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The challenge of using wind energy 
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This is 5-min data of energy injected by a wind farm 

Wind: complex to forecast; 
high-dimensional process. 

f(v,θ)=p active power balance 

reactive power balance g(v,θ)=q 

Net power injections at each bus (node) 
from generators and loads, including wind 

Generating units must balance variations  
from stochastic injections (load:- and wind:+) in real-time. 
The control relies on frequency changes 
 and on signals sent by the system operator. 

voltage magnitude and angle at each bus,  
assuming steady state @ 60Hz 

60 Hz 59.95 Hz 60.05 Hz 

Loads Generators 

bus: 
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Decision time lag for steam turbines 
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Start-up of a gas-fired steam turbine 
after a 7-hour shutdown. 

F.P. de Mello, J.C. Wescott, Steam Plant Startup and Control 
in System Restoration, IEEE Trans Power Syst 9(1) 1994 
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Steam units need time to start up and 
be online (spin at required frequency). 
They must be committed to produce 
power in advance.  

Ignition (estimate) 

time lag 

Initial period where  
     the unit is committed to produce power 

Time  
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Aggregated cost curves say: Do not wait too long 

Units that can be  
started up on  
short notice 

Units to be 
committed 
in advance must-run units 

Cumulative Capacity [MW] 
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Cost-based offer curve of dispatchable units 

Capacity [GW] 

Assumptions for this graph:  
No transmission constraints. No startup costs. 
Not plotted: Pumped Storage , Hydro, Wind, Solar. 
We are plotting curves from cost estimates, not bids. 
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Offer dynamics for peaker units 
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daily bids of a combustion turbine bidding a single price-quantity block, year 2010 

summer 
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Multistage stochastic unit commitment 

Stochastic formulation with startup decision time lags δj (12h, 6h, 3h, 1h,…) 

given  {Wtj } : random process for variable energy resource j in JVER 

 {Lt }   : random demand process 

 

minimize 𝔼{     
𝐽
𝑗=1

𝑇
𝑡=1 ctj

start vt-δj, tj+ ctjpttj}       startup & energy cost 

subject to   
𝐽
𝑗=1  pttj = Lt a.s., for each t  

constraints for dispatchable j∈ JD , for each t: 

  vt-δj, tj - wt-δj, tj =  ut-δj, tj  –ut-δj-1, t-1, j  

  ut-δj, tj      Pj ≤ pttj ≤ ut-δj, tj Pj  

  -Rj
down ≤ pttj – pt-1, t-1, j ≤ Rj

up 

  … 

constraints for variable energy resources j in JVER 

  pttj ≤ ut-δj, tjWtj    a.s., for each t 

  ut-δj, tj  , vt-δj, tj , wt-δj, tj ∈ {0,1}. 

capacity constraints 

ramping constraints 

lagged startup decisions 

[curtailment] 

energy balance 

t t’ j 
Ft-measurable 

decision for 
time t’ 

unit j 

0-1 indicator of  
startup at time t 

# units # periods output of unit j 

startup cost energy unit-cost 

0-1 shutdown indicator 

 
0-1 online 
state 

(simplified statement) 

(assuming NO demand-side flexibility) 
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Multistage stochastic unit commitment 

updated 
information 

samples in 
high-dimensional  
uncertainty space 

D-1 
12:00 

D-1 
18:00 

D 
0:00 

D 
1:00 

D 
… 

Locked  
commitments 
for slow-start units 

recommitments and redispatching 
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Two-stage stochastic unit commitment 

Stochastic MILP formulation in the day-ahead paradigm: 

Time lags δj valued in {12h, 0h} only (slow- and fast- start). 

minimize 𝔼{     
𝐽
𝑗=1

𝑇
𝑡=1 ctj

start vt-δj, tj+ ctjpt-δj,tj} 

subject to   
𝐽
𝑗=1  pttj = Lt a.s., for each t 

 constraints for dispatchable j∈ JD : 

  v0tj –w0tj = u0tj   –u0, t-1, j j in slow-start units: 

  u0tjPj ≤ pttj≤ u0tjPj   lock the day-ahead startups 

  vttj -wttj =  uttj  –ut-1, t-1, j j in fast-start units: 

  uttjPj ≤ pttj ≤ uttjPj   do not lock day-ahead startups 

  -Rj
down ≤ pttj – pt-1, t-1, j ≤ Rj

up 

 constraints for variable energy resources j in JVER 

  pttj ≤ uttj Wtj    a.s., for each t 

  u0tj  , v0tj , w0tj (j slow), uttj , vttj , wttj (j fast)     ∈ {0,1}. 

Each u0tj (j slow start) is implemented as a here-and-now decision. 
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Two-stage stochastic unit commitment 

Perfect dispatch over day D 
(since whole day is visible) 

samples in 
high-dimensional  

scenario space 

D-1 
12:00 

0:00-23:55 (i.e. whole day D) 

Locked  
commitments 
for slow-start units 

updated 
information 



B. Defourny (Princeton)         The best-deterministic method for the stochastic unit commitment problem      DIMACS  2/21/2013         10/28 

Deterministic unit commitment 

Wtj , Lt  are set to forecasts W0tj , L0t .   W0tj
  

minimize    
𝐽
𝑗=1

𝑇
𝑡=1 ctj

start v0tj + ctj p0tj 

subject to   
𝐽
𝑗=1 p0tj= L0t 

    
𝐽D

𝑗=1 (u0tj Pj –p0tj) ≥ S0t  S0t
 
 
 

constraints for dispatchable j∈ JD : 

  v0tj - w0tj = u0tj–u0, t-1, j  

  u0tj     Pj ≤ p0tj≤ u0tjPj  

  -Rj
down ≤ p0tj – p0, t-1,j ≤ Rj

up 

   

constraints for variable energy resources j in JVER 

  p0tj ≤ u0tj  W0tj    W0tj
  

  u0tj  , v0tj , w0tj ∈ {0,1}. 

Each u0tj (j slow start) is implemented as here-and-now decision. 

 

output of variable energy source 
load 

0 t j 
F0-measurable 

decision for 
time t 

unit j 

reserve requirements 
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Practical complexity of stochastic unit commitment 

  1968 
Early stochastic  
mixed-integer 
linear programming 
(MILP) model for 
unit commitment 

1990 
parallel 
computing for 
solving stochastic 
programs 

2006 
Convex 
multistage  
stochastic  
programming 
is intractable (*) 

2010 
PJM completes a 6-year effort 
of deploying and integrating its 
security-constrained MILP unit 
commitment 

min f(x)+  pk
𝐾
𝑘=1  g(x,yk,𝝃k) 

s.t.   x ∈ 𝒳,  yk ∈ 𝒴(x, 𝝃k)  k=1,…,K. 

Dream: solve the 2-stage MILP model 
probability of scenario k 

scenario k 

1st-stage decision 

2nd-stage decisions 

Abstract idealized setup: 

Reality:  
We have tools to reduce to 1-2%  
the optimality gap of the MILP 

min f(x)+ g(x,y,𝝃) 
s.t.   x ∈ 𝒳,  y ∈ 𝒴(x, 𝝃). 

(*) For generic convex programs, using 
the sample average approximation 

SP: 
P(𝝃): 
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Best-Deterministic Approximation 

• Let v*, S be the optimal value and first-stage solution set of the stochastic 
program. Let x*∈ S. 

• Let v(x) be the optimal value of the stochastic program when the first-
stage decision is fixed to x. We have v(x*)=v*  for all x*∈ S. 
 v(x) can be evaluated by optimizing separately over each scenario. 

• Let S’(𝝃) be the optimal first-stage solution set of the stochastic program 
with its probability distribution degenerated to 𝝃. Let x’(𝝃) ∈ S’(𝝃). 

• Value of the Stochastic Solution [Birge 1982]: 

 VSS = v(x’(𝝃 ))-v(x*)     where 𝝃 =  pk𝐾
𝑘=1  𝝃k  

 

• Value of the stochastic solution over the best-deterministic solution: 

  VSSBD =  inf𝝃∈𝚵 [v(x’(𝝃))- v(x*)]   for 𝚵 : space easy to cover.  

• Best-deterministic approximation: 
 Try to find 𝝃* ∈ argmin𝝃∈𝚵 v(x’(𝝃 ))   and then implement x’(𝝃*). 

 

J.R. Birge, The value of the stochastic solution in stochastic linear programs 
with fixed recourse, Math. prog. 24, 314-325, 1982. 
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Pictorial representation for the VSS-BD 

Scenario Space 
Deterministic  
 Space 

Search   space 

Near-optimal solution  
to two-stage stochastic MILP 

First-stage solution to  
deterministic MIP 

Solutions to stochastic MILP 
with fixed first-stage decision 
(fully separable). 

Mean  

Goal: 
 

minimize    VSSBD 

given      search space, 
      cpu time budget. 

v* 

𝚵 
𝝃𝟏 
𝝃𝟐 𝝃𝟑 

v(x1(𝝃𝟏)) v(x2(𝝃𝟐)) v(x3(𝝃𝟑)) 

x1(𝝃𝟏) x2(𝝃𝟐) x3(𝝃𝟑) 
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“Best-Deterministic” unit commitment 

Wtj , Lt  are set to planning forecasts  W0tj
 , L0t
 
  
.  

minimize    
𝐽
𝑗=1

𝑇
𝑡=1 𝑐tj 

start v0tj + ctj p0tj 

subject to    
𝐽
𝑗=1 p0tj=   L0t

  

    
𝐽D

𝑗=1 (u0tj Pj –p0tj) ≥ S0t
 
 
   

constraints for dispatchable j∈ JD : 

  v0tj - w0tj = u0tj–u0, t-1, j  

  u0tj     Pj ≤ p0tj≤ u0tjPj  

  -Rj
down ≤ p0tj – p0, t-1,j ≤ Rj

up 

 

constraints for variable energy resources j in JVER 

  p0tj ≤ u0tj   W0tj
  

  u0tj  , v0tj , w0tj ∈ {0,1}. 

Each u0tj (j slow start) is implemented as here-and-now decision. 

reserve needs may be added/modified. 

In our tests, we take quantiles  
of the predictive distributions 

planning forecast 

0 t j 
F0-measurable 

decision for 
time t 

unit j 
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VSS-BD for unit commitment (test 1) 

Expected Cost Time [s] Gap [%] Loss [%] 

Stochastic MIP  
    high-accuracy 2.70335e+07 285.93 0.10 0.00 

Stochastic MIP 2.70501e+07 9.11 0.46 0.06 

Middle scenario 2.78027e+07 2.90 0.48 2.85 

Mean scenario 2.71157e+07 1.56 0.46 0.30 

50-quantile 2.77531e+07 0.92 0.41 2.66 

60-quantile 2.70375e+07 0.75 0.48 0.01 

70-quantile 2.73184e+07 0.21 0.33 1.05 

~ ~ ~ ~ 

~ ~ ~ ~ 
~ ~ ~ ~ 

fast-start 

day-ahead start 

CT1 CT2 CT3 CT4 

ST1 ST2 ST3 ST4 

ST5 ST6 ST7 ST8 
net load 

code:     www.princeton.edu/~defourny/MIP_UC_example.m 

5 scenarios 𝝃k of net load [MW] 

60th-percentile scenario [MW] 
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VSS-BD for unit commitment (test 2) 

Test with transmission constraints. Expected Cost Time [s] Gap [%] Loss [%] 

Stochastic MIP 2.00287e+07 19481.00 0.50 0.00 
Stochastic MIP 
    low accuracy 

 
2.00552E+07 1657.00 0.85 0.13 

60-60-60  quantile 2.04341e+07 31.67 0.50 2.02 

60-60-70  quantile 2.01821e+07 0.84 0.43 0.77 

60-70-60  quantile 2.01821e+07 0.78 0.45 0.77 

70-60-60  quantile 2.04505e+07 0.81 0.43 2.11 

60-70-70  quantile 2.01514e+07 1.79 0.42 0.61 
60-70-70  quantile 
    high accuracy 2.00866e+07 2.45 0.00 0.30 

70-70-60  quantile 2.01514e+07 1.51 0.47 0.61 
70-70-60  quantile 
    high accuracy 2.00866e+07 2.15 0.10 0.30 

70-60-70  quantile 2.01514e+07 1.09 0.47 0.61 
70-60-70  quantile 
    high accuracy 2.00866e+07 4.87 0.09 0.30 

70-70-70  quantile 2.06064e+07 3.24 0.48 2.88 

code:  www.princeton.edu/~defourny/MIP_UC_3node.m 

fast-start 

~ 

~ 
~ 
~ 
~ 

~ 
~ 
~ 
~ 

~ ~ 

~ 

day-ahead start 

ST1 

ST2 

ST3 

ST4 

CT1 

CT2 CT3 CT4 

ST5 

ST6 

ST7 

ST8 

B2 

B3 

B1 

3 x 3 x 3 net load scenarios 
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Guiding the search 

Rather than finding a best-deterministic solution by direct search, we could compute a 
priori a single scenario (by stochastic programming).  

 Stochastic optimization of wind forecasts and reserve requirements 

Optimization of the wind that can be scheduled in day-ahead, along with various 
reserves for hedging against wind being lower than expected, using a very simplified 
expression of the costs and constraints. 

 

Call spinning reserve 

quantile level α 
reserve unhedged 

cumulative 
distribution  

function (cdf) of  
wind energy 

Curtail excess wind 

wind energy [MW] 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 
⨉ 104 

scheduled wind 

0.1 Start up fast units 

quantile level β 
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Optimality of quantile solutions 

Let us recall a textbook result: 

 

The newsvendor problem  

              Max   −c x + 𝔼{ p  min[x, D]}  

      where 0 < c < p, and D is a r.v. with cdf G   (demand)  

      admits the optimal solution  x = G-1(α),    α = (p − c)/p .  

  

 x =  G-1(α) is a quantile of the distribution of ξ . 

 The same problem can also be written as 

  Min 𝔼{    (c-p) D    +    c [ x − D ]+    +    (p-c) [ D − x]+ } . 

exogenous overage cost underage cost 

ξ x 
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Extension to multiple quantiles 

Let 0 ≤ c1 < c2 < c3 < d2 < d1 .  

Let w (wind) be a positive, 

abs. cont. r.v.,  with cdf G. 

Let L > 0  (fixed load; dedicated  

reserve assumed to be in place.) 
 

Proposition: 

The stochastic program 

     minimize c1x1 + c2x2 + c3x3 + E{d1y1 + d2y2} 

     subject to x1 + x2 + x3 = L ,   x3 ≥ 0  (day-ahead schedule meets load) 

  w + y1 + y2 ≥ x1 + x2       a.s.  (compensation of missing wind) 

    0 ≤ y1 ≤ x1 , 0 ≤ y2 ≤ x2  a.s.  (consequence of reserve choices) 

admits an optimal solution based on quantiles as long as x3 ≥ 0. 
  

x1  + x2  : total wind energy to be “scheduled” day-ahead. 

x3  : energy from dispatchable units committed in day-ahead (rarely < 0.) 

x1 + x2 
level β 

G(w) 

use   y2 ≤ x2   at cost  d2  

level α 

Curtail excess wind 

x1 use   y1 ≤ x1   at cost  d1  
 

x2 

wind energy [MW] 

scheduled wind 
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Recursive algorithm 

    Function   (x1 , ... , xn ) = SOLVE(c1 , ... , cn , d1 , ... , dn-1 , L ;   G) 

 

Step 1.  Define αi = (ci+1 − ci)/(di − di+1) ,        i = 1,…, n-1,     

 where  dn = 0. 

Step 2.  If J = { i : αi < αi-1 } is empty, go to Step 3.   

 Otherwise:   select j = inf J.  

  Set xj = 0. 

 Set   ( x1 , ... , xj-1 , xj+1 , ... , xn )  

       = SOLVE( c1 , ... , cj-1 , cj+1 , ... , cn ,  

                                         d1 , ... , dj-1 , dj+1 , ... , dn-1 , L ; G ). 

 Return  ( x1 , ... , xn ) . 

Step 3. Set  x1 = G-1(α1) ,  xi = G-1(αi) – G-1(αi-1) ,  

 xn = L – ( x1+…+xn-1 ) .    Return  ( x1 , ... , xn ) . 

Quantile 
levels 

Recursive call 
on reduced  

input 

Quantile  
solution 

Shows that the optimal solution is formed of zeros and differences of quantiles. 
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Quantile levels as a function of  
wind speed mean and standard deviation 
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Learning algorithm 

1. Start with some parameters for setting the wind forecast  Y 1 , … , Y T . 

2. Solve the UC problem given the forecast. 

3. Given simulations of forecast errors and adjustment costs, 
estimate average overage & underage costs   C1

+ , … , CT
+ ;   C1

- , … , CT - . 

4. Update the parameters and go back to Step 2. 

Unit  
Commitment 

Real-time 
simulation 

Stochastic 
wind model 

 

Forecasting 
method 

 wind 
forecast 

parameters 

commitments 

planned costs 

wind 
scenarios 

actual 
costs 

wind 
forecast 

wind 
scenarios 

Δ 

forecast 
errors 

planned 
costs 

actual 
costs 

Δ 

adjustment 
costs 

⦼ 

average overage costs 
average underage costs 

wind distribution 

Parameter  update 

 

average overage costs 
average underage costs 

BD, H.P. Simao, W.B. Powell, “Robust forecasting for unit commitment with wind”, Proc. 46th Hawaii International Conference on System 
Sciences, Maui, HI, January 2013. 
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Forecast parameter update 

qt = 
ct
−

ct
++ct
− yt =Ft

-1(qt) 

If forecasting too much wind is  
relatively expensive, 
the quantile level will decrease. 

quantile level forecasted wind 

 
probability  
density of 
wind power 

time 

wind  
power  
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 Goal: explaining the successive quantile levels by other processes, 
such as the load.     Let Xt be that process.      Let X t be its forecast. 

 Justification: the cost of adjustments is influenced by the state of the grid 
(load, congestions, …) 

X-quantile forecasts 

qt = 
ct
−

ct
++ct
− 

quantile level 

ρ( X t ) ≃ qt  

quantile level function 

regression model 

ρ( X t ) = 
1

1+𝑒−(𝛼+𝛽∙𝑋 𝑡)
 

forecast parameters 

α, β 
time 

wind power  

yt =Ft
-1[ρ( X t )] 
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Numerical test: Stochastic processes 

1.    Sample N times uniformly in [0,T] 2.     Use the N values of the function 
         with uniform time increments 

3.     Add “vertical” noise 

basis 
function 

Processes with random time shifts 
and random magnitude shifts 

     (sort the sampled times) 
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Direct quantile search 

Sample paths over 24 hours 

Time (hours) 

Wind 

Load 

Net load (100% wind) 

schedule 
more wind 

Load 

Day-ahead prices 

marginal cost  
   $/MWh 

Total generation 

× 10 GW 

Optimum @ q=0.4 

q 

Expected cost 
for some fixed quantile q 
at each hour 

36720 
σ: 8.1 

36412 
σ: 6.7 

empirical  
distributions 
from sample paths 
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Learned time-varying quantiles 

Wind forecast @ iter 10 

Wind 
forecast 

Expected 
cost 

Std 
error 

qt = 0.8   ∀ t 36720 8.1 

qt = 0.4   ∀ t 36412 6.7 

qt: Left 36384 6.8 

qt: Right 36080 6.6 

Wind forecast @ iter 10 
99% 

87.5% 

75% 
62.5% 

50% 
1% 

12.5% 
25% 

37.5% 

99% 

87.5% 

75% 
62.5% 

50% 
1% 

12.5% 
25% 

37.5% 

Solution Solution 

Expected cost:  
36384  [σ: 6.8] 

Expected cost:  
36080  [σ: 6.6] 

36384  [σ: 6.8] 
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Summary of the talk 

 Value of the stochastic solution over the best-deterministic solution. 

 Best-deterministic approximation presented as a particular algorithmic 
approach to two-stage stochastic unit commitment. 

 Search space based on quantiles: the motivation is that quantile solutions 
can be optimal for wind and reserve scheduling without capacity 
constraints. 
 

codes:          www.princeton.edu/~defourny/MIP_UC_example.m 

   www.princeton.edu/~defourny/MIP_UC_3nodes.m 

 

Thank you! 
Boris Defourny 

Princeton University 

Department of Operations Research and Financial Engineering 

defourny@princeton.edu 


