Simple models of the immune response

What kind of immunology to improve epidemiology?
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Extending epidemiology with immunology

e For most pathogens immune response is complex and poorly
understood, at least quantitatively:
e is infection controlled by humoral or cellular immunity?
e what is the role of target cell limitation?
e how important is the innate immune response?

e Unbalanced to extend simple (SIR) models with large and
complicated immune system models:
e Challenge is to develop appropriate caricature models

e Most important: Variability between individuals:
e differences in pathogen load and infectivity
e differences in type of immune response (Thl, Th2)
e MHC and KIR polymorphism; SNPs in cytokine genes
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Two caricatures of the immune response
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e if pathogen is rejected: life long systemic memory

— local T cell memory in tissue may be short lived

e [ cell response seems programmed

— expansion, contraction, and memory phase

e Chronic response looks similar, but is poorly understood

— Human CMV and HIV-1: 10% of response specific .



Large variability between hosts

e MHC (Bjorn Peters): polymorphism of > 1000 alleles

— HIV-1: long term non progressors (Kesmir)

e KIR (NK cell receptor): many haplotypes with variant num-
ber of loci, inhibitory or stimulatory (Carrington: HIV-1).

e SNPs in various cytokine genes

— host genotype influences type of immune response

e SNPs in Toll like receptor molecules

— Adrian Hill, Ann Rev Gen 2006 (MAL/TLR4): malaria

— Mark Feinberg: Sooty Mangabeys no INF-«

e polymorphism in APOBEC3G (Sawyer, Plos Biol, 2004)



MHC alleles correlated with HIV-1 viral load
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MHC diversity due to frequency dependent selection?
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From: Carrington.armO03 (left) and Trachtenberg.nmO03 (right)

Can Kesmir: B58 is not only rare but very special



MHC diversity due to frequency dependent selection?

Model (DeBoer.ig04, Borghans.ig04):

e host-pathogen co-evolution model

— Dbit strings for MHC and peptides

e diploid hosts and many (fast) pathogen species

— heterozygote advantage by itself not sufficient

— pathogen co-evolution: frequency dependent selection

e Can Kesmir and Boris Schmid: host gene frequencies are
shifting towards protective HLAS, but HIV-1 is not.

e HIV-1 reverses crippling immune escape mutations in new
hosts



HIV-1 reverses immune escape mutations in nhew hosts

Table 2 Fate of TW10 variants after transmission
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HIV-1 sometimes reverses immune escape mutations
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Pathogens and immune responses

e LCMV non cytolytic mouse virus: vigorous response
— acute (Armstrong) and chronic (clone 13)

e Listeria infection: similar programmed response

e HIV-1, HBV, HCV: begin to be characterized

e Human influenza: innate, antibodies, CD8%1 T cells
e Coccidios (Don Klinkenberg): detailed case study

Elaborate two examples: LCMV & HIV-1
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LCMV: CD8 acute dynamics
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C57BL/6 CD81 T cell response to GP33 from LCMV Arm-
strong (data: Dirk Homann, model: DeBoer.ji03)

Expansion phase, contraction phase, and memory phase

The inset depicts 912 days: memory is stable i



CD471 T cells obey a very similar program
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Biphasic contraction phase, memory phase not stallgle



Thanks to program: Simple mathematical model
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Simple mathematical model

During the expansion phase, i.e., when t < T, activated T
cells, A, proliferate according to

dA
= LA,
gt °

where p is the net expansion rate.

During the contraction phase, i.e., when t < T, activated T
cells, A, die and form memory cells:

dA
dM
— =rA—opyM
a M

where « is a parameter representing rapid apoptosis. .



Six CD8 epitopes: immunodominance of responses

NP396
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cruitment (and division rates for the last two).
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CD8 kinetics much faster than that of CD4s
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Acute and chronic LCMV: same GP33 epitope

gp33: LCMV Armstrong gp33: LCMV clone 13
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Data: John Wherry (J.Virol. 2003); modeling Christian Althaus

In chronic infection we find an earlier peak and a faster con-
traction.
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Acute and chronic LCMV: co-dominant NP396 epitope

NP396: LCMV Armstrong NP396: LCMV clone 13
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A ot more contraction: shift of immunodominance

Mechanism very different
e are the effector/memory cells fully functional?
e Wwhat are the rules at the end of the contraction phase



Viral load: LCMV Armstrong and clone 13
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2nd example: Vaccination to HIV/AIDS

e vaccines successfully boost CD81 T cell responses

e we know that CD8 response is very important

— depletion expts, HLA, immune escape

e vaccinated monkeys nevertheless have no sterilizing immu-
nity and very similar acute phase of infection.

e specific CD8T T cells do respond: failure not due to im-
mune escape

We know little about CTL Killing rates
e /n vitro high E: T ratios required
e HTLV-1: one CTL Kills about 5 target cells/d (Asquith.jgv05)

e 2PM movies: Killing takes more than 30 minutes
21



Two photon microscopy

l 3-D rendering

/ Dﬁxport movie for demonstration

b

Trace cells in vivo!
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Movies: Data from Mempel, Immunity, 2006

CTL: green, B cell purple, B cell death: white (52 min)2.3



Movies: Cellular Potts Model (advertisement)

With Joost Beltman and Stan Marée
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Data: SIV vaccination fails to affect acute dynamics
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How to explain failure of vaccination?

Simple model with pathogen growing faster than immune
response

dP kPE dE

—=17rP — and — = pFE |,

dt h+ P dt
where r > p, can typically not control the pathogen:

10°

P: pathogen, E: response
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Mathematical explanation

At high pathogen densities the model

dP kPE dFE
— =7rP — and — — pE ,
dt h+ P dt
approaches
dP dE
—=rP—-kEFE and — = pk .
dt dt

When P grows faster than E:

dP>O
dt

See: Pilyugin.bomb0OO

Per pathogen, per infected cell, the killing rate approaches

the Effector: Target ratio: —kFE/P.
27



Control when pathogen growth limited at high density

dP  rP kPE
dt 14+eP h4+P
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dl, p=1d! k=5dL



Interpretation

e Immune control only when E: T ratio is sufficiently large
e When pathogen grows faster than immune response this is

never achieved.
e Early innate control, or target cell limitation, is required for

cellular immune control
e antibody response can catch up with fast pathogen

CTL only control infections that are already controlled

Mechanistic statement:
cell-to-cell contacts — high E: T ratio — failure.
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Recruitment takes longer after vaccination
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Model with competitive recruitment of memory cells

drl rV

— = —dl —~I ,

dt 14 el

dpP kEP

— = ~N]—-6P— ,

dt hp, + P+ E

dN aN P

dt = hy+ N+ P’

dE NP EP

9t _ a I —dpE |
dt hg+N-+P  hy,+E+P

where V = pP is the quasi-steady-state viral load.
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Vaccination in model with memory T cells
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Starting with 102 or 103 memory CD8™T T cells gives lower
peak but similar up and down-slope rates.

SIV parameters; r=15d !, p=1d"1, k=5d 1. .



Starting with very many memory T cells
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Initial viral replication rate is same, downslope similar, but
peak is clearly blunted.

Same SIV parameters: r=15d 1, p=1d7 !, k=5 d;31.



Numbers game

e CTL kill only a handful of target cells d—1 (2PM)

e in HIVT human patients 10% specific cells in blood

— 0.1 x 1011 = 1010 HIV specific CD8t1 T cells

e in healthy CMVT human also 10% specific CD4T and
CD8T memory T cells, i.e., also 1019 cells (Louis Picker)

— apparently this many effector cells are required to control
set-point viremia in CMV and HIV

It takes time to grow 1010 CD8t effector/memory T cells
from initially small precursor populations

CTL can only control after pathogen has slowed down?

CDS8™1™ T cell vaccination in HIV will remain a failug;



Short lived (cross-reactive) memory

e although CTL numbers were boosted: no protection

— effector response was too late and too little

e T cell memory response typically require re-expansion

e effector cells in local tissues relatively short lived

— African sex workers contracted HIV after break

— CTL persisting in airways after influenza infection would
account for a cross-reactive memory waning on a time scale
of months (Tjibbe Donker & Vitaly Ganusov)
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Simple immune response models: do we need ODESs?

7 14 21
Time in days Time in days

Acute infection requires 3 + 5 parameters and chronic 4 + 5
parameters only. Much less than any ODE model.

To know infectivity we need pathogen load parameters only
(3—4); to appreciate memory, one would also need immune

response parameters.

What parameters are influenced most by host variabilit%/6?



Discussion

Mechanistic or statistical description of immune
response?

Which parameters are influenced most by host
variability?

Other questions?
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Total quasi steady state assumption

For the general scheme

Eu+Pu<—>C_>Eu+Pda

with the conservation equations

one can make the tQSSA dC/dt = 0 and obtain

N vmax P

- K+ E+P
where vmax IS the maximum reaction rate, and K is the
Michaelis Menten constant.

When P > K + E, the Killing rate of an infected cell ap-

proaches the E:T ratio: vmaxE/P .
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Viral load day 10 (copies mL™) m
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