Simple models of the immune response

What kind of immunology to improve epidemiology?

Rob J. De Boer

Theoretical Biology, Utrecht University, The Netherlands,

Extending epidemiology with immunology

- For most pathogens immune response is complex and poorly understood, at least quantitatively:
 - is infection controlled by humoral or cellular immunity?
 - what is the role of target cell limitation?
 - how important is the innate immune response?
- Unbalanced to extend simple (SIR) models with large and complicated immune system models:
 - Challenge is to develop appropriate caricature models
- Most important: Variability between individuals:
 - differences in pathogen load and infectivity
 - differences in type of immune response (Th1, Th2)
 - MHC and KIR polymorphism; SNPs in cytokine genes

CD8⁺ Cytotoxic T cells

From: Campbell & Reece, Biology 7th Ed, 2005: Fig. 43.16

Two caricatures of the immune response

- if pathogen is rejected: life long systemic memory
- → local T cell memory in tissue may be short lived
- T cell response seems programmed
- → expansion, contraction, and memory phase
- Chronic response looks similar, but is poorly understood
- → Human CMV and HIV-1: 10% of response specific

Large variability between hosts

- MHC (Björn Peters): polymorphism of > 1000 alleles
- → HIV-1: long term non progressors (Keşmir)
- KIR (NK cell receptor): many haplotypes with variant number of loci, inhibitory or stimulatory (Carrington: HIV-1).
- SNPs in various cytokine genes
- → host genotype influences type of immune response
- SNPs in Toll like receptor molecules
- → Adrian Hill, Ann Rev Gen 2006 (MAL/TLR4): malaria
- \rightarrow Mark Feinberg: Sooty Mangabeys no INF- α
- polymorphism in APOBEC3G (Sawyer, Plos Biol, 2004)

MHC alleles correlated with HIV-1 viral load

From: Kiepiela, Nature, 2004

MHC diversity due to frequency dependent selection?

From: Carrington.arm03 (left) and Trachtenberg.nm03 (right)

Can Keşmir: B58 is not only rare but very special

MHC diversity due to frequency dependent selection?

Model (DeBoer.ig04, Borghans.ig04):

- host-pathogen co-evolution model
- → bit strings for MHC and peptides
- diploid hosts and many (fast) pathogen species
- → heterozygote advantage by itself not sufficient
- → pathogen co-evolution: frequency dependent selection
- Can Keşmir and Boris Schmid: host gene frequencies are shifting towards protective HLAs, but HIV-1 is not.
- HIV-1 reverses crippling immune escape mutations in new hosts

HIV-1 reverses immune escape mutations in new hosts

Table 2 Fate of TW10 variants after transmission

Subject	HLA type	Time point	Genetic material	TSTLQEQI <u>G</u> W	Number of clones
SMH-05-Mother	B57 /7	5 months	DNA	NA-	16/16
		7 months	RNA	NA-	17/17
		8 years	DNA	NA-	13/13
			RNA	NA-	Population sequencing
SMH-05-Child	B7/-	2 months	DNA	NA-	14/14
		5 months	DNA	NA-	12/21
				A-	9/21
		7 months RNA	DNIA	NA-	6/12
			KNA	A-	6/12
		5 years	RNA	A-	16/16
		8 years	8 years DNA	NA-	3/17
				A-	14/17
				TSTLQEQI <u>A</u> W	

From: Leslie, Nature Medicine, 2004

HIV-1 sometimes reverses immune escape mutations

From: Asquith Plos Biol 2006

Pathogens and immune responses

- LCMV non cytolytic mouse virus: vigorous response
- → acute (Armstrong) and chronic (clone 13)
- Listeria infection: similar programmed response
- HIV-1, HBV, HCV: begin to be characterized
- Human influenza: innate, antibodies, CD8⁺ T cells
- Coccidios (Don Klinkenberg): detailed case study

Elaborate two examples: LCMV & HIV-1

LCMV: CD8 acute dynamics

C57BL/6 CD8⁺ T cell response to GP33 from LCMV Armstrong (data: Dirk Homann, model: DeBoer.ji03)

Expansion phase, contraction phase, and memory phase The inset depicts 912 days: memory is stable

CD4⁺ T cells obey a very similar program

C57BL/6 CD4⁺ T cell response to GP61 from LCMV Armstrong (data: Dirk Homann, model: DeBoer.ji03)

Biphasic contraction phase, memory phase not stable

Thanks to program: Simple mathematical model

expansion of activated cells contraction α memory cell t > Tt < T

Simple mathematical model

During the expansion phase, i.e., when t < T, activated T cells, A, proliferate according to

$$\frac{\mathrm{d}A}{\mathrm{d}t} = \rho A,$$

where ρ is the net expansion rate.

During the contraction phase, i.e., when t < T, activated T cells, A, die and form memory cells:

$$\frac{\mathrm{d}A}{\mathrm{d}t} = -(r+\alpha)A$$

$$\frac{\mathrm{d}M}{\mathrm{d}t} = rA - \delta_M M$$

where α is a parameter representing rapid apoptosis.

Six CD8 epitopes: immunodominance of responses

Immunodominance "explained" by small differences in recruitment (and division rates for the last two).

CD8 kinetics much faster than that of CD4s

Immunodominant $CD4^+$ (a) and $CD8^+$ (b) immune responses.

Acute and chronic LCMV: same GP33 epitope

Data: John Wherry (J.Virol. 2003); modeling Christian Althaus

In chronic infection we find an earlier peak and a faster contraction.

Acute and chronic LCMV: co-dominant NP396 epitope

A lot more contraction: shift of immunodominance

Mechanism very different

- are the effector/memory cells fully functional?
- what are the rules at the end of the contraction phase

Viral load: LCMV Armstrong and clone 13

Data: John Wherry (J.Virol. 2003); Picture: Christian Althaus

2nd example: Vaccination to HIV/AIDS

- vaccines successfully boost CD8⁺ T cell responses
- we know that CD8 response is very important
- → depletion expts, HLA, immune escape
- vaccinated monkeys nevertheless have no sterilizing immunity and very similar acute phase of infection.
- specific CD8⁺ T cells do respond: failure not due to immune escape

We know little about CTL killing rates

- in vitro high E:T ratios required
- HTLV-1: one CTL kills about 5 target cells/d (Asquith.jgv05)
- 2PM movies: killing takes more than 30 minutes

Two photon microscopy

Trace cells in vivo!

Movies: Data from Mempel, Immunity, 2006

CTL: green, B cell purple, B cell death: white (52 min).

Movies: Cellular Potts Model (advertisement)

With Joost Beltman and Stan Marée

Data: SIV vaccination fails to affect acute dynamics

Acute SHIV-89.6P response in naive (left) or vaccinated (right) Rhesus monkeys (Data: Barouch.s00, Figure: Davenport.jv04).

How to explain failure of vaccination?

Simple model with pathogen growing faster than immune response

$$\frac{\mathrm{d}P}{\mathrm{d}t} = rP - \frac{kPE}{h+P} \quad \text{and} \quad \frac{\mathrm{d}E}{\mathrm{d}t} = \rho E \ ,$$

where $r > \rho$, can typically not control the pathogen:

P: pathogen, E: response

Time in days

Mathematical explanation

At high pathogen densities the model

$$\frac{\mathrm{d}P}{\mathrm{d}t} = rP - \frac{kPE}{h+P} \quad \text{and} \quad \frac{\mathrm{d}E}{\mathrm{d}t} = \rho E \ ,$$

approaches

$$\frac{\mathrm{d}P}{\mathrm{d}t} = rP - kE \quad \text{and} \quad \frac{\mathrm{d}E}{\mathrm{d}t} = \rho E \ .$$

When P grows faster than E:

$$\frac{\mathrm{d}P}{\mathrm{d}t} > 0$$

See: Pilyugin.bmb00

Per pathogen, per infected cell, the killing rate approaches the Effector: Target ratio: -kE/P.

27

Control when pathogen growth limited at high density

$$\frac{\mathrm{d}P}{\mathrm{d}t} = \frac{rP}{1+\epsilon P} - \frac{kPE}{h+P} \quad \text{and} \quad \frac{\mathrm{d}E}{\mathrm{d}t} = \rho E \ ,$$

Time in days

P: pathogen, E: response

P: pathogen in absence of response

SIV parameters: r = 1.5 d⁻¹, $\rho = 1$ d⁻¹, k = 5 d⁻¹.

Interpretation

- Immune control only when E:T ratio is sufficiently large
- When pathogen grows faster than immune response this is never achieved.
- Early innate control, or target cell limitation, is required for cellular immune control
- antibody response can catch up with fast pathogen

CTL only control infections that are already controlled

Mechanistic statement: cell-to-cell contacts \rightarrow high E:T ratio \rightarrow failure.

Recruitment takes longer after vaccination

Data: Shiver.n02, Figure: Davenport.jv05

Model with competitive recruitment of memory cells

$$\begin{split} \frac{\mathrm{d}I}{\mathrm{d}t} &= \frac{rV}{1+\epsilon I} - dI - \gamma I \;, \\ \frac{\mathrm{d}P}{\mathrm{d}t} &= \gamma I - \delta P - \frac{kEP}{h_k + P + E} \;, \\ \frac{\mathrm{d}N}{\mathrm{d}t} &= -\frac{aNP}{h_a + N + P} \;, \\ \frac{\mathrm{d}E}{\mathrm{d}t} &= \frac{aNP}{h_a + N + P} + \frac{mEP}{h_m + E + P} - d_E E \;, \end{split}$$

where V = pP is the quasi-steady-state viral load.

Vaccination in model with memory T cells

Starting with 10^2 or 10^3 memory CD8⁺ T cells gives lower peak but similar up and down-slope rates.

SIV parameters: $r = 1.5 \; \mathrm{d}^{-1}$, $\rho = 1 \; \mathrm{d}^{-1}$, $k = 5 \; \mathrm{d}^{-1}$.

Starting with very many memory T cells

Initial viral replication rate is same, downslope similar, but peak is clearly blunted.

Same SIV parameters: $r = 1.5 \text{ d}^{-1}$, $\rho = 1 \text{ d}^{-1}$, $k = 5 \text{ d}^{-1}$.

Numbers game

- CTL kill only a handful of target cells d^{-1} (2PM)
- in HIV+ human patients 10% specific cells in blood
- ightarrow 0.1 imes 10¹¹ = 10¹⁰ HIV specific CD8⁺ T cells
- in healthy CMV⁺ human also 10% specific CD4⁺ and CD8⁺ memory T cells, i.e., also 10^{10} cells (Louis Picker)
- \rightarrow apparently this many effector cells are required to control set-point viremia in CMV and HIV

It takes time to grow 10^{10} CD8⁺ effector/memory T cells from initially small precursor populations

CTL can only control after pathogen has slowed down?

CD8⁺ T cell vaccination in HIV will remain a failuge

Short lived (cross-reactive) memory

- although CTL numbers were boosted: no protection
- → effector response was too late and too little
- T cell memory response typically require re-expansion
- effector cells in local tissues relatively short lived
- → African sex workers contracted HIV after break
- → CTL persisting in airways after influenza infection would account for a cross-reactive memory waning on a time scale of months (Tjibbe Donker & Vitaly Ganusov)

Simple immune response models: do we need ODEs?

Acute infection requires 3 + 5 parameters and chronic 4 + 5 parameters only. Much less than any ODE model.

To know infectivity we need pathogen load parameters only (3–4); to appreciate memory, one would also need immune response parameters.

What parameters are influenced most by host variability?

Discussion

Mechanistic or statistical description of immune response?

Which parameters are influenced most by host variability?

Other questions?

Total quasi steady state assumption

For the general scheme

$$E_u + P_u \leftrightarrow C \rightarrow E_u + P_d$$
,

with the conservation equations

$$E = E_u + C$$
 and $P = P_u + C$

one can make the tQSSA dC/dt = 0 and obtain

$$C \simeq \frac{v_{\text{max}}EP}{K+E+P}$$

where v_{max} is the maximum reaction rate, and K is the Michaelis Menten constant.

When $P \gg K + E$, the killing rate of an infected cell approaches the E:T ratio: $v_{\text{max}}E/P$

38

Data: Shiver.n02, Figure: Davenport.jv05

Data: Shiver.n02, Figure: Davenport.jv05

Data: Shiver.n02, Figure: Davenport.jv05