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Outline:

Recent experimental results show that even brief stimulation with
antigen can cause antigen-specific CD8 T-cells to undergo sus-
tained proliferation followed by differentiation into memory cells.
These results show that the dynamics of these immune responses
are not governed by constant monitoring of antigen levels, but
rather that following stimulation immune cells commit to a “pro-

gram”.

In this talk, I will

(i) develop the mathematical framework for modeling immune re-
sponses with antigen-independent proliferation phase;

(ii) use this framework together with experimental data to de-
scribe basic principles of the immune program.



Dynamics of the CD8 response:



Traditional modeling approach:

Traditional models of CD8 and other immune responses are for-
mally similar to predator-prey models in ecology. In these models,
the proliferation of immune cells (predators) is continuously up-
dated according to the abundance of the pathogen (prey) present
in the body (ecosystem).

These models include subpopulations of naive, activated/effector
and memory cells and successfully reproduce various dynamic fea-
tures of the immune response

(i) basic expansion-contraction dynamics;
(ii) generation of immunodominance;

(iii) synchrony in the contraction phase;
(iv) generation of memory.

However...



Predator-prey models fail to explain:

Antigen-independent expansion

Full scale immune responses can be induced even by brief antigenic
stimulation (Murali-Krishna et. al., 1998; Mercado et. al., 2000;
Wong and Pamer, 2001; vanStipdonk et. al. 2001; Kaech and
Ahmed, 2001; Bevan and Fink, 2001). These studies suggest the

immune response is ”programmed” early during the infection.

Lack of compensation by subdominant response

The immunodominant and subdominant responses appear to be-
have nearly independently of each other and the removal of the
dominant epitope does not result in in a compensatory increase
in the subdominant response (Vijh et al., 1999; van der Most et
al., 1996).



The simplest possible program: formulation

Following initial stimulation, the CD8 cells progress through a
fixed program of expansion, contraction, and differentiation to
memory. In the simplest case, all cells undergo a fixed number of
divisions and then a fixed fraction of cells is converted to memory.

Nomenclature: P - pathogen, N- naive CD8, E - proliferating /
effector CD8, M - memory CDS8, 7 -time since recruitment.

Strict program:

where



The simplest possible program: results

1. For severe infections (such as LCMYV), the process of recruit-
ment is relatively short. The magnitude of the response to each
epitope will be proportional to the frequency of precusor cells.

2. Differences in timing of recruitment for different epitopes will
result in different timing of the peak of the response.

3. Responses to different epitopes are nearly independent. Thus
removal (or change) of the response to one epitope will not affect
the responses to other epitopes.

The strict program fails on three main counts:

1. Kaech and Ahmed (2001) showed that infections with higher
doses result in both greater fraction of cells recruited and a larger
per capita expansion of recruited cells.

2. Precursor frequency is not the only factor contributing to im-
munodominance. The time of recruitment also contributes to
immunodominance (Yewdell and Bennik, 1999; DeBoer et. al.,
2001).

3. The data suggests that peaks of responses to different epitopes
are synchronous (Murali-Krishna et. al., 1998; DeBoer et. al.,
2001).
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Incorporating antigen-dependent expansion:

We modify the strict program by introducing the window of anti-
gen dependent expansion prior to the onset of antigen independent
program. During this window, expansion of immune cells may be
enhanced if antigen is present.
0 0

(57 + 5-)vit;™) = F(P@),,7) yilt,7).
The window of antigen dependent proliferation must be relatively
short and it must end prior to the clearance of the pathogen be-
cause
(i) duration and/or magnitude of the exposure to pathogen affects
the magnitude of the expansion;
(ii) there must be a lack of compensation by subdominant epi-
tope(s) when the dominant epitope is removed.

We assume that this window starts immediately after recruitment.
Then we consider two alternative models in which the duration
of this window is determined by an internal signal or an external
signal.



Internal vs. external signal:

Internal signal:

F(P(),t,7) = L)

— 3 D2\ F on, /off ],

and
F(P(t)7t7 T) = F(T)a T g [TonaToff]-

The window of antigen dependent expansion is determined by the
time since recruitment, it turns on at 7 = 7,, and turns off at

T = Tof- (In our simulations, we used 7., = 0 and 7o = 1 day.)

External signal:

F(P(1),t,7) = L)

= —=+F t € |ton, tof],

and
F(P(t),t,7) = F(1), t & [ton, loft]-

The window of antigen dependent expansion is determined by the
time since infection, it turns on at t = t,, and turns off at t = t.g.

(In our simulations, we used ton, = 0 and tog = 2 days.)



Summary of different models:

Model Predator Strict Internal  External
General features Prey Program  Signal Signal
1. Expansion, contraction,
memory phases yes yes yes yes
2. Antigen independent
expansion phase no yes yes yes
3. Magnitude of expansion
regulated by antigen yes no yes yes
Epitope-specific features
4. Responses to different
epitopes are independent no yes yes yes
5. Synchrony at peak yes no no yes
6. Immunodominance
(a) precursor frequency yes yes yes yes
(b) timing of recruitment yes no no yes




Discussion: why have a program?

At first glance, continual updating might seem to be a more ef-
ficient way to deal with pathogen challenge, in that the immune
response can be more finely tuned and optimized to the current
infection. However, viruses and bacteria employ an extensive ar-
ray of mechanisms that serve to subvert immune responses, and
potentially this sensing apparatus (Gooding, 1992; Evans and
Desrosiers, 2001). This sort of subversion could be avoided if
an antigen-independent program is set before the pathogen has
the opportunity to alter it, i.e., early in infection while pathogen
density is low. Program responses, while less efficient, are likely
to be more robust in that they will be less prone to interference
from the pathogen.

Given a programmed response, what would we expect its features
to be? Since the pathogen environment is highly variable (un-
predictable) and there is no fine-tuning possible, the expansion
program must err on the side of caution, typically overshooting
the necessary number of CD8 cells required to clear the pathogen.
This is indeed what is observed. CD8 proliferation continues well
beyond the point of pathogen clearance in many infections. Im-
munodominance experiments illustrate jsut how markedly the im-
mune system overshoots most infections: following removal of the
immunodominant response to LCMV or Listeria, the subdomi-
nant responses do not increase substantially and and despite their
far lower peak densities, suffice to control these pathogens.
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Further studies:

1. Generate a cell-cycle based model for immune program;

2. Incorporate a lag of about one day (vanStipdonk et. al.,2001)
following recruitment of naive cells during which the cells do not
proliferate.

3. Study the effect of gradual change from effector to memory
function p(t).

4. Explicitly consider the program for memory cells.

5. Consider how the presence of antigen during the contraction
phase may result in the generation of anergy rather than mem-
ory cells, and apply this to consider persistent infections in more
detail.

6. Consider the how antigen independent proliferation may alter
the dynamics of CD4 T cells and B cells.
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Problem:

We would like to estimate various kinetic parameters of the cell
cycle from experimental data. Specifically, we need a reliable an-
alytical tool for estimating the rates of cell division and cell death
that govern the rate of change in the total cell population.

Example:

We would like to understand the mechanism of homeostatic reg-
ulation for immune memory which results in a nearly constant
cell population. Does such population consist of quiescent cells
or there is a balanced turnover of cells? If turnover occurs, how
do cells progress through the cell cycle so that division and death
processes balance each other?

Avazlable data:
Development of CFSE dye dilution experiments allows for accu-
rate tracking of the number of divisions that a given cell has un-

dergone following transfer in vivo.



Traditional method:

Formulate a specific model for cell division and death and fit this
model to the data.

Problems with traditional method:

1. We cannot be sure of the specific model. Two different models

may produce equally good fits to the data.

2. The data may be insufficient to unambiguously determine pa-
rameters of the model. Several parameter combinations may fit

the data equally well.

3. If the specific model involves distributed variables, then we have
to make additional assumptions on the form of initial conditions.



Illustration: Smith-Martin model
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General model: assumptions

(i) Cells proliferate by binary fission, which is viewed as an event
when one mother cell leaves its generation and at the same time
two identical daughter cells enter the next generation.

(ii) The cell population is homogeneous, that is, cells in different
age classes (generations) exhibit identical behavior which is inde-
pendent of the behavior of other cells or a given cell’s genealogy.

(iii) The generation time (defined as the time required for a cell
to complete the cell cycle) is a random variable that depends only
on the time since the cell entered the generation as a newborn
daughter.

(iv) Cell death (the removal of cells from the population) is a
random event whose probability of occurence depends only on the
time since the birth of a given cell.

(v) The probability that division and death events occur simulta-
neously is negligibly small.

(vi) The system is closed, so that new cells enter the population
only through division.



General model: equations

We let z,(t,s) denote the density of cells in the n-th generation
at time ¢ which have already spent s time units in this age class.
We call s the age of cells inside the generation. We let A(s) denote
the probability rate of cell division at age s and d(s) denote the
probability rate of cell death at age s inside the generation.

0z, (t,s) N 0z, (t,s)

ot 5 = —(A(s) +d(s))zalt,s), n 20 (1)

The total number of cells that divide anywhere between the times
t and t + dt is given by

( /O " A(S)zn(t, 5) ds) dt,

and therefore twice the number of cells enter the next generation
between t and t + dt. The dynamics of consecutive generations
are coupled through the boundary condition

z,(t,0) = 2/00 A(8)Tn_1(t,s) ds, n > 1. (2)

We let X, (t) = [;° @n(t, s)ds denote the total number of cells in
n-th generation at time t. A typical data set is a table of values

Xn(tm), n = O, 1, ---,Nmaxa tm € {tl,tg, ...,tk}.
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Rescaled model: equations

The boundary condition given by equation (2) can be considered
as the rate of external input of cells into the n-th generation.
Equation (1) is linear, therefore rescaling the external input by
a factor of a > 0 will result in the identical rescaling of the
cell density z,(t,s). The dynamics of the rescaled cell densities

Tn(t,s,a) = a™x,(t, s) satisfy the equations

0z, (t,s,a) N 0z, (t,s,a)

ot 5. = ~(A(s) +d(s))an(t,s,0),  (3)

(4,0, 0) = 2a /O T A(S)n_1(t 5, a) ds. )

We let X, (t,a) = a" X, (t) = fooo Zn(t, s,a)ds. The total number
of cells in the rescaled population is

o0

X(t,a) = Z Xn(t,a).

n=0



Rescaled model: characteristic equation

Adding up equations in (3) and (4), we obtain

0z(t,s,a) 4 0z(t, s, a)

ot ds —(A(s) +d(s))z(t, s, a),

2(£,0,a) = 2a /O T AS)z(t, 5, a) ds.

Substitution z = e"(®U(s) yields the eigenfunctions

) = exp(~ | “A(2) +d(2)) dz) = exp(—A(s) — D(s)),

and the characteristic equation

1= 2a/ A(s)e AE)=D(s)g=ra)s g, (5)
0

Method of rescaling:

For a given experimental time series X,,(t), we generate a family
of rescaled time series X, (t,a), calculate the change in the total
population size X (¢,a) with time, and evaluate the exponential
proliferation rate r(a) for each value of a. Theoretically, we can
obtain the function r(a) by manipulating a single time series.



Which parameters can we estimate?

(1) In theory, we can find the generating kernel A(s)e=2()=D(s)

by inverting the Laplace transform given by (5). Nevertheless, we
cannot infer A(s) or D(s) without some additional assumptions.
Roughly speaking, we cannot estimate birth or death rate within
the cell cycle.

(2) The parameters that we can estimate must therefore describe
the kinetics of a complete cell cycle. For example, we can esti-
mate the probability that a cell dies before dividing (D), or the
mean generation time for surviving cells (7") and its higher order

moments.

(3) The probability that a cell divides before dying is
1-D= / A(s)e A =D(s)gg, (6)
0

Here we assume that all cells eventually divide, i.e. A(s) = oo.

(4) The mean generation time for surviving cells is

_ 1 = —A(s)—D(s)
T = 1_D/0 sA(s)e ds. (7)

(5) The variance of generation times for surviving cells is
1 O
03 = 7/ s2A\(s)e M -D) g — 72, (8)
1-D J,
2
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FEvaluating D and 1 — D:

Compare equations (5) and (6):

1 / A(s)e=2O=D(E)g=r(@)s g (5)
2a 0
1-D= / A(s)e A =D(s)gg, (6)
0

Let a* be such that r(a*) = 0. Equations (5) and (6) imply that

1-D=(2a")"", D=1-(2a")""1.



Evaluating T :

We implicitly differentiate (5)
1= Qa/ A(s)e AE)=D(s)g=rla)s g, (5)
0

with respect to a at the point @ = a* and substitute r(a*) = 0 to
obtain

0= 2/ )\(S)G_A(S)_D(s)ds _ QG*T,(G*) / S)\(S)G_A(S)_D(S)ds.
0 0

This equation can be simply written as

L @) T-D) =0,

a

and since 2a*(1 — D) = 1, we derive that

FEvaluating agr:
Repeated implicit differentiation of (5) yields

o = 72(1 + (a*)2r”(a*)T>.



Analysis of memory cell data:

t (days)
X0 2 4 7T 29
0 99.6 99.0 93.0 224
1 0.3 1.0 4.0 62.5
n 2 0.0 00 1.0 89
3 0.0 00 08 1.8
4 0.0 0.0 00 0.6
5 0.0 00 00 0.0
6+ 0.0 00 00 0.0

0.02 -

60 105
148 4.9
33.7 12.0
29.7 27.0  (T)
14.1 26.3
42 19.1
2.4 10.1

1.1 0.6

-0.02

-0.04

The dotted line is the graph r = r(a) obtained from the data.
The 99% confidence intervals for r(a) are represented by the thin

solid lines. From this graph, we estimated the average survival as

1 —D = 0.5 and the mean generation time as 7 = 36.9 days.
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Limitations of the rescaling technique:

(1) Truncation errors: we can only detect a maximum of between
5-10 divisions. Therefore, the data excludes the cells with higher
generation numbers and the truncation errors occur. If we use
the explicit solutions for a specific underlying model to fit the
truncated data, then we are likely to obtain a better fit to the data;
unfortunately, such estimates would depend on the underlying
model.

(2) The rescaling method evaluates the function 7(a) assuming
that the population size changes exponentially. To increase the
accuracy of the method, the population must be allowed to acquire
the phase of exponential growth while having undergone a limited
number of divisions (when the truncation errors are minimal, see

above).

(3) The key assumption of our model (which may be invalid in
some biological cases) is that the cell turnover is independent of
both time and number of divisions.

Advantages of the rescaling technique:

(1) No dependence on specific model, no extra assumptions on the
cell cycle, no ambiguity in parameter estimation.

(2) In theory, we can obtain the characteristic equation (5) of the

model from a single time series.

2-12



