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Extending epidemiology with immunology

• For most pathogens immune response is complex and poorly

understood, at least quantitatively:

• is infection controlled by humoral or cellular immunity?

• what is the role of target cell limitation?

• how important is the innate immune response?

• Unbalanced to extend simple (SIR) models with large and

complicated immune system models:

• Challenge is to develop appropriate caricature models

• Most important: Variability between individuals:

• differences in pathogen load and infectivity

• differences in type of immune response (Th1, Th2)

• MHC and KIR polymorphism; SNPs in cytokine genes
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CD8+ Cytotoxic T cells

From: Campbell & Reece, Biology 7th Ed, 2005: Fig. 43.16
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Two caricatures of the immune response
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• if pathogen is rejected: life long systemic memory
→ local T cell memory in tissue may be short lived
• T cell response seems programmed
→ expansion, contraction, and memory phase
• Chronic response looks similar, but is poorly understood
→ Human CMV and HIV-1: 10% of response specific
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Large variability between hosts

• MHC (Björn Peters): polymorphism of > 1000 alleles

→ HIV-1: long term non progressors (Keşmir)

• KIR (NK cell receptor): many haplotypes with variant num-

ber of loci, inhibitory or stimulatory (Carrington: HIV-1).

• SNPs in various cytokine genes

→ host genotype influences type of immune response

• SNPs in Toll like receptor molecules

→ Adrian Hill, Ann Rev Gen 2006 (MAL/TLR4): malaria

→ Mark Feinberg: Sooty Mangabeys no INF-α

• polymorphism in APOBEC3G (Sawyer, Plos Biol, 2004)
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MHC alleles correlated with HIV-1 viral load

From: Kiepiela, Nature, 2004
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MHC diversity due to frequency dependent selection?

From: Carrington.arm03 (left) and Trachtenberg.nm03 (right)

Can Keşmir: B58 is not only rare but very special
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MHC diversity due to frequency dependent selection?

Model (DeBoer.ig04, Borghans.ig04):

• host-pathogen co-evolution model

→ bit strings for MHC and peptides

• diploid hosts and many (fast) pathogen species

→ heterozygote advantage by itself not sufficient

→ pathogen co-evolution: frequency dependent selection

• Can Keşmir and Boris Schmid: host gene frequencies are

shifting towards protective HLAs, but HIV-1 is not.

• HIV-1 reverses crippling immune escape mutations in new

hosts
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HIV-1 reverses immune escape mutations in new hosts

From: Leslie, Nature Medicine, 2004
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HIV-1 sometimes reverses immune escape mutations

From: Asquith Plos Biol 2006
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Pathogens and immune responses

• LCMV non cytolytic mouse virus: vigorous response

→ acute (Armstrong) and chronic (clone 13)

• Listeria infection: similar programmed response

• HIV-1, HBV, HCV: begin to be characterized

• Human influenza: innate, antibodies, CD8+ T cells

• Coccidios (Don Klinkenberg): detailed case study

Elaborate two examples: LCMV & HIV-1
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LCMV: CD8 acute dynamics
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C57BL/6 CD8+ T cell response to GP33 from LCMV Arm-
strong (data: Dirk Homann, model: DeBoer.ji03)

Expansion phase, contraction phase, and memory phase
The inset depicts 912 days: memory is stable
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CD4+ T cells obey a very similar program
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C57BL/6 CD4+ T cell response to GP61 from LCMV Arm-
strong (data: Dirk Homann, model: DeBoer.ji03)

Biphasic contraction phase, memory phase not stable
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Thanks to program: Simple mathematical model
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Simple mathematical model

During the expansion phase, i.e., when t < T , activated T

cells, A, proliferate according to

dA

dt
= ρA,

where ρ is the net expansion rate.

During the contraction phase, i.e., when t < T , activated T

cells, A, die and form memory cells:

dA

dt
= −(r + α)A

dM

dt
= rA− δMM

where α is a parameter representing rapid apoptosis.
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Six CD8 epitopes: immunodominance of responses
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Immunodominance “explained” by small differences in re-

cruitment (and division rates for the last two).
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CD8 kinetics much faster than that of CD4s
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Immunodominant CD4+ (a) and CD8+ (b) immune responses.
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Acute and chronic LCMV: same GP33 epitope
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Data: John Wherry (J.Virol. 2003); modeling Christian Althaus

In chronic infection we find an earlier peak and a faster con-

traction.
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Acute and chronic LCMV: co-dominant NP396 epitope
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A lot more contraction: shift of immunodominance

Mechanism very different

• are the effector/memory cells fully functional?

• what are the rules at the end of the contraction phase19



Viral load: LCMV Armstrong and clone 13
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Data: John Wherry (J.Virol. 2003); Picture: Christian Althaus
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2nd example: Vaccination to HIV/AIDS

• vaccines successfully boost CD8+ T cell responses

• we know that CD8 response is very important

→ depletion expts, HLA, immune escape

• vaccinated monkeys nevertheless have no sterilizing immu-

nity and very similar acute phase of infection.

• specific CD8+ T cells do respond: failure not due to im-

mune escape

We know little about CTL killing rates

• in vitro high E:T ratios required

• HTLV-1: one CTL kills about 5 target cells/d (Asquith.jgv05)

• 2PM movies: killing takes more than 30 minutes
21



Two photon microscopy

Trace cells in vivo!
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Movies: Data from Mempel, Immunity, 2006

CTL: green, B cell purple, B cell death: white (52 min).
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Movies: Cellular Potts Model (advertisement)

With Joost Beltman and Stan Marée
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Data: SIV vaccination fails to affect acute dynamics

Virus rates:
replication: 1.7 d−1

contraction: 0.7 d−1

CD8+ T cells:
expansion: 0.9 d−1

Acute SHIV-89.6P response in naive (left) or vaccinated (right) Rhesus

monkeys (Data: Barouch.s00, Figure: Davenport.jv04).
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How to explain failure of vaccination?

Simple model with pathogen growing faster than immune
response

dP

dt
= rP −

kPE

h + P
and

dE

dt
= ρE ,

where r > ρ, can typically not control the pathogen:
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Mathematical explanation

At high pathogen densities the model

dP

dt
= rP −

kPE

h + P
and

dE

dt
= ρE ,

approaches

dP

dt
= rP − kE and

dE

dt
= ρE .

When P grows faster than E:

dP

dt
> 0

See: Pilyugin.bmb00

Per pathogen, per infected cell, the killing rate approaches
the Effector:Target ratio: −kE/P .

27



Control when pathogen growth limited at high density

dP

dt
=

rP

1 + εP
−

kPE

h + P
and

dE

dt
= ρE ,
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P: pathogen, E: response

P: pathogen in absence of
response

SIV parameters: r = 1.5
d−1, ρ = 1 d−1, k = 5 d−1.
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Interpretation

• Immune control only when E:T ratio is sufficiently large

• When pathogen grows faster than immune response this is

never achieved.

• Early innate control, or target cell limitation, is required for

cellular immune control

• antibody response can catch up with fast pathogen

CTL only control infections that are already controlled

Mechanistic statement:

cell-to-cell contacts → high E:T ratio → failure.
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Recruitment takes longer after vaccination

Data: Shiver.n02, Figure: Davenport.jv05
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Model with competitive recruitment of memory cells

dI

dt
=

rV

1 + εI
− dI − γI ,

dP

dt
= γI − δP −

kEP

hk + P + E
,

dN

dt
= −

aNP

ha + N + P
,

dE

dt
=

aNP

ha + N + P
+

mEP

hm + E + P
− dEE ,

where V = pP is the quasi-steady-state viral load.
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Vaccination in model with memory T cells
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Starting with 102 or 103 memory CD8+ T cells gives lower

peak but similar up and down-slope rates.

SIV parameters: r = 1.5 d−1, ρ = 1 d−1, k = 5 d−1.
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Starting with very many memory T cells
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Initial viral replication rate is same, downslope similar, but

peak is clearly blunted.

Same SIV parameters: r = 1.5 d−1, ρ = 1 d−1, k = 5 d−1.
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Numbers game

• CTL kill only a handful of target cells d−1 (2PM)
• in HIV+ human patients 10% specific cells in blood
→ 0.1× 1011 = 1010 HIV specific CD8+ T cells
• in healthy CMV+ human also 10% specific CD4+ and

CD8+ memory T cells, i.e., also 1010 cells (Louis Picker)

→ apparently this many effector cells are required to control
set-point viremia in CMV and HIV

It takes time to grow 1010 CD8+ effector/memory T cells
from initially small precursor populations

CTL can only control after pathogen has slowed down?

CD8+ T cell vaccination in HIV will remain a failure
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Short lived (cross-reactive) memory

• although CTL numbers were boosted: no protection

→ effector response was too late and too little

• T cell memory response typically require re-expansion

• effector cells in local tissues relatively short lived

→ African sex workers contracted HIV after break

→ CTL persisting in airways after influenza infection would

account for a cross-reactive memory waning on a time scale

of months (Tjibbe Donker & Vitaly Ganusov)

35



Simple immune response models: do we need ODEs?
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Acute infection requires 3 + 5 parameters and chronic 4 + 5
parameters only. Much less than any ODE model.

To know infectivity we need pathogen load parameters only
(3–4); to appreciate memory, one would also need immune
response parameters.

What parameters are influenced most by host variability?
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Discussion

Mechanistic or statistical description of immune

response?

Which parameters are influenced most by host

variability?

Other questions?
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Total quasi steady state assumption

For the general scheme

Eu + Pu ↔ C → Eu + Pd ,

with the conservation equations

E = Eu + C and P = Pu + C

one can make the tQSSA dC/dt = 0 and obtain

C '
vmaxEP

K + E + P

where vmax is the maximum reaction rate, and K is the

Michaelis Menten constant.

When P � K + E, the killing rate of an infected cell ap-

proaches the E:T ratio: vmaxE/P
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Data: Shiver.n02, Figure: Davenport.jv05
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Data: Shiver.n02, Figure: Davenport.jv05
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Data: Shiver.n02, Figure: Davenport.jv05
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