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ABSTRACT case competitive analysis of auctions is the auction that achieves

We investigate the class of single-round, sealed-bid auctions for athe optimal competitive rati¢as small as possible). Since [8] this

set of identical items in unlimited supply. We adopt the worst-case §earch ha§ led to |mprqved understanding O.f Fhe nature of the op-
competitive framework defined by [8, 4] that compares the profit _tlmal auction, the tec_h_nlque_s for on-the-f_ly pricing In these scenar-
of an auction to that of an optimal single-price sale to at least two l0s, and the compt_atltlve r'atl_o of the optimal au_ctlon [4’ 61 7l In
bidders. In this paper, we first derive an optimal auction for three this paper we continue this fine of research by improving in all of
bidders, answering an open question from [7]. Second, we pro- th?;e dlrec_‘iljonsr.] inglei lti-unit. unit-d ducti b
pose a schema for converting a given limited-supply auction into an | € con5|h ert single |tﬁmmu t-unit un|t-. en}an .uc;uo.n prob- i
unlimited supply auction. Applying this technique to our optimal em. In such an a_luctlont ere are many units of 8 singie item avai-
auction for three bidders, we achieve an auction with a competi- able for sale to bidders who each desire only one unit. Each bidder

tive ratio of 3.25, which improves upon the previously best-known 2?5 a valuation re?reserétigg hol\_/v much the Iit%mb_ig \fNOI’th to Eimf.
competitive ratio of 3.39 from [6]. Finally, we generalize a result e auction Is performed by soliciting a sealed bid from each o

from [7] and extend our understanding of the nature of the optimal 1€ Pidders and deciding on the allocation of units to bidders and
competitive auction by showing that the optimal competitive auc- the prices to be paid by the bidders. The bidders are assumed to bid

tion occasionally offers prices that are higher than all bid values. S0 as to maximize their personal utility, the difference between their
valuation and the price they pay. To handle the problem of design-

ing and analyzing auctions where bidders may falsely declare their

1. INTRODUCTION valuations to get a better deal, we will adopt the solution concept

The research area optimal mechanism desidooks at design-  of truthful mechanism desig(see, e.g., [8, 14, 12]). In a truthful
ing a mechanism to produce the most desirable outcome for theauction, revealing one’s true valuation as one’s bid is an optimal
entity running the mechanism. This problem is well studied for the Strategy for each bidder regardless of the bids of the other bidders.
auction design problem where the optimal mechanism is the one In this paper, we will restrict our attention to truthful (a.k.a., incen-
that brings the seller the most profit. Here, the classical approachtive compatible or strategyproof) auctions.
is to design such a mechanism given givéor distribution from A particularly interesting special case of the auction problem is
which the bidders’ preferences are drawn (See e.g., [11, 3]). Re-theunlimited supplyase. In this case the number of units for sale is
cently Goldberg et al. [8] introduced the use of worst-case compet- at least the number of bidders in the auction. This is natural for the
itive analysis (See e.g., [2]) to analyze the performance of auctions sale of digital goods where there is negligible cost for duplicating
that have no knowledge of the prior distribution. The goal of such and distributing the good. Pay-per-view television and download-
work is to design an auction that achieves a large constant fractionable audio files are examples of such goods.
of the profit attainable by an optimal mechanism that knows the ~ The competitive framework introduced in [8] and further refined
prior distribution in advance. Positive results in this direction are in [4] uses the profit of theptimal omniscient single priced mech-
fueled by the observation that in auctions for a number of identical anism that sells at least two unis the benchmark for competitive
units, much of the distribution from which the bidders are drawn analysis. The assumption that two or more units are sold is neces-
can be deduced on the fly by the auction as it is being run [8, 13, sary because in the worst case it is impossible to obtain a constant
2. fraction of the profit of the optimal mechanism when it sells only

The performance of an auction in such a worst-case competitive 0ne unit [8]. In this framework for competitive analysis, an auc-
analysis is measured by it®mpetitive ratiothe ratio between the  tion is said to be3-competitivef it achieves a profit that is within
benchmark performance and the auction’s performance on the input factor of 3 > 1 of the benchmark profion every input The

distribution that maximizes this ratio. The holy grail of the worst- search for the optimal auction in such a framework is that of find-
ing the one with the bestompetitive ratigi.e., the auction that is

[B-competitive with the smallest possible valuetof
Previous to this work, the best known auction for the unlimited
supply case had a competitive ratio of 3.39 [6] and the best lower
Permission to make digital or hard copies of all or part of this work for bound known was 2.42 [7]. For the limited supply case, auctions
personal or classroom use is granted without fee provided that copies arecan achieve substantially better competitive ratios. When there are
not made or_distributed for p_rof[t or commgrcial advantage and that popies only two units for sale, the best-known auction gives a competitive
bear this notice and the full citation on the first page. To copy otherwise, to ratio of 2, which matches the lower bound for two units. For three

republish, to post on servers or to redistribute to lists, requires prior specific '~ ¢ le th . v Kk ion h .-
permission and/or a fee. units for sale, the best previously known auction had a competitive
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ratio of 2.3, compared with a lower bound /6 ~ 2.17 [7].
The results of this paper are as follows:

e \We give the optimal auction for three units which achieves a
competitive ratio of 13/6, matching the lower bound from [7]
(Section 3).

We give a general technique for converting a limited supply
auction into an unlimited supply auction where is is possible
use the bound on the competitive ratio of the limited supply
auction to obtain a bound on the competitive ratio of the un-
limited supply auction. We refer to auctions derived from
such a framework asggregation auctiongSection 4).

We improve on the best known competitive ratio by prov-
ing that the aggregation auction constructed from our optimal
three-unit auction is 3.25-competitive (Section 4.1).

Assuming that the conjecture that the optimtalnit auction

has a competitive ratio that matches the lower bound proved
in [7], we show that this optimal auction fér> 3 on some
inputs will occasionally offer prices that are higher than any
bid in that input (Section 6). For the three-unit case where we
have shown that the lower bound of [7] is tight, this observa-
tion led to our construction of the optimal three-unit auction.

2. DEFINITIONS AND BACKGROUND

We consider single-round, sealed-bid auctions for a sétdn-
tical units of an item to bidders who each desire one unit. As men-
tioned in the introduction, we adopt the game-theoretic solution
concept of truthful mechanism design. A useful simplification of
the problem of designing truthful auctions is obtained through the
following algorithmic characterization [8]. Related formulations to
this one have appeared in numerous places in recent literature (e.g.
[1, 13, 4, 9)).

DEFINITION 1. Given a bid vector of bids,b = (b1, . .
let b-; denote the vector of with; replaced with a ‘?’, i.e.,

b = (b,... ,bn).

., bn),

ybic1, T biga, ...

DEFINITION 2. Let f be a function from bid vectors (with a
‘?") to prices (non-negative real numbers). Tdeterministic bid-
independent auction defined fyBI s, works as follows. For each
bidders:

1. Sett; = f(bl)

2. If t; < b;, bidderi wins at pricet;.

3. If t; > b;, bidderi loses.

4. Otherwise, #; = b;) the auction can either accept the bid at

pricet; or reject it.

A randomized bid-independent auction is a distribution over deter-
ministic bid-independent auctions.

The proof of the following theorem can be found, for example,
in [4].

THEOREM 1. An auctionis truthful if and only if it is equivalent
to a bid-independent auction.

Given this equivalence, we will use the the terminoldgy-
independenandtruthful interchangeably.

For a randomized bid-independent auctigiib-;) is a random
variable. We denote the probability densityfdb-; ) atz by py_, (2).
We denote the profit of a truthful auctios on inputb as.A(b).
The expected profit of the auctioR[.A(b)], is the sum of the ex-
pected payments made by each bidder, which we denogg(lby
for bidder:. Clearly, the expected payment of each bid satisfies

pi(b) = /Ob

2.1 Scale Invariant and Symmetric Auctions

A symmetricauction is one where the auction outcome is un-
changed when the input bids arrive in a different permutation. Gold-
berg et al. [7] show that a symmetric auction achieves the optimal
competitive ratio. This is natural as the profit benchmark we con-
sider is symmetric, and it allows us to consider only symmetric
auctions when looking for the one with the optimal competitive ra-
tio.

An auction defined by bid-independent functigns scale in-
variantif, for all ¢ and allz, Pr[f(b-;) > z] = Pr[f(cb-;) > cz].

It is conjectured that the assumption of scale invariance is without
loss of generality. Thus, we are motivated to consider symmet-
ric scale-invariant auctions. When specifying a symmetric scale-
invariant auction we can assume thats only a function of the
relative magnitudes of the — 1 bids inb-; and that one of the
bids,b; = 1. It will be convenient to specify such auctions via the
density function off(b-;), pb_; (2). It is enough to specify such a
density function of the formpy ., ..., _, (z) with 1 < z; < z41.

zpw.; (z)dz.

2.2 Competitive Framework

We now review the competitive framework from [4]. In order
to evaluate the performance of auctions with respect to the goal of
profit maximization, we introduce the optimal single price omni-
scient auctionF and the related omniscient auctigi? .

DEFINITION 3. Give a vectob = (bq,...
sent thei-th largest value irb.

,bn), letb; repre-

The optimal single price omniscient auctiptF, is defined as
follows. Auction F on inputb determines the valug such that
kb (i) is maximized. All bidders witth; > b, win at priceby,; all
remaining bidders lose. The profit 8f on inputb is thusF(b) =
maxXi<k<n kb(m.

In the competitive framework of [4] and subsequent papers, the
performance of a truthful auction is gauged in comparisaf {8,
theoptimal auction that sells at least two unifBhe profit of () is
maxa<r<n kb There are a number reasons to choose this metric
for comparison, interested readers should see [4] or [5] for a more
detailed discussion.

Let A be a truthful auction. We say that is 5-competitive
against 7 (or just 8-competitive) if for all bid vectorsb, the
expected profit of4 onb satisfies

F3 (b)
7

2.3 Limited Supply Versus Unlimited Supply

Following [7], throughout the remainder of this paper we will
be making the assumption that= ¢, i.e., the number of bidders
is equal to the number of units for sale. This is without loss of
generality as (a) any lower bound that applies tothe- ¢ case
also extends to the case where> ¢ [7], and (b) there is a re-
duction from the unlimited supply auction problem to the limited
supply auction problem that takes an unlimited supply auction that

E[A(b)] >




is B-competitive withZ® and construct a limited supply auction
parameterized by that is 3-competitive withZ(>*), the optimal
omniscient auction that sells between 2 @nahits [5].

Henceforth, we will assume that we are in the unlimited supply
case, and we will examine lower bounds for limited supply prob-
lems by placing a restriction on the number of bidders in the auc-
tion.

2.4 Lower Bounds and Optimal Auctions

Frequently in this paper, we will refer to the best known lower
bound on the competitive ratio of truthful auctions:

THEOREM 2. [7] The competitive ratio of any auction on

bidders is at least
-1\ i (n-1
n i—1\i—1)"

DEFINITION 4. LetY, denote thei-bidder auction that achieves
the optimal competitive ratio.

n

-y

=2

In the two-bidder case, this lower bound is 2. This is achieved by
Y, which is the 1-unit Vickrey auctioh.In the three-bidder case,
this lower bound is 13/6. In the next section, we define the auction
T3 which matches this lower bound. In the four-bidder case, this
lower bound is 96/215. In the limit as the number of bidders grows,
this lower bound approaches 2.42. It is conjectured that this lower
bound is tight for any number of bidders and the optimal auction,
T,., matches it.

2.5 Profit Extraction

In this section we review the truthful profit extraction mechanism
ProfitExtractz. This mechanism is a special case of a general
cost-sharing schema due to Moulin and Shenker [10].

The goal of profit extraction is, given bids to extract a target
value R of profit from some subset of the bidders.

ProfitExtractgr: Given bidsb, find the largesk such
that the highesk bidders can equally share the cost
R. Charge each of these biddeRy'k. If no subset

of bidders can cover the cost, the mechanism has no
winners.

Important properties of this auction are as follows:

e ProfitExtractg is truthful.

e If R < F(b), ProfitExtractr(b) = R; otherwise it has no
winners and no revenue.

We will use this profit extraction mechanism in Section 4 with
the following intuition. Such a profit extractor makes it possible to
treat this subset of bidders as a single bid with vak(&). Note
that given a single bid, a truthful mechanism might offer it price
t and ift < b then the bidder wins and paysotherwise the bid-
der pays nothing (and loses). Likewise, a mechanism can offer
the set of biddersS a target revenug. If R < F?)(S), then
ProfitExtract g raisesR from S; otherwise, the it raises no rev-

The final equation comes from substitutinggitr) =

expanding the integrals. Note that the fraction/df) raised on
every input is identical. If any of the inequalitidss < = < y

are not strict, the same proof applies giving a lower bound on the
auction’s profit; however, this bound may no longer be tightl

3. AN OPTIMAL AUCTION FOR THREE
BIDDERS

In this section we define the optimal auction for three bidders,
T3, and prove that it indeed matches the known lower bound of
13/6. We follow the definition and proof with a discussion of how
this auction was derived.

DEFINITION 5. T3 is scale-invariant and symmetric and given
by the bid-independent function with density function
Forz < 3/2

1 with probability9/13

z with probability densityy(z) for z > 3/2

prz(z) = ¢ Forz >3/2
1 with probability9/13 — fS‘C/Q 2g(2)dz
. with probability [, (= + 1)g(z)dz
z  with probability densityy(z) for z > x
whereg(z) = 213

= @13

THEOREM 3. TheY3 auction has a competitive ratio ®8/6 ~
2.17, which is optimal. Furthermore, the auction raises exactly
1%}'(2) on every input with non-identical bids.

PrRoOOF Consider the bids, z,y, with 1 < = < y. There are
three cases.
CASE1l (z < y < 3/2): F® = 3. The auction must raise
expected revenue of at least/13 on these bids. The bidder with

valuationz will pay 1 with 9/13, and the bidder with valuatiop
will pay 1 with probability9/13. ThereforeY; raises18/13 on

these bids.
CASE 2 (z < 3/2 < y): F® = 3. The auction must raise ex-
pected revenue of at leas8/13 on these bids. The bidder with

valuationz will pay 9/13 — fgy/Q zg(z)dz in expectation. The bid-

der with valuatiory will pay 9/13 + f;’m zg(z)dz in expectation.

ThereforeY 5 raisesl8/13 on these bids.

CASE3 (3/2 < z < y): F@ = 2. The auction must raise
expected revenue of at leak2z/13 on these bids. Consider the
revenue raised from all three bidders:

E[Ysb] = p(1,z,y) + p(z,1,y) +p(y, 1, 2)
:0+9/13_/y zg(z)dz+9/13—/

J3/2 3/2

+:v/3j2(z+1)g(z)dz+/z
—18/13 + (z — 2) / zg(z)dz+x/

3/2 3/2

T

zg(z)dz

Y

z9(z)dz

x

g(z)dz

= 122/13.

2/13
(z—1)3

and

Motivation for

Consider théinite auction problemvhere the bid values and prices
are required to lie in some finite s&t A truthful (randomized)

1The 1-unit Vickrey auction sells to the highest bidder at the second auction om bidders can be represented by a (randomized) function
highest bid value. f: 8" ! x n — S that maps masked bid vectors to pricesSin

enue fromS.




Recall thapy,, (2) = Pr[f(b-;) = z], wherez € S. The expected
revenue raised on each input is a linear functiop®f (z), given
thatb andS are fixed.

The optimal auction for the finite auction problem can be found
by the following linear program in which the variables akg, (=)
and the constraints correspond to inpots S™:

maximize 7

n  b;
subjectto > > zpp,(2) > rF(b) VbeS”

=0 2=0

> pi(2)=1 V(bi,z) €S" xn
z€S

pb.;(2) >0 V(b-i,z) € S" xn

In the problem we have described, the auction and bid values are

restricted to lie on some finite set of numbers. As we take the limit

of increasing density of the set, we approach the case where the

bid values are unrestricted and the auction may place probability
densities continuously within a range. The limit of the series of

construct a schema for turning limited supply auctions into unlim-
ited supply auctions with a good competitive ratio.

As discussed in Section 2.5, the existence of a profit extrac-
tor, ProfitExtractr, allows an auction to treat a set of bids
as a single bid with value=(S). Givenn bidders and an auc-
tion, A,,, for m < n bidders, we can convert the-bidder auc-
tion into ann-bidder auction by randomly partitioning the bidders
into m subsets and then treating each subset as a single bidder (via
ProfitExtract g) and running then-bidder auction.

DEFINITION 6. Given a truthful auctiom-bidder auctionA,,,,
them-aggregation auction for,,,, Agg 4, works as follows:

1. Cast each bid uniformly at random into onexdfins, result-
ing in bid vectorsb™ ... ™),

2. For each birj, compute the aggregate big, = F(b")).
Let B be the vector of aggregate bids, aBd ; be the ag-
gregate bids for all bins other than

3. Compute the aggregate prige = f(B_;), wheref is the
bid-independent function fad,, .

linear programs becomes a linear optimization constrained by a set

of integral inequalities.

Our approach is to state a simple, restricted class of auctions for

three bidders for which the integral equalities have a simple form.
By guessing that every input is worst-case for the optimal auction,
we can transform each integral inequality into an integral equa-
tion. We can then differentiate to find a set of differential equations
which can be solved by standard methods. Finally, we check that
the solution is an optimal auction for three bidders, verifying our
assumption.

In Section 6 we show that the optimal auction must sometimes

place probability mass on sale prices above the highest bid. This

motivates considering symmetric scale-invariant auctions for three
bidders with probability density functiom; (=), of the following
form:

1 with discrete probability:(z)

x  with discrete probability(x)

with probability densityy(z) for z > x

pra(z) =
z

In this auction, the sale price for the first bidder is either one
of the latter two bids, or higher than either bid with a probability
density which is independent of the input.

The feasibility problem which arises by assuming the constraints
are tight is as follows:

a(y) + a(z) + zb(z) + /y zg9(z)dz =rmax(3,2z) Vr<y
a(z) + b(x) + /00 g(z)dz =1 Ve <y

’ a(z) >0

b(z) >0

9(z) 20

Solving this feasibility problem gives the auctidh; proposed
above. The proof of its optimality validates its proposed form.
Finding a simple restriction on the form afbidder auctions for
n > 3 under which the optimal auction can be found analytically
as above remains an open problem.

4. AGGREGATION AUCTIONS

We have seen that optimal auctions for small cases of the limited-
supply model can be found analytically. In this section, we will

4. For each biry, run ProfitExtractr, onb),

SinceA,, andProfitExtractr are truthful, T is computed in-
dependently of any bid in bifjand thus the price offered any bidder

in b") is independent of his bid; therefore,

THEOREM 4. If A,, is truthful, them-aggregation auction for
-A'm, AggAm, is truthful.

Note that this schema yields a new way of understanding the
Random Sampling Profit Extraction (RSPE) auction [4] as the sim-
plest case of an aggregation auction. It is the 2-aggregation auction
for T2, the 1-unit Vickrey auction.

To analyzeAgg 4 , consider throwingk balls intom labeled
bins. Letk represent a configuration of balls in bins, so thais
equal to the number of balls in bipandk ;) is equal to the number
of balls in theith largest bin. LeK.,,,» represent the set of all pos-
sible configurations of balls inm bins. We write the multinomial
coefficient ofk as (1’2) The probability that a particular configura-
tion k arises by throwing balls into bins uniformly at random is

k —k
(Wm™".
THEOREM 5. Let A, be an auction with competitive rati6.
Then them-aggregation auction ford,,,, Agg 4 , raises the fol-
lowing fraction of the optimal revenug® (b):

E[Agg,, (b)] FO®)(F)

7o) > min BlmF

T k>2
- keKm,,k
PROOF. By definition, 7(?) sells tok > 2 bidders at a single
price p. Letk; be the number of such bidders bi?). Clearly,
F (1Y) > pk;. Therefore,

FAFDBD), ..., F(b™))
F@ (b)

o FO(pks, ... k)

2> ok
FO(ky, . k)

- k

The inequality follows from the monotonicity of®, and the

equality from the homogeneity of(?.
ProfitExtract; will raise T if T; < B;, and no profit other-

wise. ThusE[Agg 4 (b)] > E []:(2> (B)/ﬁ] . The theorem fol-
lows by rewriting this expectation as a sum ovedaith K., . [



Table 1: E[ A(b) /7-'<2)(b)] for Aggy
m=2
0.25
0.25
0.3125
0.3125
0.3438
0.3438
0.3633
0.3633
0.377
0.377
0.3872
0.3872
0.3953
0.3953
0.4018
0.4018
0.4073
0.4073
0.4119
0.4119
0.4159
0.4159
0.4194
0.4194

as a function ofk.

m=7
0.3686
0.3686
0.3573
0.3439
0.318
0.3074
0.3024
0.292
0.2837
0.2813
0.2827
0.2841
0.2835
0.2825
0.2823
0.282
0.2808
0.2789
0.2777
0.2775
0.2781
0.2791
0.2797
0.2801

m=6
0.3612
0.3612
0.3512
0.3378
0.311
0.3025
0.3002
0.2927
0.2866
0.2865
0.2894
0.2905
0.2888
0.2882
0.2884
0.2878
0.2859
0.2844
0.2843
0.2851
0.2863
0.2872
0.2878
0.2886

m=5
0.3508
0.3508
0.3438
0.3311
0.3056
0.3009
0.3022
0.2977
0.2952
0.298
0.3001
0.2976
0.2961
0.2973
0.298
0.2967
0.2959
0.2962
0.2973
0.298
0.2986
0.2995
0.3003
0.3012

m=4
0.3349
0.3349
0.3349
0.3244
0.3057
0.3081
0.3109
0.3057

0.308
0.3128
0.3105
0.3092

0.312
0.3135
0.3128
0.3129
0.3133
0.3137
0.3148
0.3171
0.3189
0.3202
0.3209
0.3218

m=3
0.3077
0.3077
0.3248
0.3191
0.321
0.333
0.3229
0.3233
0.3328
0.3319
0.3358
0.3395
0.3391
0.3427
0.3433
0.3428
0.3461
0.3477
0.3486
0.3506
0.3519
0.3531
0.3539
0.3548
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4.1 A 3.25 Competitive Auction

We apply the aggregation auction schemdltg our optimal
auction for three bidders, to achieve an auction with competitive
ratio 3.25, compared with the 3.39 competitive ratio of the best
previously known auction [6].

THEOREM 6. The aggregation auction fof' 3 has competitive
ratio 3.25.

PROOF By theorem 5,
2) /. - . . k
‘7:( )(7'7.77k -1 _])(i,j,k—i—j)
Bk3Fk

Fork = 2andk = 3, E[Aggy, (b)] = 2k/3. Ask increases,
E[Aggy,(b)] /F® increases as well. Since we do not expect
to find a closed-form formula for the revenue, we lower bound
FO(b) by 3b(sy. Using large deviation bounds, one can show
that this lower bound is greater th%lk/ﬂ for large-enougtk, and
the remainder can be shown by explicit calculation.

Plugging ing = 13/6, the competitive ratio i43/4. As k in-
creases, the competitive ratio approach®ss.

Note that the above bound on the competitive raticAgk,
is tight. To see this, consider the bid vector with two very large
and non-identical bids of andh + € with the remaining bidd.
Given that the competitive ratio df 5 is tight on this example,
the expected revenue of this auction on this input will be exactly
13/4. O

4.2 Further Reducing the Competitive Ratio

There are a number of ways we might attempt to use this ag-

42.1 Aggy form >3

If the aggregation auction fo¥, has a competitive ratio of 4
and the aggregation auction fii; has a competitive ratio of 3.25,
can we improve the competitive ratio by aggregatifig or Y1,
for largerm? We conjecture in the negative: for > 3, the ag-
gregation auction fof(',,, has a larger competitive ratio than the
aggregation auction foX's. The primary difficulty in proving this
conjecture lies in the difficulty of finding a closed-form solution
for the formula of Theorem 5. We can, however, evaluate this for-
mula numerically for different values af andk, assuming that the
competitive ratio forY',, matches the lower bound far given by
Theorem 2. Table 1 shows, for each valuerofindk, the fraction
of F® raised by the aggregation auction fdpgy, when there
arek winning bidders, assuming the lower bound of Theorem 2 is
tight.

4.2.2 Convex combinations 8fg.

As can be seen in Table 1, whem > 3, the worst-case value
of k£ is no longer 2 and 3, but instead an increasing function of
m. An aggregation auction foX',, outperforms the aggregation
auction forY's when there are two or three winning bidders, while
the aggregation auction fof; outperforms the other when there
are at least six winning bidders. Thus, for instance, an auction
which randomizes between aggregation auctionsYferand T4
will have a worst-case which is better than that of either auction
alone. Larger combinations of auctions will allow more room to
optimize the worst-case. However, we suspect that no convex com-
bination of aggregation auctions will have a competitive ratio lower
than 3. Furthermore, note that we cannot yet claim the existence of
a good auction via this technique as the optimal auctignfor
n > 3is not known and it is only conjectured that the bound given
by Theorem 2 and represented in Table 1 is correctfpr

5. AGGREGATION AUCTIONS AND GEN-
ERAL BENCHMARKS

In this section we show that applying the aggregation auction
schema to three bidder auctions other thancan yield a better
competitive ratio than that ofgg.-_ . To see why this might be the
case, notice (Table 1) that the fraction Bt (b) raised for two
and three winning bids is substantially smaller than the fraction of
F@ (b) raised for larger numbers of bids. This occurs because
the expected ratio betweef(® (B) and F* (b) is lower in this
case while the competitive ratio &f; is constant. If we chose a
three bidder auction that performed better wifer? has smaller
numbers of winners, our aggregation auction would perform better
in the worst case.

5.1 Generalized Profit Benchmarks

One way to achieve an auction that favors outcomes with fewer
winners is by competing against a benchmark profit other than
F@ Recall F® (b) = maxa>k>n br). We can generalize this
to the following: Gs, parameterized by = (s2,...,s,) and de-
fined as:

s = max spb().
2<k<n
When consideringjs we assume without loss of generality that
si < si+1 as otherwise the constraintimposeddpy; is irrelevant.
Note thatF? is the special case &f with s; = i.?

2Another benchmark that has been considered in the pust the

gregation auction schema to continue to push the competitive ratio profit of the k-Vickrey auction with optimal-in-hindsight choice
down. In this section, we give a brief discussion of several attempts. of k. Recall that thek-Vickrey auction sells a unit each to the



5.2 Competing withg, DEFINITION 8. We say an auctioBI ; is conservativéf its bid-

What we would like to do now is design an auction that achieves independent functiorf satisfiesf (b-;) < max(b-;).
a good (or optimal) competitive ratio agaigktfor suitable chosen
s for use with an aggregation auction. Below, we discuss the opti-
mal auction for three bidders that is competitive with,. We then
pick s andt to optimally plug into the aggregation auction.
_ The technique we employed to solve the fggthe three bidderauc-  Te0rem 9. Let.A be a conservative auction for bidders.
tion Wl_th the best competltlve ratlon ag_alrﬁf can be S|m|ItarIy Then the competitive ratio of is at least®"=2.
used find the best auction agaigst:, which we denote byd;". "

We can now state our lower bound for conservative auctions.

DEFINITION 7. A3 is scale-invariant and symmetricand given  CoroLLARY 1. The competitive ratio of any conservative auc-
by the bid-independent function with density function tion for an arbitrary number of bidders is at least three.
Forz <t
. . 2
1 with probability "> For a two-bidder auction, this restriction does not prevent opti-
z with probability densityy(z) for z > * mality. T, the 1-unit Vickrey auction, is conservative. For larger
pra(z) =4 Forz> t numbers of bidders, however, the restriction to conservative auc-

tions does affect the competitive ratio. For the three-bidder case,

1 with probability -t — [¥ d ct ( ; : )
P Yoz fﬁ 2g(2)dz T3 has competitive ratio 2.17, while the best conservative auction

@ with probability [ (= + 1)g(2)dz is no better than 2.33-competitive.
z  with probability densityy(z) for z > « The k-Vickrey auction and the Random Sampling Optimal Price
auction [8] are conservative auctions. The Random Sampling Profit
whereg(z) = % Extraction auction [4] and the CORE auction [6], on the other hand,

use theProfitExtract g mechanism as a subroutine and thus some-

THEOREM 7. When competing againgt,; = max(sb(z), thes) ), times offer a sale price which is higher than the highest input bid
A3 has competitive ratig=tt> value.
3 P 2t In [7], the authors definer@strictedauction as one on which, for

This auction can be derived by the same mearn setting up any input, the sale prices are drawn from the set of input bid values.
Our class of conservative auctions can be viewed as a generaliza-

the linear program, guessing that the optimal solution has the same_; . )
form ass, and solving. We conjecture that it is optimal against tion of the class of restricted auctions and therefore lower bounds

the performance of a broader class of auctions.

Gt We will prove Theorem 9 with the aid of the following lemma:
5.3 Ag..-based Aggregation Auction

We want to find a three bidder auctichs that achieves a good LEMMA 1. Let A be a conservative auction with competitive
competitive ratio with a benchmark that puts more weight on solu- ratio 1/r for n bidders. Leth > n. Letho = 1 andh, = kh oth-
tions with a small number of winners. Recall ti&t>) hass = 2 erwise. Then, foralk andil > kh, Pr[f(1,1,...,1,H) < hi] >

andt = 3. By using the auction that competes optimally against a = + k(222=2=2),

revenue standard with > 2, while holdingt = 3, we will raise a . . . .
higher fraction of revenue on smaller numbers of winning bidders, ~PROOF The lemma is proved by strong induction &n First
and a lower fraction of revenue on large numbers of winning bid- SOMe notation that will be convenient. For any particéiand 1
ders. We can numerically optimize the values@ndt in G ; (b) we will be considering the bid vectds = (1,...,1, hx, H) and

in order to achieve the best competitive ratio for the aggregation Placing bounds oy, ;(2). Since we can assume without loss of

auction. In fact, this will allow us to improve our competitive ratio ~ 9enerality that the auction is symmetric, we will notathie as
slightly. b with any one of the 1-valued bids masked. Similarly we notate

b-, (resp.b-g) asb with the hy-valued bid (respH-valued bid)

THEOREM 8. The aggregation auction for3"! is 3.243-competitivemMasked. We will also lep: (b), pn,, (b), andpz (b) represent the
expected payment of a 1-valued,-valued, andH -valued bidder

The proof follows the outline of Theorem 5 and 6. in A on b, respectively (note by symmetry the expected payment
for all 1-valued bidders is the same).
6. ALOWERBOUND FOR CONSERVATIVE oniaie(iase’( 1: fgk): 1): A must raise revenue of at least
AUCTIONS s
In thi_s secti_on, we _define a class of_ aL_Jctions_ that never offer a rn < pu(b) + (n — 1)pi(b)
sale price which is higher than any bid in the input and prove a 1
strong lower bound on the competitive ratio of these auctions. As =1+ (n— 1)/ zpp., (z)dz
this lower bound is stronger than the lower bound of Theorem 2 for 0

n > 3, it shows that the optimal auction must occasionally charge a 1

sales price higher than any bid in the input. Specifically, this result <l4(n- 1)/0 P (2)dz

explains the form of the optimal three bidder auctiti,

highestk bidders at a price equal to the + 1st highest bid, The second inequality follows from the conservatism of the un-
b(k+1), achieving a profit okb(;11). Thus, on inpub, V*(b) = derlying auction. The base case follows trivially from the final in-

maza<r<n(k —1)bw). In the generalized profit metric we present  equality.
aboveV* = Gs with s, =7 — 1. Inductive case ¢ > 0,hy = kh): Letb = (1,...,1, hg, H).



First, we will find an upper bound g (b)

dx+2/ ZTPb.y (T
<1+Zh/ |

hi—1

pu(b) :/0 TPb.yy

Pb.g )dm

3nr—2r —n) A=
<1 _ )
< +( 1 );zh
nr—1 3nr—2r—n
- (k-1
+kh<1 — (k—1) —1 ) 2
:kh[n(l—r)+(k—1)3nr—2r—n]+1. 3)
n—1 2 n—1

Equation (1) follows from the conservatism.dfand (2) is from
invoking the strong inductive hypothesis wifthi = kh and the
observation that the maximum possible revenue will be found by
placing exactly enough probability at each multiplehoto satisfy
the constraints of the inductive hypothesis and placing the remain-
ing probability atkh. Next, we will find a lower bound opy,, (b)
by considering the revenue raised by the thd&kecall that4 must
obtain a profit of at leastF® (b) = 2rkh. Given upper-bounds
on the profit from theH -valued, equation bid (3), and the 1-valued
bids, the profit from thé.,-valued bid must be at least:

Pry (b) = 2rkh — (n = 2)p1(b) — pu (b)
nl—r) (k=1)3nr—2r—n
> kh|2r — 1 + 5 1 — O(n).

In order to lower boun®r[f(b-»,) < kh], consider the auction
that minimizes it and is consistent with the lower bounds obtained
by the strong inductive hypothesis 8| f (b-,, ) < ¢h]. To mini-
mize the constraints implied by the strong inductive hypothesis, we
place the minimal amount of probability mass required each price
level. This givesps, (b) with 22=L probability at 1 and exactly
dnr=2r—n at eachh; for 1 <3 < k Thus, the profit from offering

prices at mosk_1 is —kh(k—1)32=2r=" |n order to sat-

isfy our lower bound, (4), opy, (b), it must put at least*r=2r=n
onhg.

Therefore, the probability that the sale price will be no more than
kh on masked bid vector on bid vector= (1,...,1, kh, H) must
be at least" =t + k(2nr=2r=n) [

n—1
Given Lemma 1, Theorem 9 is simple to prove.

nr—

PROOF. Let.4 be a conservative auction. Suppegé—2r="= —

e > 0. Letk = [1/€], H > kh, andh > n. By Lemma 1,
Pr(f(1,...,1,kh, H) < hg] > =L + ke > 1. But thisis a
contradiction, sg**.=2r=" < (. Thus r < 2. The theorem
follows. [

7. CONCLUSIONS AND FUTURE WORK

We have found the optimal auction for three-unit limited-supply
case and the best known auction for the unlimited supply case. The
technique we used was a brute-force analytical approach to solve
then = 3 case optimally. We then used this solution to construct
our new optimal auction. It would be interesting to find other ap-
plications of this type of solution in competitive analysis.

Our work leaves many interesting open questions. First, the use
of our analytic solution method requires knowledge of a restricted

class of auctions which is large enough to contain an optimal auc-
tion but small enough that the optimal auction can be found as a fea-
sibility problem rather than as an optimization problem. No class
of auctions which meets these criteria is known even for the four
bidder case. Finding such a class is an interesting open question, as
it might lead to the discovery of optimal auctions for any number
of bidders. However, when the number of bidders is greater than
three, it might be the case that such a solution is not expressible in
terms of elementary functions.

Another interesting set of open questions concerns aggregation
auctions. As we show, the aggregation auctionfgroutperforms
the aggregation auction féf; and it appears that the aggegaion
auction forY's is better tharY,, for m > 3. Proving this con-
jecture remains future work. In addition, we show tiat is not
the best three-bidder auction for use in aggregation auctions, but
the auction that beats it is able to reduce the competitive ratio of
the overall auction only a little bit. It would be interesting to learn
if we can design an auction for use in an aggregation auction that
would substantially improve oAgg~ , for anym.

Finally, we remark that very little'is known about the structure
of the optimal competitive auction. In our aucti@fy, the sales
price for a given bidder is restricted either to be one of the other bid
values or to be higher than all other bid values. The optimal auc-
tion for two bidders, the 1-unit Vickrey auction, also falls within
this class of auctions, as its sales prices are restricted to bid values.
We conjecture that an optimal auction for any number of bidders
lies within this class. Our paper provides partial evidence for this
conjecture: the lower bound of Section 6 on conservative auctions
shows that the optimal auction must offer sales prices higher than
any bid value if the lower bound of Theorem 2 is tight, as is con-
jectured. It remains to show that optimal auctions otherwise only
offer sales prices at bid values.
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