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Motivating facts

DIMACS Workshop on Algorithms for Green Data Storage
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Backgrounds

Two important power control methods.

I Speed scaling and low-power states.
I Are often exploited in separation.

F Speed scaling: [GH01][ALW10][DMR11][BMB12].
F ON/OFF: [MGW09][GHA10][N11].

I Should be jointly optimized, managed and operated.
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Challenges

Challenge 1:

Suppose we have a low utilization server.

Given two low-power states in idle:
I

Shallow sleep: quick wake up and power hungry.
I

Deep sleep: slow wake up and power e�cient.

If the response time must be kept low, shallow sleep or deep sleep?

If the response time is okay to be high, shallow sleep or deep sleep?

Challenge 2:

Suppose a CPU has many low-power states.

Should we concatenate then all?
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Queuing-theoretic analysis

Model a single server as M/G/1 queue. Arrival rate �, operating frequency
f 2 [0, 1] (DVFS), service rate µf and utilization ⇢ = �/µ.

When busy, run at frequency f , incurring power P0f
3 + C .

I Example: P0 = 130 Watts and C = 112 Watts.

When idle: enter n low-power states.
I The system enters ith low-power state ⌧i seconds after its queue empties,

⌧1  ⌧2  ⌧3 . . .  ⌧n.
I Power at ith low power state is Pi , P1 > P2 > . . . > Pn.
I Wake-up latency is wi (with power), w1 < w2 < . . . < wn.

With n = 1, f = 1, ⌧1 = 0, it reduces to the well-known “race-to-halt”
mechanism.

Yanpei Liu (UW-Madison) Power-e�cient Computing Dec 18, 2013 6 / 15



Theoretical results – power

Pi : power at state i . ⌧i : entrance delay for state i . wi : wakeup latency for
state i , f : frequency, µ: service rate and �: arrival rate.

Theorem

The average power consumption for an M/M/1 single-server system with n

low-power states is
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Theoretical results – mean response time

Theorem

The mean response time for an M/M/1 server system with n low power states is

E[R] = 1
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Theoretical results – deadline

Special case when n = 1, ⌧1 = 0.

Theorem

The probability for the response time to exceed a deadline Pr(R � d) for an
M/M/1 single-server is

Pr(R � d) =
e

�(µf��)d � w1(µf � �)e�d/w1

1� w1(µf � �)
. (6)
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Engineering lesson I – low utilization
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(a) DNS (194 ms): ⇢ = �/µ = 0.1.
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(b) Google (4.2 ms): ⇢ = �/µ = 0.1.

There exists optimal frequency f .
I Too fast causes power to increase. Too slow takes longer to finish.

The best power state depends on the response time constraint.
I Tight: deep sleep (blue). Loose: shallow sleep (red).
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Engineering lesson I – low utilization
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(c) Google inter-arrival time.
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(d) Google service time.

Figure 1: Statistics of Google workload [MWW 12].
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Engineering lesson II – high utilization
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(a) DNS (194 ms): ⇢ = 0.8.
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(b) Google (4.2 ms): ⇢ = 0.8.

Power saving comes mostly from performance scaling.
I Rarely enter low-power states.

Optimal policy is job size dependent.
I Large jobs can tolerate more wake up latency.
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Engineering lesson III – best policies

What do best polices look like at di↵erent utilization?
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(c) Google E[R] constraint.

No “one-size-fits-all” policy.
I Di↵erent policies should be used under di↵erent utilization.

“Bump” at low utilization
I Caused by the slack in the quality-of-service.
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Engineering lesson IV – delayed entrance
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(d) DNS (194 ms): delayed S3 at ⇢ = 0.1.

Optimal performance scaling and entrance delay combination.

Sequential power throttle-back may be conservative.
I High utilization: rarely enters the last state. Low utilization, waste to not

enter the optimal state.
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Conclusion

Thank you
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