduces to the “known” case discussed in section 3:

Theorem 5. The 1-CA Japanese Mechanism implements an O(log(v̄max) · √m) approximation in
undominated strategies for unknown single-minded combinatorial auctions.16

For the case of unknown multi-minded bidders, the use of an active bundle forces a (temporary)
winning player to focus on one specific bundle; if that specific bundle turns out to be highly
demanded, he cannot switch and insert new items to his bundle. We are able to show that this will
not cause the approximation ratio to deteriorate by more than an additional O(log(v̄max)) factor:

Theorem 6. The 1-CA Japanese Mechanism implements an O(log2(v̄max) · √m)-approximation
in undominated strategies for combinatorial auctions with unknown single parameter multi minded
players.17

As a result, we get “for free” a solution to the EDP problem, which is a special case of a com-
binatorial auction with unknown single parameter multi minded players. Notice that our method
also solves the problematic situation where a player has an exponential number of bundles (paths),
as he need not declare all of them, but only to gradually focus on one of them.

15The basic algorithm is by [8]. It was used by [13] to create a truthful mechanism for known single-minded CA.
16The mechanism is also an O(min(m, n))-approximation.
17The mechanism is also an O(min(m, n))-approximation.
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Impersonation-Based Mechanism for the USM CA model
Given a direct revelation allocation rule G for single minded CA (each player i
bids a value vi and a bundle si), and a positive integer K.

Strategy space :

Each player i submits a value vi and a sequence of ki ≤ K bundles, s1
i ⊂ s2

i ⊂ . . . ⊂ ski

i .

Allocation :
Run the allocation rule G on the input {(vi, s

k
i )}i∈N,k=1...,ki

and get a set of winners W.
Each winner i ∈ W receives s1

i (the minimal bundle), other players lose, and get ∅.

Payments (assuming the Impersonation-Based allocation is value monotonic):

Losers pay 0. Each winner pays his critical value for winning.

Figure 5: The Impersonation-Based Mechanism for unknown single-minded CA.

This result extends to the general (not single-parameter) Combinatorial Auctions domain, where
each player i has a possibly different valuation for each bundle b ⊆ G. We define the maximal value
difference δ to be δ = maxi∈N vi(G)/vi(b

min
i ), where vi(G) is the valuation of player i for G, and

vi(b
min
i ) is the value of the lowest positive valued bundle of player i (still vi(b

min
i ) ≥ 1). Our proof

shows that the “1-CA Japanese Mechanism” mechanism implements an O(δ · log2(v̄max) · √m)
approximation in undominated strategies for general CA domain.

4.2 An Impersonation-Based Mechanism for Unknown Single Minded CA

For some allocation rules in the case of unknown single minded bidders, we can have an imple-
mentation in undominated strategies that actually keeps the algorithm’s original approximation
ratio. As a by-product to this, we demonstrate a completely different technique to create undomi-
nated strategies mechanisms for combinatorial auctions with single minded players. This technique
is given in figure 5. The main idea is to allow players to impersonate to several different single
minded players, all with the same value, but with different bundles. It turns out that, for some
carefully designed allocation rules which we demonstrate below, the players will still reveal their
true value and their true bundle (coupled with extra “false” information), and, furthermore, this
will enable us to maintain the original approximation ratio.

Let M(G,K) denote the mechanism created by running the Impersonation-Based Mechanism
with an allocation rule G and an integer K. We note that it is well defined if and only if it is value
monotonic.

Proposition 3. Assume that for some allocation rule G and an integer K, the M(G,K) mechanism
is value monotonic. Then for any player i, in any undominated strategy, s1

i ⊇ s̄i and vi = v̄i.

Theorem 7. Suppose that an allocation rule G is a c-approximation for KSM-CA. If the M(G,K)
mechanism is value monotonic and in any undominated strategy, each player i reveals his true
bundle (s1

i = s̄i), then M(G,K) implements a c-approximation in undominated strategies.

We next give two examples for an allocation rules that satisfy both these conditions18.

18It is interesting to note that is not sufficient that the allocation rule itself will be value monotonic for the
impersonation-based mechanism to be monotonic. See the appendix for details.
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An axis-parallel CA of the plane. In an axis-parallel rectangles CA, the set of goods is the
set of points in the plane <2, and each bundle a player may desire is an axis-parallel rectangle.
Babaioff and Blumrosen [4] used an algorithm by [10] to give a truthful O(log(R)) approximation
mechanism for known single minded bidders, where R is the ratio between the smallest width
and the largest height of the given rectangles. However, for the “unknown” case they were only
able to give an O(R) approximation. With the Impersonation-Based mechanism technique, we
achieve the original O(log (R)) approximation ratio in undominated strategies: Let Shifting be
the original shifting allocation algorithm of [10], and M(Shifting, log (R)) be the Impersonation-
Based mechanism based on Shifting, with K = log (R). By showing that M(Shifting, log (R)) is
value monotonic and encourages minimal bundle bidding, we have:

Theorem 8. The M(Shifting, log (R)) mechanism implements an O(log (R))-approximation in
undominated strategies.

A modified k-CA19 allocation rule for general USM-CA. The Impersonation Based mech-
anism with the k-CA auction is not value monotonic. Based on it, we define the IA − k − CA
allocation rule, which is suitable for our impersonation technique. It has an approximation ratio of
(e · ε · √m · ln v̄max) for any fixed ε > 0. We then have:

Theorem 9. The M(IA−k−CA,
√

m) mechanism implements an (e·ε·√m·ln v̄max)-approximation
in undominated strategies.
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A Revelation Mechanisms

Some of our mechanisms assume a specific structure on the strategy space S. In a direct revelation
mechanism the strategy space S is equal to the type space T , which means that each agent reports
a value and a set of outcomes from its predefined family of possible sets. A direct revelation
mechanism is incentive-compatible in dominant strategies if for any agents types t̄ ∈ T each agent
has a dominant strategy to bid his true type (strategy si ∈ Si is a dominant strategy for agent i
with type t̄i, if it dominates any other strategy s′i ∈ Si of agent i.)

We define the value of an outcome ω with respect to types t̄ ∈ T to be v(ω, t̄) =
∑

i∈N vi(ω, t̄i) =∑
i:ω∈Āi

v̄i. An outcome ω∗(t̄) ∈ Ω is efficient with respect to t̄, if it has maximal value, that
is v(ω∗(t̄), t̄) ≥ v(ω, t̄) for any ω ∈ Ω. An outcome ω ∈ Ω is c-approximation with respect to
t̄ if v(ω∗(t̄), t̄) ≤ cv(ω, t̄), where ω∗(t̄) is an efficient outcome with respect to t̄. An incentive-
compatible direct revelation mechanism achieves a c-approximation if for any types t̄ ∈ T , it
outputs a c-approximation outcome with respect to t̄ in polynomial time.

For single-parameter agents we suggest the following generalization of the direct revelation mech-
anism concept. In a direct value revelation mechanism (also referred as mechanism) the strategy
space S is equal to the product of the value space <n

++ and some outcome bid space B = B1×· · ·×Bn,
where Bi is the outcome bid space of agent i. A bid of agent i is constructed from a reported value
vi and an outcome bid Bi ∈ Bi (the outcome bid is independent of the agent’s value, which means
that the strategy space is separable). We denote the vector of values reported by all agents by v
and the vector of outcome bids by B. Assume that the agents report values v and outcome bids
B. The mechanism picks an outcome G(v,B) = ω ∈ Ω and charges agent i with Pi(v,B) monetary
units. If an outcome ω ∈ Āi is chosen then we say that i is satisfied.

Definition 10. An allocation rule G is value monotonic if for all i ∈ N,B ∈ B, v ∈ <n
++, Ai ∈ Ai,

if G(v,B) ∈ Ai and v′i > vi then G(v′, B) ∈ Ai, where v′ = (v′i, v−i).

We say that a mechanism M is value monotonic if the allocation rule G is value monotonic.

Observation 2. If an allocation rule G is value monotonic then for all i ∈ N,B ∈ B, v−i ∈
<n−1

++ , Ai ∈ Ai, there exists a critical value ci(Ai|v−i, B) ≥ 0, such that

• if vi > ci(Ai|v−i, B) then G(v,B) ∈ Ai

• if vi < ci(Ai|v−i, B) then G(v,B) /∈ Ai

ci(Ai|v−i, B) is the infimum of all values that will cause the mechanism to pick an outcome in
Ai when the agents bids B and the other agents report the values v−i.

We want the agents to participate in our mechanisms voluntarily (ex post individually rational
mechanisms). In a truth telling mechanism unsatisfied agents should pay zero. We concentrate on
mechanisms that are satisfy guessing, such mechanisms guess the satisfying set of an agent from
its outcome bid. For each agent i, a satisfy guessing mechanism defines a function Si : Bi → Ai,
which is given the outcome bid of agent i and calculates the alleged satisfying set Si(Bi) ∈ Ai of the
agent. We require that Si be on Ai, that is for any Āi ∈ Ai there exists an outcome bid B̄i ∈ Bi

such that Si(B̄i) = Āi. We denote S(B) = {Si(Bi)}i∈N .
For an outcome ω, let Sat(ω,A) = {i ∈ N |ω ∈ Ai}, Sat(ω,A) is the set of agents that are

satisfied when agent i has a satisfying set Ai (the set of agents that are actually satisfied by the
outcome ω is Sat(ω, Ā)). A satisfying guessing mechanism partition the agents to winners and
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losers. The set of winners is the set of agents that M assumes that are satisfied by the outcome,
W (v,B) = Sat(ω, S(B)) = {i ∈ N |G(v,B) ∈ Si(Bi)}, the rest of the agents are losers. Note that
a winner might not be satisfied by the outcome, this is the case if the guess of the mechanism
regarding the chosen outcome is wrong. A satisfying guessing mechanism is normalized if each loser
pays zero.

In a mechanism with payments by critical values, winners pay their critical value for winning
and losers pay zero.

Definition 11. A satisfying guessing mechanism M has payments by critical values if for all
i ∈ N,B ∈ B, v ∈ <n

++, if i ∈ W (v,B) then Pi(v,B) = ci(Si(Bi)|v−i, B), otherwise Pi(v,B) = 0.

Note that each agent’s payment is non negative, so a winner that is not satisfied has non positive
utility.

The next Lemma shows that a mechanism is individually rational if it is value monotonic and
the payments are by critical values.

Lemma 2. Assume that the satisfying guessing mechanism M is value monotonic, the payments
are by critical values. Then for all i ∈ N,B−i ∈ B−i, v−i ∈ <n−1

++ , Āi ∈ Ai, if i bids his true value
v̄i and Bi such that Si(Bi) ⊆ Āi, then his utility is non negative.

Proof. If i loses (i /∈ W (v,B)) he pays zero and his utility is non negative. If i wins (i ∈ W (v,B))
then by monotonicity, G(v,B) ∈ Si(Bi). Since Si(Bi) ⊆ Āi, i wins and is satisfied. Since the
payments are by critical values agent i wins thus v̄i ≥ ci(Si(Bi)|v−i, B), and i pays Pi(v,B) =
ci(Si(Bi)|v−i, B). Thus his utility is v̄i − ci(Si(Bi)|v−i, B) ≥ 0.

Definition 12. A satisfying guessing mechanism M ensures losers unsatisfaction if for all i ∈
N,B ∈ B, v ∈ <n

++, Āi ∈ Ai, if i /∈ W (v,B) then G(v,B) /∈ Āi.

A mechanism that ensures losers unsatisfaction chooses an outcome that does not satisfy any
loser, for any satisfying set of each loser (In combinatorial auctions this is trivially done by assigning
a loser with the empty bundle, and this can be done for any allocation to the other agents).

Lemma 3. Assume that the satisfying guessing mechanism M is value monotonic, the payments
are by critical values and it ensures losers unsatisfaction. Then for all i ∈ N,B−i ∈ B−i, v−i ∈
<n−1

++ , Āi ∈ Ai, if i bids vi and Bi such that Si(Bi) ⊆ Āi, then his utility will not decrease if he bids
v̄i and Bi.

Proof. First assume that i wins (i ∈ W (v,B)), that is G(v,B) ∈ Si(Bi). Since Si(Bi) ⊆ Āi, i is
satisfied. Since M is value monotonic and the payments are by critical values vi ≥ ci(Si(Bi)|v−i, B).
Agent i pays Pi(v,B) = ci(Si(Bi)|v−i, B) and has utility v̄i − ci(Si(Bi)|v−i, B). Assume that i
changes his reported value to v̄i. If v̄i ≥ ci(Si(Bi)|v−i, B), i will still win, be satisfied and pay the
same, so his utility will not change. If v̄i < ci(Si(Bi)|v−i, B), i utility will improve from negative
to zero.

Next assume that i loses (i /∈ W (v,B)) by bidding vi. Since M ensures losers unsatisfaction
and he pays zero, his utility is zero. Assume that i changes his reported value to v̄i. If v̄i <
ci(Si(Bi)|v−i, B), i utility will stay zero. If v̄i ≥ ci(Si(Bi)|v−i, B), i will win, be satisfied, pay
ci(Si(Bi)|v−i, B) and his utility will be non negative.
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The KMM CA Greedy Mechanism :

Input : For each player i, a value vi. The set of desired bundles {sk
i }ki

k=1
is known.

Allocation :

1. Sort the bids by descending order of the value vi/
√

sk
i .

2. While the list is not empty, pick the first bid on the list (of agent i with bundle sk
i )

agent i wins. Remove all other bids of i from the list, as well as any other bid that intersects sk
i .

Payments :
Each winner pays his critical value for winning, losers pay 0.

Figure 6: The KMM CA Greedy Mechanism. It is value monotonic, thus it is incentive-compatible for
“Known” single-parameter multi-minded agents. It is not truthful for “Unknown” agents.

B Dominant Strategies Mechanisms

B.1 Known Single Parameter Domains

B.1.1 Known Single Parameter Combinatorial Auctions

The results in this section hold even if we do not assume that v̄i ≥ 1 for any agent i. It is sufficient
to assume that v̄i > 0 for any i.

Theorem 10. The KMM CA Greedy Mechanism (see Figure 6) is truthful for multi-minded bidders
and achieves a (

√
m + 1)-approximation in polynomial time.

Proof. The mechanism is clearly normalized, thus by showing that it is value monotonic, we con-
clude by Theorem 1 that it is truthful. It is value monotonic since if agent i wins (and is satisfied)
with some bundle sk

i and increases his value, all his bids only improve, and the allocation before
sk
i is considered does not change unless one of agent i’s bundles win. If this is not the case, sk

i is
considered at a prior stage to its original stage, thus must win.

Lehmann et al. [12] proved that this algorithm is a
√

m-approximation for USM agents (and
in particular for KSM agents). Let W be the set of winners in the allocation that the mechanism
outputs, and let OPT be the set of winners in some efficient allocation. For the KMM agents case,
we can partition the agents in OPT to two types, agents that are also in W (note that they might
win with different bundles in the two allocations), and agents that are not in W . Clearly the value
of the agents in W bounds the value of the agents of the second type (all bundles winning in the
mechanism’s allocation are disjoint), and is a

√
m-approximation to the value of the agents of the

first type (since all bundles of the same agents can be regarded as bundles of different agents, and
they all still lose). Thus W is a

√
m + 1-approximation to OPT .

The EDP Greedy Mechanism uses the EDP Greedy allocation algorithm of Figure 1 and critical
value payments to create a mechanism for the Edge Disjoint Paths problem for “known” single-
parameter agents.

Theorem 11. The EDP Greedy Mechanism is truthful for KSP agents in the EDP model, it
achieves a (

√
m + 1)-approximation in polynomial time.

Proof. Assume that we run the The KMM CA Greedy Mechanism on all paths of each agent as
his desired bundles. By Theorem 10 this creates a truthful mechanism that achieves a (

√
m + 1)-
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approximation. It is easy to verify that the EDP Greedy allocation always produces the same
allocation and runs in polynomial time.

Somewhat surprisingly, it turns out that the EDP Greedy Mechanism is not truthful for the
unknown case:

Claim 1. In the USP EDP problem, where each player has to report both his value and his source-
target node pair, the EDP Greedy Mechanism is not truthful.

Proof. Consider the undirected cycle graph on 5 nodes, n1, n2, . . . , n5. Suppose player 1 has type
($10, (n1, n2)) (has a value of $10 for paths from n1 to n2), and player 2 has type ($5, (n1, n5)),
and that they both bid truthfully. Player 3 has type ($100, (n1, n2)). If he bids truthfully he wins
(receive the edge (n1, n2)), and pays 10, as this is his critical value to win. However, if he bids
($100, (n5, n2)), then he still wins and receives the edges (n5, n1) and (n1, n2) (so he is satisfied).
But, his critical value for winning will now be zero, as he would have been able to win and receive
the edges (n2, n3), (n3, n4), (n4, n5) even if he would have declared any value greater than 0 (in this
case he would still win, but, he would not be satisfied according to his true type). Thus player 3
can increase his utility by declaring a false type.

B.1.2 The Japanese Wrapper Mechanism for KSP domains

In this section we present a generic way to create a dominant strategy IC mechanism for the KSP
domain from any allocation algorithm for single parameter agents.

Let v̄max = maxi∈N v̄i, v̄max is the observed maximal value of any agent (it is not an a-priori
bound).

An algorithm is an allocation algorithm for single parameter agents, if it gets as input a set of
agents N and a set of outcomes Ω. For any agent i it also get a satisfying set Ai and a value vi.
The allocation algorithm outputs an outcome ω ∈ Ω. An allocation algorithm for single parameter
agents is a c-approximation algorithm if for any N,Ω, Ā and values v̄ it outputs an outcome that
is c-approximation to the efficient outcome with respect to v̄ in polynomial time. Assume that we
are given an allocation algorithm ALG for single parameter agents. Since the satisfying sets of the
agents are known, the input for the algorithm will be the set of agents N, the set of outcomes Ω
and the satisfying set of the agents Ā. We denote by ALG(v) the outcome of the algorithm ALG
on values v.

Algorithm ALG ensures losers unsatisfaction if it always outputs an outcome ω ∈ Ω such that
ω /∈ Āi for any agent i with vi = 0.

To simplify notation we use Wj to denote the set agents satisfied by the allocation Wj , that is
the set Sat(Wj , Ā) .

The Japanese Wrapper Mechanism for KSP agents is described in Figure 2. In Line 1, j denote
the iteration and initialized to 0, Wj is the set of provisional winners and Lj is the set of losers (non
active agents). Next (line 2) each agent reported value at iteration 0, v0

i is initialized to 1. The
iterations (line 3) run as long as there are active agents (agents with reported value greater than
0) that are not winners. Line 4 runs the algorithm ALG on the current vector of reported values
vj to get an allocation. If this allocation is better than the previous one, the current allocation is
updated (line 5). Next, each loser can either increase his reported value by a factor of e (e denotes
the Euler number e = 2.718...), or retire (become inactive). Finally, line 7 updates the set of losers
(inactive agents) and the iteration counter. The total number of iterations is denotes by J at line
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8. At the end, the set of active agents equals the set of winners, and each winner pays his final
reported value vJ

i .

Observation 3. If the allocation algorithm ALG runs in polynomial time then the Japanese Wrap-
per Mechanism runs in polynomial time.

Lemma 4. Assume that the Japanese Wrapper Mechanism uses an algorithm ALG that ensures
losers unsatisfaction. It is a dominant strategy for any agent i to increase his reported value as long
as the increased value is lower then his value v̄i. That is, at each stage j, if ωj /∈ Āi and evj

i < v̄i,

i reports vj+1
i = evj

i , otherwise he reports vj+1
i = 0.

Proof. If agent i bids any value larger than v̄i his utility will be non-positive (zero if he loses,
negative if he wins), this can be improved by i retiring at a value not larger than v̄i.

If agent i retires at a value smaller than v̄i/e his utility is zero. If he continue to bid and
retires at the largest possible value smaller than v̄i, his utility is non negative. We conclude that a
dominant strategy for any agent i to increase his reported value as long as the increased value is
lower then his value v̄i.

Lemma 5. For any allocation algorithm ALG used by the Japanese Wrapper Mechanism, the
mechanism is individually rational and incentive compatible in dominant strategies.

Proof. Lemma 4 shows that it is a dominant strategy for any agent i to increase his reported value
as long as the increased value is lower then his value v̄i. Clearly if each agent i retires at a value
not larger than v̄i his utility is non negative, so the mechanism is individually rational.

Each losing agent retires at a value that it at least v̄i/e (for each loser i, vJ
i ≥ v̄i/e). Each agent

can increase his value at most ln(v̄max) times. Since there are n agents and at each stage at least
one increases his value, J ≤ n ln v̄max. Note that basic calculus shows that increasing the value by
the factor of e is optimal over all constants.

Lemma 6. If ALG is a c-approximation allocation algorithm and the Japanese Wrapper Mechanism
runs J stages, then it achieves an (ecJ + 1)-approximation.

Proof. Let us denote the value of an efficient outcome for the set of agents T with values v by
ω∗(T, v). To simplify notation we use WJ to denote the set of agents satisfied by the allocation WJ .
Let Rj = Lj \ Lj−1 denote the set of agents that retired at iteration j. Note that LJ = ∪J

j=1Rj

and that this is a union of disjoint sets. Let ri denote the last non zero reported value of agent i
(this is the value that losing agent retired at, and the value that a winner pays), and let r denote
the vector of these values.

ω∗(N, v̄) = ω∗(WJ ∪ LJ , v̄) ≤ ω∗(WJ , v̄) + ω∗(LJ , v̄) ≤ ω∗(WJ , v̄) + eω∗(LJ , r)

ω∗(LJ , r) ≤
J∑

j=1

ω∗(Rj , r) =
J∑

j=1

ω∗(Rj, v
j) ≤

J∑

j=1

cω∗(Wj, v
j) ≤ c

J∑

j=1

ω∗(WJ , vJ) =

cJω∗(WJ , vJ ) ≤ cJω∗(WJ , v̄)

So we conclude:

ω∗(N, v̄) ≤ ω∗(WJ , v̄) + eω∗(LJ , r) ≤ ω∗(WJ , v̄) + ecJω∗(WJ , v̄) = ω∗(WJ , v̄)(ecJ + 1)
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Note that if the algorithm ALG never outputs an outcome with a value that is worse than the
highest agent’s value at each stage, then the mechanism is also an (en)-approximation.

Next, we present a condition on the algorithm used by the KSP Japanese Wrapper Mechanism
that is sufficient to ensure that the maximal number of iteration J is low, thus ensuring good
approximation.

The KSP Japanese Wrapper Mechanism with an algorithm ALG has the d-wise property, if
for any strategies of the agents, any stage j and any agent i ∈ Lj , there exists a set X ⊆ Wj ,
|X| ≤ d − 1 such that at no stage prior to j, ALG outputs an outcome that satisfies X ∪ {i}.

Lemma 7. If the KSP Japanese Wrapper Mechanism with an algorithm ALG has the d-wise
property then the mechanism stops after at most (d ln v̄max + 1) stages.

Proof. We look at a loser i that retired at the last round (round J). Since KSP Japanese Wrapper
Mechanism with an algorithm ALG has the d-wise property, there exists a set X ⊆ WJ of at most
d − 1 agents that such that at least one of the agents in X ∪ {i} loses at each stage. Each of the
agents in X ∪ {i} can be a loser and multiply its value at most ln v̄max times, so all the agents
in X ∪ {i} can multiply there value at different stages at most d ln v̄max consecutive times. We
conclude that J − 1 ≤ d ln v̄max.

We now present conditions on the outcome space and the algorithm that are sufficient to ensure
that KSP Japanese Wrapper Mechanism with an algorithm ALG has the d-wise property.

A set of agents T ⊆ N get along if there exist an outcome ω ∈ Ω such that T ⊆ Sat(ω, Ā) (all
agent in T can be satisfied together by some outcome ω). An outcome ω ∈ Ω pareto dominates
outcome ω′ ∈ Ω if Sat(ω, Ā) ⊂ Sat(ω′, Ā) (the set of satisfied agents by the outcome ω ′ is a proper
subset of the set of agents that are satisfied by ω). An outcome ω ∈ Ω is pareto efficient if there is
no outcome that pareto dominates ω. An outcomes space Ω is a d-wise space if for any set T that
get along such that |T | ≥ d − 1, and any i /∈ T : T ∪ {i} get along if and only if X ∪ {i} get along
for any X ⊆ T such that |X| = d − 1.

A pareto efficient algorithm always outputs an outcome that is pareto efficient.

Lemma 8. If the Japanese Wrapper Mechanism runs on a d-wise space using a pareto efficient
algorithm ALG then the KSP Japanese Wrapper Mechanism with an algorithm ALG has the d-wise
property.

Proof. We look at the execution of the mechanism for some strategies of the agents. For any stage
j and any agent i ∈ Lj , we need to show a set X ⊆ Wj of size at most d − 1 that does not get
along with i.

Since the algorithm is pareto efficient, Wj does not get along with i. There are two cases. Either
|Wj | ≥ d − 1 and there exists a set X ⊂ Wj , |X| = d − 1 that does not get along with i (since the
space is d-wise), or |Wj| < d − 1 (in that case X = Wj). In both cases we have shown that there
is a set X ⊆ Wj of size at most d − 1 that does not get along with i, thus at no stage prior to j,
ALG outputs an outcome that satisfies X ∪ {i}.

Next, we present an example for d-wise spaces.

Lemma 9. The single-minded CA domain is a 2-wise space. Combinatorial auctions with n agents
that are l-minded for any l > 1, is not a t-wise space for any t < n.

20



Proof. The single-minded CA domain is a 2-wise space, since if we take any set of single-minded
agents with disjoint desired bundles and an agent with desired bundle that is disjoint from each of
them, then he is disjoint from all of them.

Next we show that if agents are 2-minded, then it is possible that any n − 1 agents get along,
but all n agent do not. Assume that there are n− 1 goods, ordered in a cycle. Agent i ∈ {1, n− 1}
is double minded with bundles {i} and {(i + 1) mod (n − 1)}. Agent n wants the bundle {1}.
Clearly, the n − 1 goods cannot satisfy all these n agents. Any set T ⊂ N (the size of T is smaller
then n) can be satisfied. If agent n /∈ T , assign each agent i the bundle {i}. If agent n ∈ T , assign
agent n the bundle {1}, and starting from him assign the goods greedily in both directions.

In some d-wise spaces it is computationally feasible to take an outcome and calculate a pareto
efficient outcome that pareto dominates it. In such spaces any algorithm ALG that achieves a
c-approximation can be efficiently converted to an algorithm that is pareto efficient and achieves
a c-approximation (since the pareto dominating outcome has a higher value). For combinatorial
auctions it is computationally feasible to find a pareto efficient outcome that dominates another
outcome (just go over all losers one by one and check if the current candidate can be added to the
allocation).

From Lemma 6 and Lemma 7:

Corollary 1. If the KSP Japanese Wrapper Mechanism with an algorithm ALG has the d-wise
property, and ALG is a c-approximation allocation algorithm, then it achieves an (ec(d ln v̄max +
1) + 1)-approximation.

Let us now concentrate on combinatorial auctions for single minded agents. By Lemma 9
this space is a 2-wise space, and we can turn any algorithm into pareto efficient algorithm in
computationally efficient way. We get the following result.

Theorem 12. If the Japanese Wrapper Mechanism runs on a known single-minded CA domain us-
ing a pareto efficient c-approximation polynomial algorithm ALG, then it achieves an (ec(2 ln(v̄max)+
1) + 1)-approximation in dominant strategies, and the mechanism runs in polynomial time.

There exists a
√

m-approximation pareto efficient algorithm for combinatorial auctions ( [12]).
For such an algorithm, the Japanese Wrapper Mechanism achieves an (e

√
m(2 ln(v̄max) + 1) + 1)-

approximation in dominant strategies, by an ascending auction.

Next, we explain how to modify any allocation algorithm to ensure that the Japanese Wrapper
Mechanism approximation is never worse then emin(m,n). Given an allocation algorithm ÂLG we
create an “improved” allocation algorithm ALG as follows. If the value of the highest loser is higher
then the value of the algorithm output, then the algorithm output a pareto efficient allocation that
includes the highest bidder and in which any agent with zero value receives the empty bundle. Note
that if ÂLG is a c-approximation algorithm then ALG is also a c-approximation algorithm. So we
conclude the following.

Corollary 2. If the Japanese Wrapper Mechanism runs a combinatorial auction for single minded
agents using algorithm ALG that is an “improved” c-approximation allocation algorithm (always
output an allocation that is at least as good as the highest agent’s value), then it achieves a
min(em, en, ec(2 ln(v̄max) + 1) + 1)-approximation in dominant strategies.

Up to a constant factor, our analysis is tight.
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Proposition 4. There exists an example with 2m agents, v̄max = m + 1 and an “improved” e-
approximation algorithm for the KSM CA domain, for which the Japanese Wrapper Mechanism is
an Ω(m)-approximation.

Proof. For i = 1, . . . ,m, agent i wants the bundle {i} with a value of v̄max. For k = 1, . . . ,m, agent
i = m + k wants the bundle {1, 2, . . . , k} with a value of ek+1.

In the efficient allocation all the first m agents win and the allocation has a value of mv̄max. Next,
we turn to analyze the execution of the mechanism and show that there exists an e-approximation
algorithm that achieves a total value of v̄max and no more.

At the first iteration (j = 0), all the first m agents win. If the algorithm pick the efficient
allocation at the following m iterations, then at iteration j ∈ {1, . . . ,m}, agent m + j wins with all
agents j + 1, . . . ,m.

After these iterations, agent i ∈ {1, . . . ,m} has a value of v̄max/ei. All agents i ∈ {m, . . . , 2m−1}
retired, and agent 2m reported value is v̄max. At iteration m + 1, agent i ∈ {1, . . . ,m} has a value
of v̄max/ei−1. The sum of values of all these agents is less than ev̄max (e times the value of agent
2m), so the algorithm can still pick agent 2m as the sole winner. Now, agent 2 retires, all the rest
multiply their value by e, but the same argument shows that the algorithm can still pick agent 2m.
At each following stage the next agent retires, till none remains.

B.1.3 Mechanism based on a Bitonic Unweighted Allocation Rule

In this section we show how a bitonic allocation rule for unweighted KSP can be used to create a
dominant strategies incentive-compatibility mechanism for weighted KSP. Clearly, creating bitonic
unweighted algorithms is easier than creating monotonic algorithms, so this technique is useful in
many cases.

An unweighted allocation algorithm for single parameter agents is an allocation rule for single
parameter agents that is defined when the agents values are either zero or one. Note that any
allocation algorithm is also an unweighted allocation algorithm.

Bitonic allocation rules were defined by Mu’alem and Nisan [13]. A monotonic allocation rule
is bitonic if the value of the outcome does not increase when a losing agent increase its value and
remains a loser, and does not decrease when a winning agent increase its value.

Assume that in an unweighted allocation algorithm, the set of agents with reported value of 0
are losers and are not satisfied. This means that only agents with a value of 1 can be winners, thus
bitonicity only means the following. If a loser with value 0 changes his value to 1 and remains a
loser then the value of the allocation does not increase.

The mechanism presented in Figure 7 takes any allocation rule that is bitonic for unweighted
single-parameter agents and creates a mechanism that is incentive compatible in dominant strategies
for KSP agents.

Lemma 10. If the unweighted allocation rule BR is a bitonic rule then the resulting mechanism
based on BR is individually rational and incentive compatible in dominant strategies for the KSP
model.

Proof. Since losers pay 0, by Theorem 1 we only need to show that the mechanism is value
monotonic. Assume that agent i wins, so he appears with value 1 in class C ∗. If i increases
his value, the only change in the input is that its value is changed from 0 to 1 in some classes after
class C∗. There is no change in class C∗ and all prior classes. In all other classes, either there is no
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Mechanism based on a Bitonic Unweighted Allocation Rule:
Allocation :

Step 1: Each agent i report a value vi.
Step 2: Divide the given input to ln(v̄max) classes according to their value.

Agent i that bids vi appears with value 1 in any class C such that vi ≥ eC−1,
and with value 0 in all other classes.

Step 3: Perform a bitonic allocation rule BR per each class C.
Denote the number of winners in class C by n(C).

Step 4: Output the class C∗ for which eC−1n(C) is maximal.
Payments :

Each winner pays his critical value for winning, losers pay 0.

Figure 7: A mechanism that uses a bitonic allocation rule BR that is a c-approximation for the KSP
unweighted case. This mechanism is incentive compatible in the KSP model and achieves an (ec ln v̄max)-
approximation in dominant strategies.

change, or i remains a loser and the value of the class decreases (since the rule is bitonic), or i wins
in that class and the value increases. We conclude that either class C ∗ remains the winning class or
an higher class with i winning in it become the winning class. In any case i remains a winner.

Theorem 13. If the unweighted allocation rule BR is a bitonic rule that achieves a c-approximation
for unweighted single-parameter agents then the resulting mechanism based on BR is individually ra-
tional and incentive compatible in dominant strategies for the KSP model, The mechanism achieves
an (ec ln v̄max)-approximation in dominant strategies.

Proof. By Lemma 10 the resulting mechanism is individually rational and incentive compatible in
dominant strategies.

Next we prove the approximation ratio. Let ω∗(N, v̄) denotes both the value of the efficient
outcome with respect to the set of agents N and values v̄, as well as the set of satisfied agents in
that outcome. Let A(C) = {i ∈ N |vi ∈ [eC−1, eC)} denote the set of agents for which the last class
they appear in is C.

Let W (C) = ω∗(N, v̄) ∩ A(C) be the set of agents in the efficient allocation and with value in
[eC−1, eC). Let Cm be the class with the maximal value of ω∗(W (C), v̄). It holds that ω∗(W (Cm), v̄) ≥
ω∗(N,v̄)
ln v̄max

.
Let v̂i be the value of agent i rounded down to an integral power of e, and let v̂ denotes the

vector of such values. Since agents bid at least an e fraction of their true values, ω∗(W (Cm), v̄) ≤
e ω∗(W (Cm), v̂). Since the unweighted rule is a c-approximation allocation rule, it holds that
ω∗(W (Cm), v̂) ≤ c eCm−1n(Cm) ≤ c eC∗−1n(C∗), where the last inequality is since the mechanism
chooses the class C∗ that maximizes eC−1n(C).

We conclude that

ω∗(N, v̄) ≤ (ln v̄max)ω∗(W (Cm), v̄) ≤ (ln v̄max)e ω∗(W (Cm), v̂) ≤ (ln v̄max)e c eC∗−1n(C∗)

which means that the value of at least eC∗−1n(C∗) achieved by the mechanism is an (ec ln v̄max)-
approximation to the efficient allocation ω∗(N, v̄).
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B.2 Unknown Single Parameter (USP) Domains

In the USP model, all information is public except the value of each agent and his satisfying set,
which are private information. In a direct revelation USP mechanism, each agent’s outcome bid
space is the family of satisfying sets of that agent (Bi = Ai). We denote the outcome bid (reported
satisfying set) of agent i by Ãi ∈ Ai. The alleged satisfying set of an agent is its reported satisfying
set, that is Si(Bi) = Ãi. This means that a winner might not be satisfied. This also means that
a loser might be satisfied and pay zero (this will be prevented by requiring that the mechanism
ensures losers unsatisfaction).

Definition 13. A monotonic direct revelation mechanism M ensures minimal payments if for all
i ∈ N,A ∈ A, v ∈ <n

++, Āi ∈ Ai, if i bids vi > ci(Ai|v−i, A) and Ai such that G(v,A) ∈ Ai ∩ Āi (i
is satisfied and he wins) then ci(Āi|v−i, (Āi, A−i)) ≤ ci(Ai|v−i, A).

Lemma 11. A monotonic direct revelation mechanism M ensures minimal payments if and only
if for all i ∈ N,A ∈ A, v−i ∈ <n−1

++ , Āi ∈ Ai, if there exists a value vi for agent i such that
G(v,A) ∈ Ai ∩ Āi (i is satisfied and he wins) then for any v ′

i > ci(Ai|v−i, A) (i wins with a bid v′i
and Ai, but he does not bid his exact critical value), agent i wins and is satisfied if he bids v ′

i and
Āi.

Proof. Since M is value monotonic, the critical values are well defined.
Case if: Assume that for all i ∈ N,A ∈ A, v−i ∈ <n−1

++ , Āi ∈ Ai, if there exists a value vi for
agent i such that G(v,A) ∈ Ai ∩ Āi then for any v′i > ci(Ai|v−i, A), agent i wins and is satisfied
if he bids v′i and Āi. Assume in contradiction that ci(Āi|v−i, (Āi, A−i)) > ci(Ai|v−i, A). If i bids
v′i such that ci(Āi|v−i, (Āi, A−i)) > v′i > ci(Ai|v−i, A), then he wins with the bid v′

i and Ai, but
loses with the bid v′i and Āi, which is a contradiction. This shows that the M ensures minimal
payments.

Case only if: Assume that M ensures minimal payments, this means that for all i ∈ N,A ∈
A, v ∈ <n

++, Āi ∈ Ai, if i bids vi > ci(Ai|v−i, A) and Ai such that G(v,A) ∈ Ai ∩ Āi (i is satisfied
and he wins) then ci(Āi|v−i, (Āi, A−i)) ≤ ci(Ai|v−i, A).

If i bids vi and Ai such that G(v,A) ∈ Ai ∩ Āi this means that there exists a value which
causes i to win and be satisfied. For and v ′

i > ci(Ai|v−i, A) it holds that v′i > ci(Āi|v−i, (Āi, A−i)),
and since the mechanism is value monotonic, this means that if i bids v ′

i and Āi, he wins and is
satisfied.

If mechanism M ensures minimal payments this means that in any case that the agent is satisfied
by untruthfully reporting his satisfying set, he will remain satisfied if he reports his satisfying set
truthfully (and pay less).

Theorem 14. Assume that in the USP model the value of each agent is at least 1. A normalized
direct revelation mechanism M for USP model is incentive-compatible in dominant strategies and
individually rational if and only if M is value monotonic, the payments are by critical values, the
mechanism ensures losers unsatisfaction and ensures minimal payments.

Proof. Case if: By Lemma 2 if agent i bids v̄i and Āi (Si(Bi) = Āi) his utility is non negative so
the mechanism is ex post individually rational.

To prove incentive-compatibility we need to show that for all i ∈ N,A−i ∈ A−i, v−i ∈ <n−1
++ , Āi ∈

Ai, if i changes his bid from vi and Ai to v̄i and Āi his utility does not decrease.
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If i has a negative utility by bidding vi and Ai, by Lemma 2 he can improve his utility to zero
by bidding v̄i and Āi. Therefore we only need to consider the cases when i has non negative utility.

If i is a loser (i /∈ W (v,B)) he pays zero, and since M ensures losers unsatisfaction his utility
is zero. By Lemma 2 his utility will stay non negative by bidding v̄i and Āi.

Next we assume that i wins (i ∈ W (v,B)), that is ω = G(v,B) ∈ Ai. Since i pays a non
negative payment, for him to have positive utility, it must be the case that i is satisfied, that is
ω ∈ Ai ∩ Āi. In that case he pays ci(Ai|v−i, A) ≤ vi and has utility v̄i − ci(Ai|v−i, A) ≥ 0. Now
assume that i bids Āi and vi instead. Since M ensures minimal payments, G(v, (Āi, A−i)) ∈ Āi (i
is still satisfied if he reports Āi instead of Ai). i pays ci(Āi|v−i, (Āi, A−i)) ≤ ci(Ai|v−i, A), so his
utility does not decrease. By Lemma 3 his utility will not decrease if he bids v̄i instead of vi and
Āi.

Case only if: Assume that the USP mechanism is ex post individually-rational and incentive-
compatible. This implies that it is also individually rational and incentive-compatible for the KSP
model, therefore by Theorem 1 it must be value monotonic and the payments must be by critical
values.

Next, we show that the mechanism ensures losers unsatisfaction. Assume in contradiction that
the mechanism does not ensure losers unsatisfaction. This means that there exists i ∈ N,A ∈
A, v ∈ <n

++, Āi ∈ Ai, such that i loses (G(v,A) /∈ Ai) but is satisfied (G(v,A) ∈ Āi). Assume that
in this case v̄i = vi. In this case i has reported v̄i and Ai 6= Āi (untruthful bidding), pays zero (in
a normalized mechanism losers pay zero) and has a utility of v̄i > 0 (since he is satisfied). If i bids
v̄i and Āi (truthfully) there are two cases. If i is a loser, he is not satisfied and has utility of zero.
If i is a winner, he is satisfied, he pays his critical value which is at least 1 (since its value is at
least 1) and has utility smaller than v̄i. We conclude that i has improved his utility by reporting
his satisfying set untruthfully, contradicting incentive-compatibility.

Finally we show that the mechanism ensures minimal payments. Assume in contradicting that
it does not. Then for some i ∈ N,A ∈ A, v ∈ <n

++, Āi ∈ Ai, i bids vi > ci(Ai|v−i, A) and Ai such
that G(v,A) ∈ Ai ∩ Āi (i is satisfied and he wins) but ci(Āi|v−i, (Āi, A−i)) > ci(Ai|v−i, A). Assume
that in this case v̄i = vi. In this case i has reported v̄i and Ai 6= Āi (untruthful bidding), and has
a utility of v̄i − ci(Ai|v−i, A) > 0 (since he is satisfied). If i bids v̄i and Āi (truthfully) there are
two cases. If i is a loser, he is not satisfied and has utility of zero. If i is a winner, he is satisfied,
he pays ci(Āi|v−i, (Āi, A−i)) > ci(Ai|v−i, A), so his utility is smaller than v̄i − ci(Ai|v−i, A). We
conclude that i has improved his utility by reporting his satisfying set untruthfully, contradicting
incentive-compatibility.

C Undominated Strategies Mechanisms

In this section we concentrate on a specific single-parameter space, the combinatorial auctions
space. We present two general frameworks for the creation of mechanisms that achieve good
approximations in undominated strategies.

C.1 The Japanese Mechanism for General Combinatorial Auctions

In this section we show that the 1-CA Japanese Mechanism (the Japanese Wrapper of Figure 3
on top of the 1-CA-SUB sub-game of Figure 4) works for general Combinatorial Auctions, and
in particular it works for single-parameter CA domains. In the general (not single-parameter)
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Combinatorial Auctions domain, each agent i has a valuation for each bundle b ⊆ G. Let vi(b)
be the valuation of agent i for the bundle b ⊆ G. Assume that for any agent i and bundle b,
vi(b) is either 0 or at least 1. If i has a positive value for bundle b, we say that i desires b. Let
bmin
i be a desired bundle which i values the least. We define the maximal value difference δ to be

δ = maxi∈N vi(G)/vi(b
min
i ).

Lemma 12. Assume that we run the 1-CA Japanese Mechanism for general combinatorial auctions.
Then, for any agent i, in any undominated strategy:

1. In any stage j in which agent i is active (did not retire), vi(s
j
i ) ≥ vj

i . Since vj
i ≥ 1 it implies

that sj
i contains some desired bundle (a bundle with non zero value).

2. If i retires with value vj
i and bundle sj

i at stage j, then vj
i ≥ vi(s

j
i )/e.

3. If in some stage j it holds that i will retire if losing (vj
i ∈ [vi(s

j
i )/e, vi(s

j
i )]), and i will surely

lose if he does not change his bundle (i /∈ Wj−1 and i /∈ Wj(1) and sj
i ∩ (∪i∈Wj−1si) 6= ∅ and

sj
i ∩ (∪i∈Wj(1)

si) 6= ∅), then if there exists some set sj+1
i ⊆ Free(Wj(2), s

j+1) ∩ sj
i , such that

|sj+1
i | ≤ √

m and vi(s
j+1
i ) ∈ [vj

i /e, v
j
i ) he will report such a bundle (in Line 4).

and any such strategy is undominated.

Proof. The first claim is derived from the fact that a winner must pay his last reported value. The
second claim is derived from the fact that an agent can only gain by not retiring at a lower value
(has no risk if he stays active). The third claim is derived from the fact that an agent can only
gain by declaring such a bundle.

Next, we show that any strategy that satisfies the above properties is undominated. We look
at two such strategies si and s′i of agent i and show that neither dominates the other. This holds
since in the first point that they differ (bid different bundles), we can build strategies of the others
that will cause one to win with that value and the other to become a loser.

Observation 4. The 1-CA Iterative Mechanism for general combinatorial auctions is Ex-post
individually rational.

Proof. The observation is a direct result of the two first properties of any undominated strategies
presented in Lemma 12, and the fact that winners pay their final reported value.

Observation 5. The 1-CA Iterative Mechanism for general combinatorial auctions has the fast
undominance recognition property.

Proof. Clearly, any agent i can check if his strategy satisfies the properties that any undominated
strategies must have by Lemma 12, and if not, modify his strategy to an undominated strategy
that dominates the original one, in polynomial time.

Lemma 13. The 1-CA Iterative Mechanism for general combinatorial auctions stops after at most
2 ln v̄max + 1 stages.

Proof. The allocation is pareto efficient allocation in any stage, so if agent i loses at stage j, he

intersects a winner k ∈ Wj. This implies that sj
i ∩ sj

k 6= ∅. For any j ′ ≤ j it holds that sj
i ⊆ sj′

i and
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sj
k ⊆ sj′

k , thus sj′

i ∩ sj′

k 6= ∅. We conclude that i and k never win together, therefore the mechanism
has the 2-wise property.

The proof the 2-wise property implies that the mechanism stops after at most 2 ln v̄max + 1
stages is similar to the proof of Lemma 7.

For a set of agents T , let ω∗(T, s) denote the value of the efficient outcome (w.r.t. the true
valuation functions) for the set of agents T when each agent i is restricted to get a bundle that is
a subset of si.

For a set of agents T we denote V (T, v) =
∑

i∈T vi.

Lemma 14. For general Combinatorial Auctions, in the 1-CA Japanese Mechanism it holds that
ω∗(LJ , sJ) ≤ (eĉJ)ω∗(WJ , sJ), where ĉ = 2

√
m + 2.

Proof. Let Rj be the set of agents that retired at stage j, then it holds that ∪J
j=1Rj = LJ . Thus

ω∗(LJ , sJ) ≤ ∑J
i=1 ω∗(Rj , s

J). To prove the claim it is thus sufficient to show that for any stage j,
ω∗(Rj , s

J) ≤ eĉω∗(WJ , sJ). This is a direct result of the following two claims.

Claim 2. V (Wj , v
j) ≤ ω∗(WJ , sJ).

Proof. Clearly V (Wj , v
j) ≤ V (Wj+1, v

j+1) for any stage j ∈ {1, J−1}, thus V (Wj , v
j) ≤ V (WJ , vJ ).

By the undominated strategies characterization of Lemma 12 for each agent i ∈ WJ , vi(s
J
i ) ≥ vJ

i ,
and all bundles of sJ that belong to agents in WJ are disjoint, thus V (Wj , v

j) =
∑

i∈Wj
vj
i ≤

∑
i∈Wj

vi(s
J
i ) = ω∗(WJ , sJ).

Claim 3. ω∗(Rj , s
J) ≤ eĉV (Wj , v

j), where ĉ = 2
√

m + 2.

Proof. We look at some efficient allocation for the set Rj and partition the winners to two types.

(note that for i ∈ Rj , sj
i = sJ

i .) First, there are agents that are at either Wj−1, Wj(1) or Wj(2)
but are not in Wj (because of the maximum taken at the output picking stage). Let T 6= Wj ,
T ∈ {Wj−1,Wj(1),Wj(2)} be any one of the two sets of such agents. By the undominated strategies

characterization of Lemma 12 for each agent i ∈ T , vi(s
j
i ) ≤ evj

i , and all bundles of sj that belong to

agents in T are disjoint, thus V (Wj, v
j) ≥ V (T, vj) =

∑
i∈T vj

i ≥ (1/e)
∑

i∈T vi(s
j
i ) = (1/e)ω∗(T, sj).

Thus the value of both such T ’s is bounded by 2eV (Wj , v
j).

Secondly, there are agents that are not in any of Wj−1, Wj(1) and Wj(2). Since any allocation
has at most

√
m bundles of size at least

√
m, eV (Wj(1), v

j) is an e
√

m approximation for the set

of agents X such that any i ∈ X does not desired any bundle in sj
i of size at most

√
m.

For agents not in X (agent with some desired bundle in sj
i of size at most

√
m), V (Wj(2), v

j)
is a (e

√
m)-approximation. This follows from the undominated strategies characterization, which

implies that any such agent i does not have a declaration of sj+1
i which will cause him to be in

Wj(2). Any winner in the greedy has a higher value (up to e factor) than any loser that intersects
him, and he intersects at most

√
m such losers.

We conclude that V (Wj , v
j) is a 2e-approximation to the agents of the first type, and 2e

√
m-

approximation to the agents of the second type, and this concludes the proof.

Using all above claims:

ω∗(LJ , sJ) ≤
J∑

i=1

ω∗(Rj , s
J) ≤

J∑

i=1

eĉω∗(WJ , sJ) = (eĉJ)ω∗(WJ , sJ)
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which concludes the proof of the lemma.

Observation 6. For general Combinatorial Auctions, the 1-CA Japanese Wrapper Mechanism
implements an eδ min(m,n)-approximation in undominated strategies.

Proof. Let k be the number of winners in some efficient allocation. Clearly k ≤ min (m,n), since
each winner receives at least one item. The mechanism allocation is at least as good as the v̄max/(eδ)
(a lower bound on the value reported by the agent with the highest value, if he loses), and the
value of the efficient allocation is at most kv̄max, since any winning agent has a value of at most
v̄max.

From the above we conclude the following.

Theorem 15. For Unknown Single-Minded CA, the 1-CA Japanese Wrapper Mechanism imple-
ments a (eĉJ + 1)-approximation in undominated strategies, where J ≤ 2 ln v̄max + 1 is the number
of iterations of the mechanism and ĉ = 2

√
m + 2.

It also implements an emin(m,n)-approximation.

Proof. Let O be the set of winners in some efficient allocation. We partition them to two -
agents that also win in the mechanism, and agents that lose. For the first set of agents (O ∩
WJ), ω∗(O ∩ WJ , sJ) ≤ ω∗(WJ , sJ). For the second set of agents (O ∩ LJ), by Lemma 14,
ω∗(O ∩ LJ , sJ) ≤ ω∗(LJ , sJ) ≤ (eĉJ)ω∗(WJ , sJ) (since by undominated strategies characteriza-
tion, for single-minded agents, the desired bundle of each agent i is a subset of sJ

i ).
The emin(m,n)-approximation is derived from Observation 6 and the fact that δ = 1 for

single-minded agents.

Theorem 16. For general Combinatorial Auctions, the 1-CA Japanese Wrapper Mechanism im-
plements a (eδĉJ2+eĉJ+δ)-approximation in undominated strategies, where J ≤ 2 ln v̄max+1 is the
number of iterations of the mechanism and ĉ = 2

√
m + 2. Thus, it implements O(δ(ln v̄max)2

√
m)-

approximation.
It also implements an eδ min(m,n)-approximation.

Proof. To prove the theorem we need an additional claim. Assume that the winners in the efficient
allocation win with bundles sO.

Lemma 15. We define the set of agents Q to be the set of losers in the 1-CA Japanese Mechanism
with the following property. Agent i ∈ Q if and only if i wins in the efficient allocation with bundle
sO
j which is not contained in the bundle sJ

i (the bundle agent i retired with).
Then,

(eδĉJ2)ω∗(WJ , sJ) ≥ ω∗(Q, sO)

for ĉ =
√

m + 2.

Proof. For each agent i ∈ Q, sj
i 6= G. Let Qj = {i ∈ N |sj

i = G and sj+1
i 6= G}, this is the set of

agents that first declared a bundle that is not all the goods at stage j. Note that Q = ∪J
j=1Qj .

All bundles sj+1 of agents in Qj are disjoint. Additionally, sJ
i ⊆ sj+1

i thus all bundles sJ of
agents in Qj are disjoint. Qj ⊆ LJ thus ω∗(LJ , sJ) ≥ ω∗(Qj , s

J).
Additionally, by the first property of undominated strategies presented in Lemma 12 (and the

definition of δ), for any i ∈ Qj , δvi(s
J
i ) ≥ vi(s

O
i ). We conclude that δω∗(LJ , sJ) ≥ δω∗(Qj , s

J) ≥
ω∗(Qj , s

O).
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By Lemma 14, (eĉJ)ω∗(WJ , sJ) ≥ ω∗(LJ , sJ), therefore (eδĉJ)ω∗(WJ , sJ) ≥ ω∗(Qj, s
O). We

conclude that

ω∗(Q, sO) ≤
J∑

j=1

ω∗(Qj , s
O) ≤

J∑

j=1

(eδĉJ)ω∗(WJ , sJ) ≤ (eδĉJ2)ω∗(WJ , sJ)

The winners in the efficient allocation win with bundles sO. We partition them to three and
bound each separately: Agents that are also in WJ , agents in Q and agents in LJ \ Q. Agent in
WJ might win other bundles in the efficient allocation, so ω∗(WJ , sO) ≤ δω∗(WJ , sJ). By definition
of Q, all agents in LJ \ Q win bundles in sJ , with Lemma 14 this implies that ω∗(LJ \ Q, sO) ≤
ω∗(LJ \ Q, sJ) ≤ ω∗(LJ , sJ) ≤ (eĉJ)ω∗(WJ , sJ). By Lemma 15, ω∗(Q, sO) ≤ (eδĉJ2)ω∗(WJ , sJ).
So we conclude that the mechanism is a (eδĉJ 2 + eĉJ + δ)-approximation. By Lemma 13 it holds
that J ≤ 2 ln v̄max + 1 and the mechanism runs in polynomial time, this concludes the proof.

Since unknown single-parameter multi-minded CA is a special case of general CA with δ = 1,
we conclude:

Corollary 3. For USP multi-minded CA, the 1-CA Japanese Wrapper Mechanism implements a
(eĉJ2+eĉJ+1)-approximation in undominated strategies, where J ≤ 2 ln v̄max+1 is the number of it-
erations of the mechanism and ĉ = 2

√
m+2. Thus, it implements O((ln v̄max)2

√
m)-approximation.

It also implements a min(em, en)-approximation.

We note that if the agents in a general CA are “almost” single-parameter (if δ is a constant),
then the approximation is asymptotically the same as for the single-parameter multi-minded CA
domain.

C.2 An Impersonation-Based Mechanism for Unknown Single Minded CA

Next, we demonstrate a completely different technique for implementation in undominated strate-
gies for the single minded CA domain. This technique is given in figure 5. The main idea is to
allow players to impersonate several different single minded agents. The resulting mechanism is
an example for a “direct value mechanism”: players are required to state their value, plus some
extra information about their bundle. It turns out that, for some carefully designed allocation
rules which we demonstrate below, the players will still reveal their true value and their true bun-
dle (coupled with extra “false” information), and, furthermore, this will enable us to maintain the
original approximation ratio.

Let M(G,K) denote the mechanism created by running the Impersonation-Based Mechanism
with an allocation rule G and an integer K (in any case that its allocation is value monotonic the
mechanism is well defined).

Lemma 16. Assume that for some allocation algorithm G and a number K, the M(G,K) mecha-
nism is value monotonic. Then for any agent i, in any undominated strategy, s1

i ⊇ s̄i and vi = v̄i.

Proof. We first show that for any agent i, in any undominated strategy, s̄i ⊆ s1
i . In any such

strategy his utility is always non negative. If this is not the case, when the agent wins, he is
not satisfied, thus having negative utility (in any case he wins he pays a positive amount and his
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valuation is zero). In cases he loses his utility is zero. We conclude that he always has non positive
utility, and such a strategy is dominated.

Next we show that for any agent i, in any undominated strategy, vi = v̄i. The mechanism is
value monotonic, the payments are by critical values and it ensures losers unsatisfaction (since any
loser gets ∅). By Lemma 3, for any fixed bundles he reports, bidding v̄i dominates bidding vi (it is
possible to build cases in which bidding v̄i strictly dominates bidding vi).

Definition 14. The mechanism M(G,K) encourages minimal bundle bidding if for any agent i
in any undominated strategy s1

i = s̄i.

Theorem 17. Suppose that an allocation rule G is a c-approximation algorithm for KSM CA,
and that the mechanism M(G,K) is value monotonic, encourages minimal bundles bidding and has
the fast undominance recognition property, then it implements a c-approximation in undominated
strategies.

Proof. Let t be the true types of the players, and let t′ be the sequence of single minded bidders
constructed from the players’ bids. Since M(G,K) is value monotonic, then, in any undominated
strategy, each player will report his true value. Since M(G,K) encourages minimal bundle bidding,
s1
i will be the true bundle of player i for all i. Therefore t ⊆ t′, i.e. all the actual players of t exist

in t′. Let v∗(t), v∗(t′) be the optimal efficiency according to t, t′, respectively. We first claim that
v∗(t) = v∗(t′): v∗(t) ≤ v∗(t′) as t′ includes all players of t, and perhaps more. On the other hand,
v∗(t) ≥ v∗(t′), since we can convert any allocation in t′ to an allocation in t with the same value
– choose the same winners and allocate them their bundles in t. This is still a valid allocation
as allocated bundles only decreased, and it has the same value. Thus v∗(t) = v∗(t′). Since G(t′)
produces an allocation with value at least v∗(t′)/c, the theorem follows.

Finally, we note that since G runs in polynomial time, then the mechanism runs in polynomial
time. The allocation is clearly polynomial time computable. The payment of each agent can be
calculated by running the allocation at most log (v̄max) times using a binary search.

What allocation rules can we “plug-in” to our mechanism so that it will be value monotonic? It
is not sufficient that the allocation rule itself is value monotonic20 . We demonstrate two allocation
rules that can be used.

An axis-parallel CA of the plane. In an axis-parallel rectangles CA, the set of goods is the
set of points in the plane <2, and each bundle an agent may desire is an axis-parallel rectangle in
the plane. With the Impersonation-Based mechanism technique, we are able to achieve the original
O(log (R)) approximation ratio of the original shifting algorithm (see Figure 8) in undominated
strategies. Throughout this part, we assume that the sub-procedure to find the optimal interval
allocation breaks ties in favor of contained rectangles (if a rectangle contains another rectangle,
than the later win be chosen if possible). Let Shifting be the shifting allocation algorithm of
Figure 8, and M(Shifting, log (R)) be the Impersonation-Based mechanism based on Shifting,
with K = log (R).

20E.g. the 1-CA of [13] will not do: suppose that in a CA with three agents and 10 goods, agent 1 bids 6 for the
set {g1}, agent 2 bids 5 for the sets {g2} and {g1, g2}, and agent 3 bids 10 for all the goods. In that case agent 1
wins {g1} and agent 2 wins {g2}. If agent 2 increases his reported value to 7, then he become a loser since agent 3
wins alone (since the value of the greedy decreases from 11 to 7, and the maximal value remains 10 ) .
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The Shifting Algorithm for KSM agents:
Input :

A vector of values vj and a vector of axis-parallel rectangles sj (with one element for each agent).
Procedure :

1. Divide the given rectangles to log (R) classes such that a class c ∈ {1, . . . , log (R)} consists of all
rectangles with heights in
[W · 2c−1, W · 2c) (where the height of an axis-parallel rectangle is its projection on the y-axis).a

2. For each class c ∈ {1, . . . , log (R)}, run the Class Shifting Algorithm (Figure 9) on the class c,
where the input is the vector of values vj and a vector of axis-parallel rectangles from sj with
height in [W · 2c−1, W · 2c), to get an allocation Wj(c).

Output :

Output the maximal value solution Wj(c) (with respect to vj), over all classes c ∈ {1, . . . , log (R)}.
aAssume that the last class contains also the rectangles of height W · 2log (R).

Figure 8: The Shifting Algorithm for KSM agents.

The Class Shifting Algorithm:
Input :
A class number c.
A vector of values vj and a vector of axis-parallel rectangles, each of height in [W · 2c−1, W · 2c).
Procedure :

1. Superimpose a collection of horizontal lines with a distance of W · 2c+1 between consecutive lines.
Each area between two consecutive lines is called a slab. Later, we shift this collection of lines
downwards. Each location of these lines is called a shift and is denoted by h.

2. For any slab created, and for all the rectangles in this slab which do not intersect any horizontal line,
project all the rectangles to the x-axis. Now, find the set of projections (intervals) that maximizes
the sum of valuations w.r.t. vj (this can be done in polynomial time using a dynamic-programming
algorithm [4]). Let V (h, l) be the value achieved in slab l of shift h.

3. Sum the efficiency achieved in all slabs in a shift to calculate the welfare of this shift. Denote the
welfare achieved in shift h by V (h) =

∑
l∈h V (h, l).

4. Shift down the collection of horizontal lines by W , and recalculate the welfare. Repeat the process
2c+1 times.

Output :
Output the set of agents winning in the shift with maximal value of V (h), and their winning rectangles.

Figure 9: The Class Shifting Algorithm that computes an allocation that is a 6-approximation for the set
of agents in class c (rectangles with height in [W · 2c−1, W · 2c) ).
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Theorem 18. The M(Shifting, log (R)) implements an O(log (R))-approximation in undominated
strategies.

Proof. The claims below show that M(Shifting, log (R)) is value monotonic, the mechanism en-
courages minimal bundle bidding and has the fast undominance recognition property, hence the
claim follows by theorem 17.

Claim 4. The allocation rule of the M(Shifting, log (R)) mechanism is value monotonic.

Proof. Suppose a winner i increases his value. Agent i remains a winner in the winning shift, and
its value increases. The value of any shift (in any class) in which he remains a loser does not change.
Thus, the shift with the maximal value (over all classes and shifts in each class) must contain i as
a winner.

Claim 5. In the M(Shifting, log (R)) mechanism, any agent i, in any undominated strategy,
reports one minimal area bundle (minimal height and width) containing s̄i in any class c for which
s̄i can belong to (a class c for which the height of s̄i is greater or equal to W · 2c−1).

Additionally, the mechanism has the fast undominance recognition property.

Proof. Since the mechanism is value monotonic (Claim 4), by Lemma 16, for any agent i, in any
undominated strategy, s̄i ⊆ s1

i . This implies that in any undominated strategy, i never bids in a
class c for which W · 2c−1 is smaller than the height of s̄i.

Next we look only at some class c for which s̄i can belong to (W · 2c−1 is at least the height of
s̄i). We show that any strategy in which sq

i denotes the minimal area bundle agent i bids for in a
class c, is dominated by a strategy in which i replaces sq

i by some minimal area bundle si ⊇ s̄i in
class c.

In any case that i wins with a bundle not in class c, replacing the bundles in class c cannot
make i a loser (since only allocations with i as a winner are improved).

Next, assume that agent i wins the bundle sq
i which belongs to class c. Replacing sq

i by some
minimal area bundle si in class c, such that s̄i ⊆ si ⊆ sq

i , can never cause i to lose (in any shift
from which sq

i was not removed, also si will not be removed. The same shift has i winning and at
least the same value as before, and the value of any shift with i losing does not increase).

Agent i can remove any non minimal area bundles in any class, since this will never change the
outcome. Additionally, adding bundles can never make him worse off. This implies that since i can
bid for up to log (R) bundles, in any undominated strategy, he will bid (a minimal area bundle, as
we have shown) in any class c such that W · 2c−1 is at least the height of s̄i.

Finally we show that the mechanism has the computational undominated transfer property.
Given a strategy of agent i, he can change it to an undominated strategy as follows. He replaces
the value by v̄i. In each class, he removes all bundles of that class and bid for a minimal area
bundle in that class that is contained in all these bundles, and contains s̄i. Any such strategy is
undominated.

Corollary 4. The M(Shifting, log (R)) mechanism encourages minimal bundle bidding.

Proof. By the above claim, any agent i, in any undominated strategy, bids a minimal area bundle
that contains s̄i in any class that such a bundle exists, and does not bid in any smaller class. The
only minimal area bundle that contains s̄i in the minimal class for which such a bundle exists (the
“true” class of i) is s̄i. Thus, in any undominated strategy, i bids s1

i = s̄i.
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This completes the proof of the theorem.

A modified k-CA allocation rule for general USM-CA. Unfortunately, the Impersonation
Based mechanism with the k-CA auction is not value monotonic. In order to turn it to such, we
use our technique of Figure 7 to convert allocation rules to be value monotone. Recall that, given
an allocation rule G, this method maintains ln v̄max classes, where the i’th class “sees” only players
with value of at least 2i−1. Each class computes an allocation according to an unweighted version
of G (i.e. all players have value of 1), and the allocation of the class with maximal value is chosen.

Definition 15 (The impersonation-adjusted k-CA). The impersonation-adjusted k-CA allocation
rule IA − k − CA is defined to be the Bitonic Unweighted Allocation Rule of Figure 7, on top of
the k-CA allocation rule of [13] with the following tie breaking rules:

• The greedy algorithm favors larger bundles over smaller bundles.

• The exhaustive-k algorithm favors smaller bundles over larger bundles.

For a fixed ε, k is chosen to make the k-CA a ε
√

m-approximation for the KSM CA model. By
Theorem 13, the impersonation-adjusted k-CA is a thus a (eε

√
m ln v̄max)-approximation for the

KSM CA model.
We use the impersonation-adjusted k-CA as the allocation rule for our Impersonation-Based

mechanism. We set the parameter K of the mechanism to be
√

m. Effectively, this enables any
agent to bid for any chain he might desire to bid for, as we later show.

Theorem 19. The M(IA−k−CA,
√

m) mechanism implements a (eε
√

m ln v̄max)-approximation
in undominated strategies.

Proof. The following claims show that M(IA − k − CA,
√

m) is value monotonic, it encourages
minimal bundle bidding and it has the computational undominated transfer property, hence the
claim follows by theorem 17.

Claim 6. The allocation rule of the M(IA − k − CA,
√

m) mechanism is value monotonic.

Proof. Mu’alem and Nisan [13] show that for KSM CA, any allocation rule that takes the maximal
allocation over a set of bitonic allocation rules is monotonic. We use this and show that each of the
ln v̄max allocation rules (one in each class) is bitonic (when agents bid several bundles). Essentially,
each of these unweighted allocation rules is bitonic, since it is bitonic when each agent bids one
bundle to the exhaustive-k and some bundle that contains the first in the greedy (it is not the same
since large bundles are considered first). Next, we formally prove the claim directly.

Bitonicity means that if an agent bids a value and a set of bundles and wins, he remains a
winner if he increases his value (monotonicity), and the value of the allocation does not decrease.
If he loses and increases his value and remains a loser, the value of the allocation does not decrease.

Let us concentrate on one class. For an agent to win in that class, he must appear with a value
1, which can not increase, so the allocation is monotonic, and the value never changes if a winner
increases his bid.

If an agent i is a loser and can increase his value, this means that he first appears with value 0
and then with value 1. There are two cases, either the greedy wins or the exhaustive-k wins after
the value change. If the greedy wins but i loses, this means that i loses in the greedy, thus the
value of the greedy does not change by adding i and was maximal before the change (the value of
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the exhaustive-k can only increase by adding i). So we conclude that the value of the allocation
does not change.

Next we consider the case that the exhaustive-k wins (is maximal after the change). Since i
loses in the exhaustive-k, the value of the exhaustive-k does not change. If the exhaustive-k was
maximal before the change, then the value of the allocation does not change. If the greedy was
maximal before the change, it must be the case that its value decreases (since the value of the
exhaustive-k is fixed), so the value of the allocation decreases.

Since the mechanism is value monotonic, in any undominated strategy, agent i will report his
true value v̄i.

Claim 7. In the M(IA − k − CA,
√

m) mechanism, for any agent i, any strategy where i bids the
value v̄i and a sequence of ki ≤ √

m bundles, s1
i ⊂ s2

i ⊂ . . . ⊂ ski
i , s1

i 6= s̄i, is dominated by the
strategy in which i bids v̄i and

• removes all bundles that does not contain s̄i.

• adds s̄i as his first reported bundle.

• removes all reported bundles different from s̄i of size larger than
√

m.

Thus, the mechanism has the fast undominance recognition property and it encourages minimal
bundle bidding.

Proof. Since the mechanism is value monotonic (Claim 6), by Lemma 16, for any agent i, in any
undominated strategy, s̄i ⊆ s1

i . This implies that any strategy in which an agent i bids any bundle
that does not contain s̄i, is dominated by a strategy in which such a bundle is removed. So from
this point we assume that each reported bundle contains s̄i, so i wins if and only if he is satisfied.

Next, note that it is possible to add s̄i and remove all bundles larger than
√

m while keeping
ki ≤

√
m. This holds since there are at most

√
m − 1 bundles in any chain of bundles, each of size

at most
√

m, and s̄i ⊂ s1
i (the chain does not include s̄i).

We show that in any case that i wins with the current bid, he also wins if he changes his bid
by adding s̄i as the first reported bundle and removing all bundles larger than

√
m.

In any class, in the exhaustive-k, if i wins with some bundle that contains s̄i before the change,
he also wins with s̄i after the change. Only agents with |s̄i| ≤

√
m might win in the greedy algorithm

before the change. In any class, in the greedy algorithm, if i wins with some bundle that contains s̄ i

before the change, he also wins with the same bundle after the change (this bundle is not removed).
Adding s̄i might only cause i to win in some cases that he lost before the change.

Note that the lemma shows that if |s̄i| >
√

m, the strategy of reporting v̄i and s1
i = s̄i (ki = 1)

is a dominant strategy for agent i.

This completes the proof of the theorem.

C.3 Undominated Strategies in Direct Value Revelation Mechanisms for USP
domains

Definition 16. A mechanism M for USP model is Ex-ante individually rational if for each agent
i, there exists an undominated strategy that ensures non negative utility (for any strategies of the
other agents). A mechanism M for USP model is Ex-post individually rational if for each agent i,
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any undominated strategy ensures non negative utility (for any strategies of the other agents), and
there exists at least one undominated strategy for agent i.

In this section we present some general characterizations for undominated strategies in satisfying
guessing mechanisms for general USP domains. The mechanisms presented in the Section C.2 are
examples for such mechanisms.

Lemma 17. If a satisfying guessing mechanism M for USP model is value monotonic, the payments
are by critical values, and for each agent i there exists a strategy vi = v̄i and Bi such that Si(Bi) ⊆
Āi that is undominated, then M is Ex-ante individually rational.

If any undominated strategy for agent i is in the form vi = v̄i and Bi such that Si(Bi) ⊆ Āi,
then M is Ex-post individually rational.

Additionally, if i declares vi = v̄i and Bi such that Si(Bi) ⊆ Āi then i has non negative utility.

Proof. We show that if an agent i declares vi = v̄i and Bi such that Si(Bi) ⊆ Āi then he has a
non negative utility. Since the mechanism is monotonic and the payments are by critical values,
agent i loses and pays zero if v̄i < ci(Si(Bi)|v−i, B), and wins and pays ci(Si(Bi)|v−i, B) if v̄i >
ci(Si(Bi)|v−i, B) (if this holds as equality his utility is zero).

Since Si(Bi) ⊆ Āi, if agent i wins then he is satisfied. Therefore, if i is not satisfied then i
loses, pays zero and has non negative utility (since his value for that outcome is non negative).
If agent i wins then v̄i ≥ ci(Āi|v−i, B), and i pays his critical value ci(Āi|v−i, B) so his utility is
v̄i − ci(Āi|v−i, B) ≥ 0.

Lemma 18. If a satisfying guessing mechanism M for USP model is value monotonic, the payments
are by critical values and the mechanism ensures losers unsatisfaction, then for each agent i, any
strategy in which i declares vi 6= v̄i and Bi such that Si(Bi) ⊆ Āi is dominated.

Proof. We show that any strategy in which i declares vi 6= v̄i and Bi such that Si(Bi) ⊆ Āi is
dominated by the strategy v̄i and Bi.

Since Si(Bi) ⊆ Āi, if i is not satisfied then i loses, pays zero and has non negative utility (since
his value for that outcome is non negative). If vi < ci(Si(Bi)|v−i, B), i loses and has zero utility
when declaring vi. By Lemma 17 i has non negative utility if he changes his bid to v̄i and Bi (he
will also have zero utility if vi = ci(Si(Bi)|v−i, B)).

If vi > ci(Si(Bi)|v−i, B) ≥ v̄i, i wins, is satisfied and has negative utility when declaring vi.
This can be improved to zero utility if he changes his bid to v̄i and Bi (since he will lose or win
and pay his value). If vi > ci(Si(Bi)|v−i, B) and v̄i > ci(Si(Bi)|v−i, B), i wins, is satisfied and pays
the same with both declarations, so he has the same utility.

The following condition makes sure that agents alleged satisfying set is contained in their sat-
isfying set.

Definition 17. A satisfying guessing mechanism M for USP model that is value monotonic pre-
vents unsatisfying outcomes declaration, if for all i ∈ N,B ∈ B, v ∈ <n

++, Āi ∈ Ai, if i bids vi and
Bi such that Si(Bi) is not contained in Āi and G(v,B) ∈ Si(Bi) ∩ Āi (i is satisfied and he wins)
then for any B̃i such that Si(B̃i) ⊆ Āi, ci(Si(B̃i)|v−i, (B̃i, B−i)) ≤ ci(Si(Bi)|v−i, B).

Theorem 20. If a satisfying guessing mechanism M for USP model is value monotonic, the pay-
ments are by critical values, the mechanism ensures losers unsatisfaction and it prevents unsatis-
fying outcomes declaration, then for each agent i, in any undominated strategy i declares v̄i and B̃i

such that Si(B̃i) ⊆ Āi.
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Proof. First we show that if i bids vi and Bi such that Si(Bi) is not contained in Āi then this
strategy is dominated by any strategy vi and B̃i such that Si(B̃i) ⊆ Āi. Next, by Lemma 18 this
new strategy is dominated by the strategy v̄i and B̃i, which conclude the proof of the claim.

Assume that i bids vi and Bi such that Si(Bi) is not contained in Āi. If i loses its utility is zero
(since the mechanism ensures losers unsatisfaction). If i wins he is either satisfied or not (Si(Bi)
is not contained in Āi). In case he is not satisfied, his utility is non positive since he pays non
negative payment and has a valuation of zero for the outcome. In case he is satisfied, his utility is
v̄i − ci(Si(Bi)|v−i, B).

Assume that i bids vi and B̃i such that Si(B̃i) ⊆ Āi instead of bidding vi and Bi. By Lemma 17
agent i has non negative utility. The only case that the bid vi and Bi results with positive utility
is the case that the agent wins and is satisfied and his utility is v̄i − ci(Si(Bi)|v−i, B) > 0. Since
the mechanism prevents unsatisfying outcomes declaration, the utility is improved by bidding v i

and B̃i. In that case vi > ci(Si(Bi)|v−i, B) therefore vi > ci(Si(B̃i)|v−i, (B̃i, B−i)) so i wins and
is satisfied by the new bid (since Si(B̃i) ⊆ Āi). His utility improves since his valuation for the
outcome is the same but he pays no more (since ci(Si(B̃i)|v−i, (B̃i, B−i)) ≤ ci(Si(Bi)|v−i, B) ).

The following condition makes sure that agents alleged satisfying set is their satisfying set.

Definition 18. A satisfying guessing mechanism M for USP model that is value monotonic pre-
vents untruthful alleged satisfying set, if for all i ∈ N,B ∈ B, v ∈ <n

++, Āi ∈ Ai, if i bids vi and Bi

such that Si(Bi) 6= Āi and G(v,B) ∈ Si(Bi) ∩ Āi (i is satisfied and he wins) then for any B̄i such
that Si(B̄i) = Āi, ci(Āi|v−i, (B̄i, B−i)) ≤ ci(Si(Bi)|v−i, B).

Theorem 21. If a satisfying guessing mechanism M for USP model is value monotonic, the pay-
ments are by critical values, the mechanism ensures losers unsatisfaction and it prevents untruthful
alleged satisfying set, then M is individually rational and for each agent i, in any undominated
strategy i declares v̄i and B̄i such that Si(B̄i) = Āi.

Proof. The proof is similar to the proof of Theorem 20.
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