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Abstract We present a short geometric proof for the price of anar-
chy results that have recently been established in a series of papers on
selfish routing in multicommodity flow networks. This novel proof also
facilitates two new types of results: On the one hand, we give pseudo-
approximation results that depend on the class of allowable cost func-
tions. On the other hand, we derive improved bounds on the inefficiency
of Nash equilibria for situations in which the equilibrium travel times
are within reasonable limits of the free-flow travel times. These tighter
bounds help to explain empirical observations in vehicular traffic net-
works. Our analysis holds in the more general context of congestion
games, which provides the framework in which we describe this work.

1 Introduction

Congestion games (Rosenthal 1973) are noncooperative games in which a player’s
strategy is to choose a subset of resources, and the utility of each player only
depends on the number of players choosing the same or some overlapping strat-
egy. In this paper, we consider a particular variant of atomic congestion games,
Rosenthal’s original setting where the number of players is finite, as well as
nonatomic congestion games. Nonatomic games (Schmeidler 1973) model inter-
actions involving a large number of players, each with a negligible ability to
affect the others. Nonatomic congestion games have been studied, among oth-
ers, by Milchtaich (2000, 2004), Chau and Sim (2003), and Roughgarden and
Tardos (2004).

The most prominent example of a nonatomic congestion game is the traffic
routing model of Wardrop (1952). The arcs in a given network represent the
resources, the different origin-destination pairs correspond to the player types,
and the strategies available to a particular player type are the paths in the



network between its origin-destination pair. The cost of an arc describes the
delay experienced by traffic traversing that arc as a function of the flow on
that arc. A social optimum corresponds to a multicommodity flow of minimum
total delay, while a Nash equilibrium equals a user equilibrium flow, where every
player is traveling on a shortest path under the prevailing conditions.

Nash equilibria in general and user equilibria in particular are typically ineffi-
cient: They generally do not minimize the social cost. Koutsoupias and Papadim-
itriou (1999) proposed to analyze the inefficiency of equilibria from a worst-case
perspective; this led to the notion of “price of anarchy” (Papadimitriou 2001),
which is the ratio of the worst social cost of a Nash equilibrium to the cost of
an optimal solution. In the context of selfish routing (i.e., the traffic model de-
scribed in the previous paragraph), the price of anarchy was analyzed in a series
of papers for increasingly more general classes of cost functions and model fea-
tures; see, among others, Roughgarden and Tardos (2002), Roughgarden (2003),
Schulz and Stier-Moses (2003), Chau and Sim (2003), Correa, Schulz, and Stier-
Moses (2004), Roughgarden and Tardos (2004), Perakis (2004), and Roughgar-
den (2005).

In this paper, we give alternative proofs for most results in the above-
mentioned papers. Our proofs simplify and unify previous arguments, and they
enable us to extend these insights to more general settings. In Section 2, we
study nonatomic congestion games with separable cost functions. For two known
bounds on the inefficiency of Nash equilibria, we provide proofs that rely on
a new interpretation of the parameter β introduced by Correa, Schulz, and
Stier-Moses (2004) in the context of traffic routing. This interpretation sets
the stage for various generalizations. In particular, we obtain new tight pseudo-
approximation (sometimes also called bicriteria) results that depend on the class
of allowable cost functions (Sections 2.1 and 2.2), and a more realistic bound
on the price of anarchy for situations where the variable cost of a resource does
not exceed its fixed cost by too much (Section 2.3). Section 2.4 considers costs
functions that do not include fixed costs. We show that for polynomials of small
degree the price of anarchy is significantly smaller than with arbitrary fixed
costs. In Sections 3 and 4 we extend these results to atomic congestion games
with divisible demands and to nonseparable cost functions, respectively.

2 Nonatomic Congestion Games with Separable Costs

In nonatomic congestion games, we are given a finite set A of resources, and k
different types of players. Players are infinitesimal agents, and the continuum
of players of type i is represented by the interval [0, ni]. Each player type i
possesses a set Si of strategies, where each strategy consists of a subset of the
resources. For notational convenience, we assume that the sets Si, i = 1, 2, . . . , k,
are disjoint, and we denote their union by S. The rate of consumption of a re-
source a ∈ S by a strategy S ∈ Si is given by ra,S ≥ 0. Each player selects a
strategy, which leads to a strategy distribution x = (xS)S∈S with

∑

S∈Si
xS = ni

for each player type i, and xS ≥ 0 for all S ∈ S. A strategy distribution generates



a utilization rate xa :=
∑k

i=1

∑

S∈Si:a∈S ra,S xS for each resource a ∈ A. The
cost cS(x) of using a strategy S is the sum of the costs of the resources associ-
ated with that strategy, amplified with the corresponding rate of consumption.
The cost of resource a ∈ A is given by a a nondecreasing and continuous func-
tion ca : IRA

+ → IR+. Hence, cS(x) :=
∑

a∈S ra,S ca(x). The social cost C(x)
of a strategy distribution x is defined as the total disutility experienced by the
players: C(x) :=

∑k
i=1

∑

S∈Si
cS(x)xS =

∑

a∈A ca(x)xa.4

A social optimum xopt is a strategy distribution of minimum social cost; i.e.,
C(xopt) ≤ C(x) for all strategy distributions x. A strategy distribution xne is a
Nash equilibrium when no player has an incentive to unilaterally change his or
her strategy; i.e., cS(xne) ≤ cS′(xne) for any two strategies S, S′ ∈ Si with xne

S >
0, for each i = 1, 2, . . . , k. It is well known (e.g., Dafermos and Sparrow (1969),
Smith (1979)) that a strategy distribution xne is a Nash equilibrium if and only
if it satisfies

∑

a∈A

ca(xne)(xne

a − xa) ≤ 0 for all strategy distributions x. (1)

In this section we present different bounds on the inefficiency of equilibria
in nonatomic congestion games with separable cost functions. The cost func-
tions ca are separable if ca(x) = ca(xa) for all a ∈ A. Beckmann, McGuire, and
Winsten (1956) showed that in this case a Nash equilibrium xne exists, and any
two different equilibria have the same social cost. While two of the bounds are
known, at least in the context of selfish routing, we propose a different way to
look at their proofs, which allows us to derive additional types of bounds.

2.1 Affine Cost Functions

Let us begin by studying the simplest case of nonatomic congestion games,
namely that of separable and affine cost functions. In other words, the cost
of resource a ∈ A under the utilization rate vector x is ca(x) = caxa + ba for
some nonnegative coefficients ca, ba. The most compact proof of the following
result was presented in the context of selfish routing by Correa, Schulz, and
Stier-Moses (2004), and our proof below can be viewed as a geometric variant
of it. The result itself is due to Roughgarden and Tardos (2002, 2004).

Theorem 1 (Roughgarden and Tardos 2004). Let xne be a Nash equilib-
rium of a nonatomic congestion game with separable, affine cost functions, and
let xopt be a social optimum. Then, C(xne) ≤ 4/3C(xopt).

Proof. Let x be an arbitrary strategy distribution. Because of (1), we have

C(xne) ≤
∑

a∈A

ca(xne

a )xa =
∑

a∈A

ca(xa)xa +
∑

a∈A

(ca(xne

a ) − ca(xa))xa . (2)

4 Because of the equivalence of the strategy-by-strategy view and the resource-by-
resource view of the social cost, we interchangeably use x to denote a strategy
distribution and its associated vector of utilization rates.
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Figure 1. Illustration of the proof of Theorem 1

Since each function ca(·) is nondecreasing, we only need to focus on the expres-
sions (ca(xne

a )−ca(xa))xa for which xa < xne

a to bound the last term from above.
In this case, (ca(xne

a ) − ca(xa))xa is equal to the area of the shaded rectangle
in Figure 1. Note that the area of any rectangle whose upper-left corner point
is (0, ca(xne

a )) and whose lower-right corner point lies on the line representing
ca(xa) = caxa + ba, is at most half that of the triangle defined by the three
points (0, ca(xne

a )), (0, ba), and (xne

a , ca(xne

a )). In particular,

(ca(xne

a ) − ca(xa))xa ≤
1

4
ca(xne

a )xne

a ,

which completes the proof. ⊓⊔

An immediate consequence of this proof is a pseudo-approximation result,
which upper bounds the social cost of a Nash equilibrium by that of an optimal
strategy distribution for the same game with more players of each type. More
precisely, one only needs the following inequality derived in the preceding proof,

∑

a∈A

ca(xne

a )xa ≤ C(x) +
1

4
C(xne) , (3)

which holds for any nonnegative vector x (i.e., x need not be a strategy distri-
bution), to obtain this result:

Corollary 2. If xne is a Nash equilibrium of a nonatomic congestion game with
separable, affine cost functions and xopt is a social optimum for the same game
with 5/4 times as many players of each type5, then C(xne) ≤ C(xopt).

Proof. Let x be an arbitrary strategy distribution of the nonatomic congestion
game with 5/4 times as many players as in the original game. Then,

C(xne) =
5

4

∑

a∈A

ca(xne

a )xne

a −
1

4
C(xne) ≤

∑

a∈A

ca(xne

a )xa −
1

4
C(xne) ≤ C(x) .

5 Formally, the continuum of players of type i in the new game is represented by the
interval [0, 5

4
ni], i = 1, 2, . . . , k.



xne

a
xa

0
0

ca

ca(0)

ca(xa)

ca(xne

a )

Figure 2. Illustration of the definition of β

The first inequality is implied by (1) and the feasibility of the vector 4x/5 for
the original game, while the second one follows from (3). ⊓⊔

The first result of this kind was given by Roughgarden and Tardos (2002),
who showed that an equilibrium traffic assignment causes a total travel time of
at most that of a social optimum routing twice as much traffic. This result and its
subsequent extension to general nonatomic congestion games (Roughgarden and
Tardos 2004) hold for arbitrary (separable) cost functions. The selfish routing
version of Corollary 2 is due to Chakrabarty (2004) and inspired us to qualify the
pseudo-approximation bounds according to the class of cost functions considered;
see the next section for details.

2.2 General Cost Functions

Note that we used the linearity of the cost functions ca(·) in only one place,
namely when we proved (3). Hence, a suited generalization of (3) is the key for
extending the results in Theorem 1 and Corollary 2 to more general classes of cost
functions. For arbitrary (but still separable) cost functions, we are confronted
with the situation depicted in Figure 2. To upper bound the area of the shaded
rectangle, i.e., (ca(xne

a ) − ca(xa))xa, in terms of the area of the large rectangle,
which is of size ca(xne

a )xne

a , we simply define for each cost function ca(·) and
nonnegative scalar va ≥ 0,

β(ca, va) := max
xa≥0

(ca(va) − ca(xa))xa

ca(va)va

.

Here, 0/0 = 0 by convention. Note that 0 ≤ β(ca, va) ≤ 1. For a given class C of
cost functions (e.g., polynomials of a certain degree), we let

β(C) := sup
ca∈C,va≥0

β(ca, va) .

This definition leads directly to the following lemma.



Lemma 3. Let xne be a Nash equilibrium of a nonatomic congestion game with
separable cost functions drawn from a given class C, and let x be an arbitrary
nonnegative vector. Then,

∑

a∈A

ca(xne

a )xa ≤ C(x) + β(C)C(xne) .

In turn, Lemma 3 yields the following generalizations of Theorem 1 and
Corollary 2, with virtually no change in proof except for the replacement of (3)
with Lemma 3.

Theorem 4. Let xne be a Nash equilibrium of a nonatomic congestion game
with separable cost functions drawn from a given class C.

(a) If xopt is a social optimum of this game, then C(xne) ≤ (1−β(C))−1 C(xopt).
(b) If xopt is a social optimum of the same game with 1 + β(C) times as many

players of each type, then C(xne) ≤ C(xopt).

The parameter β(C) was first defined in the context of selfish routing by Cor-
rea, Schulz, and Stier-Moses (2004), but without mentioning the motivation of-
fered by Figure 2. It is related to the anarchy value α(C) of Roughgarden (2003)
(in the context of selfish routing) and Roughgarden and Tardos (2004), but
α(C) is only defined for cost functions ca(·) that are differentiable and for which
ca(xa)xa is convex. If α(C) exists, then α(C) = (1− β(C))−1. Concrete values of
β(C) can readily be calculated for several classes of cost functions; see Rough-
garden (2003) and Correa, Schulz, and Stier-Moses (2004) as well as Figure 4 (a)
and Table 1 below.

2.3 Cost Functions with Limited Congestion Effects

To motivate our next set of results, it is helpful to consider selfish routing in
traffic networks. The empirically observed ratio of the total travel time of a
user equilibrium to that of a system optimum is typically significantly smaller
than predicted by the price-of-anarchy results of Theorem 4. For instance, in
the computational studies of Jahn, Möhring, Schulz, and Stier-Moses (2005) the
largest ratio of user equilibrium cost to system optimum cost over several realistic
instances is 1.15 (instead of the theoretical worst case of 2.151). Qiu et al. (2003)
made a similar observation in the context of telecommunication networks. For a
given class of latency functions, the corresponding price of anarchy is a worst-
case measure, taken over all possible instances. However, if one compares the
time needed to drive to work during rush hour with the duration of the same
trip at night, then the “free-flow travel time” is usually not a negligible fraction
of the rush-hour experience. Formally, we make the following assumption: The
cost of any given resource at utilization rate zero is at least a constant fraction
of that of the same resource at the utilization rate in equilibrium. A different
way of illustrating this assumption is by looking at a production process, where
the fixed cost of any resource accounts for a substantial fraction of the total cost
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Figure 3. Illustration of the proof of Lemma 6

(fixed plus variable costs) in equilibrium. Depending on the ratio of fixed to total
cost, we obtain a parametrized sequence of improved bounds on the inefficiency
of equilibria.

Theorem 5. Let xne be a Nash equilibrium of a nonatomic congestion game
with separable cost functions drawn from a given class C such that ca(0) ≥
η ca(xne

a ) for all a ∈ A, for some constant 0 ≤ η ≤ 1.6

(a) If xopt is a social optimum, then C(xne) ≤ (1 − (1 − η)β(C))−1 C(xopt).
(b) If xopt is a social optimum of the same game with 1 + (1 − η)β(C) times as

many players of each type, then C(xne) ≤ C(xopt).

The proof of Theorem 5 rests upon the following generalization of Lemma 3.

Lemma 6. Let xne be a Nash equilibrium of a nonatomic congestion game with
separable cost functions drawn from a given class C such that ca(0) ≥ η ca(xne

a )
for all a ∈ A, for some constant 0 ≤ η ≤ 1. Moreover, let x be an arbitrary
nonnegative vector. Then,

∑

a∈A

ca(xne

a )xa ≤ C(x) + (1 − η)β(C)C(xne) .

Proof. We again rewrite ca(xne

a )xa as ca(xa)xa+(ca(xne

a )−ca(xa))xa. If xa ≥ xne

a ,
there is nothing left to prove. So assume xa < xne

a , and consider Figure 3.
Because ca(0) ≥ η ca(xne

a ), the area (ca(xne

a ) − ca(xa))xa of the small shaded
rectangle is at most β(C) times that of the rectangle with upper-left corner
point (0, ca(xne

a )) and lower-right corner point (xne

a , ca(0)), which is of size at
most (1 − η)ca(xne

a )xne

a . The result follows. ⊓⊔

Figure 4 (a) displays the relationship between η and the bound on the price
of anarchy given by Theorem 5 (a) for polynomials of different degrees. Note that

6 We also assume that C is closed under adding constants b ∈ IR for which c(0)+b ≥ 0;
otherwise, the resulting improvement would not be directly visible but would remain
hidden in the value of β(C).
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Figure 4. (a) Price of anarchy as a function of fixed to total costs. (b) Minimum value
for which the pseudo-approximation result holds. Each curve refers to a set C that
contains nonnegative polynomials of fixed degree.

the price of anarchy is at most 1/η, even if we do not place any restriction on C.
This observation qualifies the unboundedness of the price of anarchy for instances
with general cost functions described by Roughgarden and Tardos (2002, 2004).
As another example, consider a vehicular network in which users travel at most
twice as long when the network is congested compared to the situation when it
is not. If arc latencies are modeled as polynomials of degree 4, as it is the case
for the widely used Bureau of Public Roads’ functions (1964), Theorem 4 (a)
gives an upper bound of 2.151 on the price of anarchy. However, Theorem 5 (a)
gives a more accurate bound of 1.365. More generally, we believe that the bounds
presented in Theorem 5 offer a good explanation of the satisfactory performance
of Nash equilibria in many practical situations. Figure 4 (b) illustrates part (b)
of Theorem 5.

Let us also point out that the bounds given in Theorem 5 are tight. Consider
the traffic assignment instance in Figure 5, where v units of flow must be routed
from one node to the other over two parallel arcs a and a′. The arc latencies
are ca(xa) = c(v) (a constant) and ca′(xa′) = η c(v)+ (1− η)c(xa′), respectively.
Here, the function c and the scalar v are chosen such that β(C) = β(c, v). Both
bounds given in Theorem 5 are simultaneously tight for this instance.

v v

c(v)

η c(v) + (1 − η)c(xa′)

Figure 5. Instance for which the bounds in Theorem 5 are tight



2.4 Cost Functions without Fixed Costs

In contrast to the preceding section, we now consider instances where the cost
of each resource at utilization rate zero is equal to zero. This model helps to
capture situations in which variable costs dominate fixed costs or where fixed
costs can be neglected altogether. Examples include telecommunication networks
where the propagation delays are usually negligible compared to the queueing
delays in the routers, and production systems where the equipment has been
installed already. We give the first results of this kind; in particular, the price of
anarchy for small-degree polynomials in this setting is smaller than the bounds
given in Theorem 4. Polynomials are of particular interest in several application
contexts. For instance, the Bureau of Public Roads’ cost functions used in traffic
networks are polynomials of degree 4.

Dafermos and Sparrow (1969) showed that when all cost functions are mono-
mials of the same degree, Nash equilibria and system optima coincide. In partic-
ular, the price of anarchy is 1 if we only allow linear functions (affine functions
without constant term) instead of 4/3, the value for the set of all affine func-
tions. Before we show that a similar effect can be observed for polynomials of
(somewhat) higher degree, let us introduce some notation to facilitate the proofs.
We represent the cost functions as ca(xa) :=

∑

1≤i≤d ca,i xi
a whenever we con-

sider polynomials of degree d. Moreover, we denote the total cost of a strategy
distribution x when resources are utilized according to another vector x′ by
Cx′

(x) :=
∑

a∈A ca(x′
a)xa. Also, we denote the total cost restricted to the de-

gree i monomials by Ci(x) :=
∑

a∈A ca,i xi+1
a and Cx′

i (x) :=
∑

a∈A ca,i xa (x′
a)i,

respectively. Using this notation, we can rewrite (1) as C(xne) ≤ Cxne

(x), which
is valid for any strategy distribution x and Nash equilibrium xne. The follow-
ing lemma is well known in the context of variational inequalities; see, e.g.,
Smith (1979).

Lemma 7. If xne is a Nash equilibrium and x is an arbitrary strategy distribu-
tion of a nonatomic congestion game, then Cx(xne) ≤ C(x).

With the notation and preliminary results in place, we are prepared to bound
the price of anarchy in networks without fixed costs.

Theorem 8. Consider the family of nonatomic congestion games with separable
cost functions that are polynomials of degree at most d, for 1 ≤ d ≤ 4. Then, the
price of anarchy for this class of games is bounded from above and below by the
values displayed in Table 1.

Due to space limitations, we restrict ourselves to prove the upper bound of
5/4 for cubic functions.

Proof. We use two simple bounds: (δxa − xne

a )2 ≥ 0 with δ ∈ IR, which implies
that Cx

1 (xne) ≤ C1(x
ne) + 1

4
C1(x) and Cxne

2 (x) ≤ 1

2
Cx

2 (xne) + 1

2
C2(x

ne), and

( 1

2
x2

a−(xne

a )2+xa xne

a )2 ≥ 0, which implies that Cxne

3 (x) ≤ 1

2
Cx

3 (xne)+ 1

2
C3(x

ne)+
1

8
C3(x). Now,

C(xne) ≤ Cxne

(x) = Cxne

3 (x) + Cxne

2 (x) + Cxne

1 (x)



≤
Cx

3 (xne)

2
+

C3(x
ne)

2
+

C3(x)

8
+

Cx
2 (xne)

2
+

C2(x
ne)

2
+

Cx
1 (xne)

2
+

C1(x
ne)

2
+

C1(x)

8

≤
C(xne)

2
+

Cx(xne)

2
+

C(x)

8
≤

1

2
C(xne) +

5

8
C(x) .

⊓⊔

Table 1. Comparison of guarantees for the efficiency of equilibria with and without
fixed costs. All coefficients are assumed to be nonnegative. The column entitled ‘ca(0) =
0’ shows lower and upper bounds on the price of anarchy without fixed costs. The
lower bounds represent the worst-case coordination ratio of a Pigou-type instance with
two parallel arcs, cost functions in C, and no fixed costs. The column entitled ‘ca(0)
arbitrary’ shows the exact price of anarchy with arbitrary fixed costs.

Set C of allowable Price of Anarchy α(C)
cost functions Example ca(0) = 0 ca(0) arbitrary

LB UB

linear functions a1x + a0 1 1 1.334

quadratic functions a2x
2 + a1x + a0 1.035 1.185 1.626

cubic functions a3x
3 + a2x

2 + a1x + a0 1.098 1.25 1.896

polynomials of degree 4
∑

4

i=0
aix

i 1.167 1.999 2.151

3 Weighted Congestion Games with Divisible Demands

Rosenthal’s (1973) original version of congestion games has a finite number of
players, and each player controls one unit of demand that cannot be split across
strategies. While he showed that a pure-strategy Nash equilibrium always ex-
ists, this is not necessarily the case for weighted congestion games, where players
can have arbitrary demands (Fotakis et al. 2004). We consider a hybrid between
weighted congestion games and nonatomic congestion games, which is guaran-
teed to possess a pure-strategy Nash equilibrium. Moreover, the price of anarchy
can be bounded in similar terms to the results discussed above.

An atomic weighted congestion game with divisible demands is similar to
a nonatomic congestion game, except that there is a finite number of play-
ers 1, 2, . . . , k. Each player i has a divisible demand ni > 0 and assigns por-
tions xS ≥ 0 of it to various strategies S in his or her strategy space Si

such that
∑

S∈Si
xS = ni. For a given strategy distribution x = (xS)S∈S ,

the cost to player i is Ci(x) :=
∑

S∈Si
cS(x)xS . The social cost C(x) is equal

to the total cost; i.e., C(x) :=
∑k

i=1
Ci(x) =

∑

a∈A ca(xa)xa, where xa =
∑k

i=1

∑

a∈S∈Si
ra,SxS is the utilization rate of resource a. A strategy distri-

bution x constitutes a Nash equilibrium if, for each player i, (xS)S∈Si
minimizes



Ci(x), keeping the actions of the other players fixed. This model provides an ab-
stract framework for the “atomic splittable selfish routing problem” considered
in previous papers. Catoni and Pallotino (1991) presented instances for which
the ratio of the equilibrium cost to the optimal cost is smaller for the nonatomic
version than its atomic splittable counterpart, while Roughgarden (2005) proved
that the price of anarchy for any given class of allowable cost functions is al-
ways dominated by that of nonatomic games. Harker (1988) and Orda, Rom,
and Shimkin (1993) established the existence of pure-strategy Nash equilibria,
and Roughgarden and Tardos (2002) showed that their pseudo-approximation
results for nonatomic selfish routing games also holds for the atomic splittable
case.

Although the variational inequality (1) does in general not hold for Nash
equilibria of atomic games with divisible demands, it actually suffices to prove
that (2) is still true in order to derive results similar to Theorems 4 and 5.
Consider a Nash equilibrium xne and define, for a ∈ A, c̄a(xa) := ca(xne

a ) if
xa ≤ xne

a and c̄a(xa) := ca(xa), otherwise. It is straightforward to extend a result
in the proof of Roughgarden and Tardos (2002, Theorem 5.4) to characterize
Nash equilibria in atomic congestion games with divisible demands:

Lemma 9 (Roughgarden and Tardos 2002). Let xne be a Nash equilibrium
of an atomic congestion game with divisible demands. Furthermore, assume that
the functions ca(xa)xa are convex, for all a ∈ A. Then,

∑

a∈A c̄a(xne

a )xne

a ≤
∑

a∈A c̄a(xa)xa for all strategy distributions x.

Using slightly weaker versions of (2) and Lemma 3, we can bound the price
of anarchy of atomic congestion games with divisible demands.

Theorem 10. Let xne be a Nash equilibrium of an atomic congestion game
with divisible demand and separable cost functions drawn from a given class C.
Assume that ca(xa)xa is a convex function, for all ca ∈ C.

(a) If xopt is a social optimum of this game, then C(xne) ≤ (1−β(C))−1 C(xopt).
(b) If xopt is a social optimum of the same game with 1 + β(C) times as many

players of each type, then C(xne) ≤ C(xopt).

Proof. Lemma 9 implies that the cost C(xne) of a Nash equilibrium is bounded
from above by

∑

a∈A c̄a(xa)xa for any strategy distribution x. Let us consider the
terms c̄a(xa)xa individually. If xa ≥ xne

a , then c̄a(xa)xa = ca(xa)xa, and we are
done. Otherwise, c̄a(xa)xa = ca(xa)xa + (ca(xne

a ) − ca(xa))xa. Hence, C(xne) ≤
∑

a∈A c̄a(xa)xa ≤ C(x)+β(C)C(xne), which shows part (a). For part (b), notice
that (1 + β(C))−1xopt is feasible for the original problem. Therefore,

C(xne) ≤
∑

a∈A

c̄a

(

xopt

a

1 + β(C)

)

xopt

a

1 + β(C)
≤

1

1 + β(C)

∑

a∈A

c̄a(xopt

a )xopt

a ,

where the second inequality follows from the monotonicity of the cost functions.
Now, we can proceed as in Corollary 2:

C(xne)=(1+β(C))C(xne)−β(C)C(xne)≤
∑

a∈A

c̄a(xopt

a )xopt

a −β(C)C(xne)≤C(x) .

⊓⊔



Part (a) of Theorem 10 extends and simplifies a result of Roughgarden (2005)
who proved a similar bound for network games. Part (b) is new. Using the
arguments in the proof of Theorem 10, it is straightforward to extend Theorem 5
to atomic games.

4 Nonatomic Games with Nonseparable Costs

In some practical situations, the cost of using one resource may depend on the
rate of consumption of others. For instance, the time a vehicle needs to cross
through a stop sign clearly depends on the amount of flow traversing the per-
pendicular street; the waiting time of passengers at a given bus stop depends
on the number of passengers boarding the bus at previous stops; or, to give an
example in the context of wireless communication networks, transmission delays
depend on the load of neighboring cells, because of interference.

The purpose of this section is to extend our results on nonatomic congestion
games to the case where cost functions are not necessarily separable. In this
context it is convenient to write the social cost of a strategy distribution x as an
inner product, C(x) = 〈c(x), x〉, with c : X → IRA

+ continuous. Here, X denotes
the convex and compact space of feasible utilization vectors. (In particular, X
can be used to model side constraints such as resource capacities; see Correa,
Schulz, and Stier-Moses (2004) for a discussion.) In the spirit of Equation (1), a
strategy distribution xne is an equilibrium if it satisfies the variational inequality

〈c(xne), xne − x〉 ≤ 0 for all x ∈ X. (4)

Moreover, a social optimum xopt is an optimal solution to minx∈X〈c(x), x〉.
Under the continuity of c as well as the compactness and convexity of X, an
equilibrium exists by the classic result of Hartman and Stampacchia (1966) (see
also Smith 1979). Of course, a system optimum also exists as c is continuous and
X is compact.

For a cost function c and a utilization vector v ∈ IRA
+, a natural extension of

the parameter β is

β(c, v) := max
x≥0

〈c(v) − c(x), x〉

〈c(v), v〉
.

With the definition of β(C) := supc∈C,v∈X β(c, v), we can extend Lemma 3 to
nonseparable cost functions, thereby simplifying and extending earlier work.
Chau and Sim (2003) proved that the price of anarchy for nonseparable and
symmetric cost functions is bounded by a natural extension of the parameter
α(C) of Roughgarden and Tardos (see Section 2.2). Perakis (2004) considered
general nonseparable cost functions. Let us mention that the known bounds
require stronger assumptions on the cost functions, such as convexity, differen-
tiability, and monotonicity.

Lemma 11. Let xne be an equilibrium of a nonatomic congestion game with
cost functions drawn from a class C of nonseparable cost functions, and let x be
a nonnegative vector. Then, 〈c(xne), x〉 ≤ C(x) + β(C)C(xne).



This lemma yields the following price-of-anarchy and pseudo-approximation
results for nonatomic congestion games with nonseparable cost functions.

Theorem 12. Let xne be an equilibrium of a nonatomic congestion game with
cost functions drawn from a class C of nonseparable cost functions.

(a) If xopt is a social optimum for this game, then C(xne) ≤ (1−β(C))−1C(xopt).
(b) If xopt is a social optimum for the same game with 1 + β(C) times as many

players of each type, then C(xne) ≤ C(xopt).

Proof. For (a), it suffices to use (4) and Lemma 11:

C(xne) = 〈c(xne), xne〉 ≤ 〈c(xne), xopt〉 ≤ C(xopt) + β(C)C(xne) .

Let us now prove part (b). Because of the feasibility of (1 + β(C))−1 xopt

for the original game, we have that 〈c(xne), xne〉 ≤ 〈c(xne), (1 + β(C))−1 xopt〉.
Therefore,

〈c(xne), xne〉 = (1 + β(C))〈c(xne), xne〉 − β(C)〈c(xne), xne〉

≤ (1 + β(C))〈c(xne), (1 + β(C))−1xopt〉 − β(C)〈c(xne), xne〉

≤ C(xopt) + β(C)C(xne) − β(C)C(xne)

= C(xopt) .
⊓⊔

A particular class of nonseparable cost functions that has been studied before
are affine functions; i.e., c(x) = Ax + b, with b ≥ 0, and A symmetric and
positive semidefinite. Theorem 12 provides a simple proof of a result by Chau
and Sim (2003), which established that the price of anarchy for this kind of cost
functions is at most 4/3. Indeed, in this case

β(c, v) = max
x≥0

〈c(v) − c(x), x〉

〈c(v), v〉
=

maxx≥0〈A(v − x), x〉

〈Av, v〉 + 〈b, v〉
.

As A is symmetric and positive semidefinite, the numerator amounts to a convex
minimization problem, and the optimum is attained at x = v/2, leading to
β(affine costs) = 1/4. Theorem 12 yields C(xne) ≤ 4/3C(xopt), where xopt is a
social optimum for this game. Moreover, C(xne) ≤ C(xopt), for a social optimum
xopt of the same game with 5/4 times as many players of each type.

Let us finally note that the improved results for games with limited congestion
(i.e., Theorem 5) also hold in this setting. Indeed, we only need to generalize
Lemma 6. Similarly to Section 2.3, we assume that C satisfies that for c ∈ C and
a constant vector b ∈ IRA for which c(x) + b ∈ IRA

+ for all x ∈ IRA
+, c(x) + b ∈ C.

Lemma 13. Let xne be an equilibrium of a nonatomic congestion game with cost
functions drawn from a class C such that c(0) ≥ η c(xne) for c ∈ C and 0 ≤ η ≤ 1.
If x is a nonnegative vector, then 〈c(xne), x〉 ≤ C(x) + (1 − η)β(C)C(xne).



Proof. Let us write c ∈ C as c(x) = M(x) + b, where b = c(0) ≥ η c(xne) ≥ 0.
Thus,

β(c, xne) = max
x≥0

〈c(xne) − c(x), x〉

〈c(xne), xne〉
≤ max

x≥0

〈M(xne) − M(x), x〉

〈M(xne), xne〉 + η
1−η

〈M(xne), xne〉

= (1 − η)max
x≥0

〈M(xne) − M(x), x〉

〈M(xne), xne〉
≤ (1 − η)β(C) .

So, 〈c(xne), x〉 ≤ 〈c(x), x〉 + β(c, xne)〈c(xne), xne〉 ≤ C(x) + (1 − η)β(C)C(xne).
⊓⊔
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