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The challenge of using wind energy
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This is 5-min data of energy injected by a wind farm

Wind: complex to forecast;
high-dimensional process.

Net power injections at each bus (node)
from generators and loads, including wind

f(v,0)=p active power balance
g(v,0)=q reactive power balance

)

voltage magnitude and angle at each bus,
assuming steady state @ 60Hz

Generating units must balance variations

from stochastic injections (load:- and wind:+) in real-time.
The control relies on frequency changes

and on signals sent by the system operator.

60.05 Hz 60 Hz 59.95 Hz
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Decision time lag

for steam turbines
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. . Synchronization Start-up of a gas-fired steam turbine
Steam units need time to start up and Turbine Rofl after a 7-hour shutdown.

be online (spin at required frequency).

Main Steam Open

They must be committed to produce Ignition
power in advance. . ,
Initial period where
150 l the unit is committed to produce power
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Aggregated cost curves say: Do not wait too long

Capacity [GW]

Pumped Hydro Wind

Solar
storage. 5 ¢ 3.8
c 51 \ | 0-2
0.6
CT (Gas) Nuclear
23.4 / 311
Ccc
23.5
Steam
74.9
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Data: EIA-860 & Ventyx Velocity Suite
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Cost-based offer curve of dispatchable units

Units that can be
» Started up on

The best-deterministic method for the stochastic unit commitment problem

short notice
Units to be
committed
must-run units in advance
/
1 | . Z | | | | | ‘ |

Cumulative Capacity [MW]

Assumptions for this graph:

No transmission constraints. No startup costs.

Not plotted: Pumped Storage , Hydro, Wind, Solar.
We are plotting curves from cost estimates, not bids.
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Offer dynamics for peaker units

daily bids of a combustion turbine bidding a single price-quantity block, year 2010
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Multistage stochastic unit commitment

Stochastic formulation with startup decision time lags 6,- (12h, 6h, 3h, 1h,...)
given  {W, }:random process for variable energy resource j in JVER
{L,} :random demand process

0-1 indicator of
# periods  # units

\ \ startup at tin\wl/et

output of unit j

minimize E{ ¥T_; Z§=1 Cy*" Vg 4+ CyPy)  Startup & energy cost
J startup cost 7 N energy unit-cost
subject to D i=1 Py=L as, for each t energy balance

(assuming NO demand-side flexibility)
constraints for dispatchable je€ JP, for each t:

decision for s 0-1 s_hutdown indicator o

e . Vs, i~ Wes, = Ues, ~UYes-1,t1,j lagged startup decisions
-1 onlin —

v

Pi<pyyS s, 4 P, capacity constraints
‘R < Py~ Prg,e1,§ S RP ramping constraints

(simplified statement)
F.-measurable

constraints for variable energy resources j in JVER

Puj < Ups,yWy as.,foreacht  [curtailment]

j
ut-Sj, tj Vt-Sj, tj’ Wt-Sj, tj € {0'1}

B. Defourny (Princeton) The best-deterministic method for the stochastic unit commitment problem  DIMACS 2/21/2013 6/28



Multistage stochastic unit commitment

)
updated /
information -
/

Yy

— Locked
commitments

/ for slow-start units

D-1
12:00

samples in
high-dimensional
uncertainty space

D-1 D D D
18:00 0:00 1:00

recommitments and redispatching
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Two-stage stochastic unit commitment

Stochastic MILP formulation in the day-ahead paradigm:
Time lags §;valued in {12h, Oh} only (slow- and fast- start).

.. T J tart
minimize E{ Xt=12 j=1 G5 Vi gt CiPr-s, i)

subject to Z§:1 Py = L

a.s., foreacht

constraints for dispatchable

Vot “Woy = ~Up -1,

uOtjEj S PeyS uOtjP

Vit 'thj= Ue g 1,5 |

UpiPi S Py < Uy P

j

J

-

j in slow-start units:

lock the day-ahead startups
j in fast-start units:

do not lock day-ahead startups

R down _ u
RS Py — Prye1, S RP

constraints for variable energy resources j in JVER

Puj S Uy Wy as., foreacht
Uosj » Vo » Woy (J slow), Uy, vy, Wy (j fast) € {0,1}.
Each ug, (j slow start) is implemented as a here-and-now decision.
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Two-stage stochastic unit commitment

Y

Locked
commitments
) for slow-start units

updated :
information

LN N )

A

D-1
12:00

)
J

0:00-23:55 (i.e. whole day D)

samples in
high-dimensional
scenario space

C A A

Perfect dispatch over day D
(since whole day is visible)
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Deterministic unit commitment

output of variable energy source
1// load L

W,;, L, are set to forecasts W, , L, -

C e T J tart
minimize t=12j=1 C5""" Vog + Ctj

subject to Z§=1 Poy= Lot

D — —
Zle (Uoy Pi~Poy) = Sot reserve requirements

constraints for dispatchable j€ JP:

decision for VOtj - WOtj - u()tj_uo, t-1,j

time t —
(o) Py Poy= UogP,

0¢ '

unit j P down _ u
1 t J R < Poy ~ Po,t-1; S R*P
F,-measurable

constraints for variable energy resources j in JVER
Po < Ugy Wy
Uggj » Vo » Woy € 10,1}
Each ug, (j slow start) is implemented as here-and-now decision.
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Practical complexity of stochastic unit commitment

1968 1990 2006

Early stochastic parallel Convex
mixed-integer computing for multistage
linear programming solving stochastic stochastic
(MILP) model for programs programming
unit commitment is intractable (*)

J. Muckstadt and R. Wilson, “An application of mixed-integer program-
ming duality to scheduling thermal generating systems,” IEEE Trans.
Power Apparatus and Systems, vol. 87, no. 12, pp. 1968-1978, 1968.

M. Avriel, G. Dantzig, and P. Glynn, “Decomposition and parallel
processing for large-scale electric power system planning under uncer-
tainty,” in Proc. NSF Workshop on Resource Planning Under Uncer-
tainty, 1990, pp. 3-34.

2010

PJM completes a 6-year effort
of deploying and integrating its
security-constrained MILP unit
commitment

(*) For generic convex programs, using
the sample average approximation

A. Shapiro, “On complexity of multistage stochastic programs,” Oper:
Res. Let., vol. 34, no. 1, pp. 1-8, 2006.

Abstract idealized setup:
Dream: solve the 2-stage MILP model

1st-stage decision probability of scenario k

SP: min f(x)+ Y h_1 P 8(XY&,)
st. x€X, vy, €Y(x &) k=1,...K.

2nd-stage decisions /I\ /I\ scenario k

A. Ott, “Experience with PJM market operation, system design,
and implementation,” IEEE Trans. Power Systems, vol. 18,
no. 2, pp. 528-534, 2003.

Reality:
We have tools to reduce to 1-2%
the optimality gap of the MILP

P($): min f(x)+ g(xy,$)
st. xeX, yeY(x §).
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Best-Deterministic Approximation

 Letv*, S bethe optimal value and first-stage solution set of the stochastic
program. Let x*€ S.

* Let v(x) be the optimal value of the stochastic program when the first-

stage decision is fixed to x. We have v(x*)=v* for all x*€ S.
v(x) can be evaluated by optimizing separately over each scenario.

* Let S'(&) be the optimal first-stage solution set of the stochastic program
with its probability distribution degenerated to . Let x’(&) € S'(§).

e Value of the Stochastic Solution [Birge 1982]:
VSS = v(x'(§))-v(x*)  where §=3§_; p &

J.R. Birge, The value of the stochastic solution in stochastic linear programs
with fixed recourse, Math. prog. 24, 314-325, 1982.

 Value of the stochastic solution over the best-deterministic solution:
\/SSBD = infzez [VIX'($))- v(x*)] for E: space easy to cover.

* Best-deterministic approximation:
Try to find §* € argmingez v(x'($)) and then implement x’($*).
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Pictorial representation for the VSS-BD

v* : . ] Near-optimal solution
to two-stage stochastic MILP

Scenario Space Deterministic
i Goal:
minimize VSS®P
given search space,
cpu time budget.

: R J First-stage solution to
(&Y £ X287 X&) deterministic MIP

/
( R | |
'\ \ \ Solutions to stochastic MILP
° ° ° ]

with fixed first-stage decision
(fully separable).

vixH(§1) v(x*(§%)  v(x*(&?)
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“Best-Deterministic” unit commitment

In our tests, we take quantiles

. TV 2l of the predictive distributions
W,;, L, are set to planning forecasts W, L, .
. . . T ] ~~ start
minimize t=12j=1| C5" %" Vog + Cq Poy
. ] _
subject to 2j=1 Poy=| Lot

D — —_—
Z§=1 (Uog Pi=Pog) 2[Sor =
constraints for dispatchable je JP:

™ reserve needs may be added/modified.

qu|5|on for VOtj - WOtj = u()tj_uo, t-1,j
time t D
0¢t : Ugy Bj< Poy= UoyP
unit j _R down - u
; ] R < Poy ~ Po, -1 = R}*P

F,-measurable

constraints for variable energy resources j in JVER

————

«— planning forecast
Poy < Ugy| Woy

Uosj » Vo » Woy € {0,1}-
Each ug, (j slow start) is implemented as here-and-now decision.
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VSS-BD for unit commitment (test 1)

day-ahead start

fast-start , 5 scenarios §, of net load [MW]

x10

5000 [ o .

ST1 ST2 ST3 ST4

@ @ @ @ CT1T CT2 CT3 CT4 af
net load

ST5 ST6 ST7 ST8 38/

Expected Cost Time [s] Gap [%] Loss [%]

Stochastic MIP

high-accuracy 2.70335e+07 0.10 0.00

Stochastic MIP  2.70501e+07 9.11 0.46 0.06 x10"  60™-percentile scenario [MW]
Middle scenario 2.78027e+07 2.90 0.48 2.85 %9

Mean scenario 2.71157e+07 1.56 0.46 0.30 af

50-quantile 2.77531e+07 0.92\ 0.41 266

60-quantile 2.70375e+07 0.75 | 0.48

70-quantile 2.73184e+07 021/ 033 1.05 30 P

code: www.princeton.edu/~defourny/MIP_UC_example.m
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VSS-BD for unit commitment (test 2)

Test with transmission constraints.

day-ahead start

ST1 —@ @_ ST5
ST2 —@
ST3 —@

_@

O o

> -
& =

Bl B2

ST4

CT1

fast-start B3

QOO |

CT2 CT13 C(CT4

3 x 3 x 3 net load scenarios

B. Defourny (Princeton)

Stochastic MIP
Stochastic MIP
low accuracy

60-60-60 quantile
60-60-70 quantile
60-70-60 quantile
70-60-60 quantile

60-70-70 quantile
60-70-70 quantile
high accuracy

70-70-60 quantile
70-70-60 quantile
high accuracy

70-60-70 quantile
70-60-70 quantile
high accuracy

70-70-70 quantile

Expected Cost

2.00287e+07

2.00552E+07
2.04341e+07
2.01821e+07
2.01821e+07
2.04505e+07
2.01514e+07

2.00866e+07
2.01514e+07

2.00866e+07
2.01514e+07

2.00866e+07
2.06064e+07

Time [s] Gap [%] Loss [%]

19481.00

31.67
0.84
0.78

0.81
1.79

1.51

2.15
1.09

4.87
3.24

0.50

0.85
0.50
0.43
0.45
0.43

0.42

0.00
0.47

0.10
0.47

0.09
0.48

0.00

0.13
2.02
0.77
0.77
2.11

0.61

0.61

0.30
0.61

0.30
2.88

code: www.princeton.edu/~defourny/MIP_UC_3node.m

The best-deterministic method for the stochastic unit commitment problem

DIMACS 2/21/2013
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Guiding the search

Rather than finding a best-deterministic solution by direct search, we could compute a
priori a single scenario (by stochastic programming).

» Stochastic optimization of wind forecasts and reserve requirements

Optimization of the wind that can be scheduled in day-ahead, along with various
reserves for hedging against wind being lower than expected, using a very simplified
expression of the costs and constraints.

10 [ :
cumulative

distribution
function (cdf) of
wind energy

09 1

Curtail excess wind 08 |

0.7 1

0.6 scheduled wind

05

quantile level

N

Call spinning reserve 0.4 |
0.3 f

0.2

N

0.1 runhedged /| reserve

A

quantile level a
Start up fast units

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
wind energy [MW] X 10*
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Optimality of quantile solutions

Let us recall a textbook result:

The newsvendor problem
Max -cx+ E{p min[x, D]}
where 0 < c<p,and D is ar.v. with cdf G (demand)
admits the optimal solution x=G'(a), a=(p-c)/p.

» x = Gl(a)is a quantile of the distribution of €.
» The same problem can also be written as
MinE{ (c-p)D + c[x-D]* + (p-¢)J[D-x]*"}.

exogenous overage cost underage cost

/

X E

B. Defourny (Princeton) The best-deterministic method for the stochastic unit commitment problem  DIMACS 2/21/2013 18/28



Extension to multiple quantiles

G(w)

let0<c,<c,<c3<d,<d,.

Curtail excess wind
I scheduled wind

level B <

Let w (wind) be a positive,

abs. cont. r.v., with cdf G. S
Let L> 0 (fixed load; dedicated
reserve assumed to be in place.) level a

use y; <x; atcost d;

0 0.5 1 1.5 2 2.5 3 3.5 4
4
x 10

Proposition: wind energy [MW]
The stochastic program
minimize CiXq + CyX, + C3X5 + E{d Yy, + d,y,}
subject to X, +X,+X3=L, x320 (day-ahead schedule meets load)
W+y, +y, 2%, +X, a.s. (compensation of missing wind)
0<y,<x,,0<y,<x, a.s. (consequence of reserve choices)

admits an optimal solution based on quantiles as long as x5 2 0.

X, +X, :total wind energy to be “scheduled” day-ahead.
X5 : energy from dispatchable units committed in day-ahead (rarely < 0.)
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Recursive algorithm

Function (x,, ..., x,)=SOLVE(c,, ...,c,,d;,...,d ,,L; G)

: B _ ~ . Quantile
Step 1. Define a; = (c,,; —¢)/(d. - d.,,), i=1,.,n-1, evels
where d =0.
Step2. IfJ={i:a <a,,}isempty, go to Step 3.
Otherwise: selectj=infJ.
Set x. = 0. Recursive call
S J on reduced
et (xg, .., Xi gy Xipgs oe s X, ) nput
=SOLVE( c,, ..., Ci1s Civas s Cy)
dy,...,diq,dyy, ., diy, L G).
Return (X, ..., X, ).
Step 3. Set x,=GYa,), x,=GHa) -G a,), Quantile
solution

X,=L—(x+..+x, ;). Return (x;, ..., X,).

Shows that the optimal solution is formed of zeros and differences of quantiles.
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Quantile levels as a function of
wind speed mean and standard deviation

optimized quantile levels of scheduled wind Power curve of Vestas V90
6 18}
—16}
\ = 14]
— o \% =12}
Q 5r L] > E 1.0}
£ y P 208}
. 006}
§ 3 04}
o 4t 0.2} . | | |
2 o 0 5 10 15 20 25
2 3 mean wind speed [m/s]
©
C 3 i
9 2,
©
3
T 2F o
e
©
©
[
©
» 1F
| ] ] ]
0 5 10 15 20 25

mean wind speed [m/s]
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Learning algorithm

average overage costs

average underage costs wind wind planned actual

forecast scenarios  costs costs

Parameter update
parameters wind distribution
Forecta;‘st:ing S.to;:hastc;cl forecast N adjustment
metho wind mode
. errors costs
wind wind \ /
forecast scenarios
commitments Real-time average overage costs
simulation average underage costs

planned costs
actual
costs

1. Start with some parameters for setting the wind forecast Y,, ..., Y.
Solve the UC problem given the forecast.

3. Given simulations of forecast errors and adjustment costs,

estimate average overage & underage costs C,*, .., C*; C, ..., Cq .

4. Update the parameters and go back to Step 2.

BD, H.P. Simao, W.B. Powell, “Robust forecasting for unit commitment with wind”, Proc. 46th Hawaii International Conference on System
Sciences, Maui, HI, January 2013.
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B. Defourny (Princeton)

Forecast parameter update

wind
power
"s
‘
\
\
\
\Q\ probability
M _o—-@ density of
® - wind power
time
guantile level forecasted wind
c.-
— t =F -1
Qi = =7, ~ = Ye =F(a)
C,"+C;

If forecasting too much wind is
relatively expensive,
the quantile level will decrease.
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X-quantile forecasts

» Goal: explaining the successive quantile levels by other processes,
such as the load. Let X, be that process.  Let X, be its forecast.

» Justification: the cost of adjustments is influenced by the state of the grid
(load, congestions, ...)

quantile level quantile level function wind power
C — . N
— t
Ot = %, ~— p(X;) =q,

regression model \
BV, 1 \_"/'—‘
p(Xt) " 14e—(@tBX)

forecast parameters

a, 5 yt=Ft'1:p(Xt)]

time
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Numerical test: Stochastic processes

1. Sample N times uniformly in [0,T] 2. Use the N values of the function
with uniform time increments
basis s !
function IO !

(sort the sampled times)

Processes with random time shifts
3. Add “vertical” noise and random magnitude shifts

\d
L
Sample Paths

0 4 8 12 16 20 24

Time (hours)
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Direct quantile search

Sample paths over 24 hours

— (8] ) = i AN ~
T T T T T T 1

e

0 4 8 12 16 20 24

Time (hours)

empirical

distributions :

from sample paths

B. Defourny (Princeton)

The best-deterministic method for the stochastic unit commitment problem

marginal cost

$/MWh
1500 ¢ schedule Load
1000 + more wind i
500 L Day-ahead prices <i
) —V /Irl X 1Q GW

0 1 2 3 4 5 6
Total generation

3767 0 Expected cost
3.74} for some fixed quantile q
372 at each hour
37f 36720
3.68 . O.
36412
3.64 ' : :
0

0.2 0.4 q 0.6 0.8 1
|J—> Optimum @ g=0.4
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3.67

Expected Cost

3.64

3.63
1

Wind power seen by UC

Learned time-varying quantiles

3.66

3.65r

36384 [o0:6.8]

1.5}F

<
3

2 3 4 5 6 7

Iteration

Wind forecast @ iter 10

Solution

Expected cost:
36384 [o: 6.8]

B. Defourny (Princeton)

4 8 12 16
Time (hours)

10

Wind power seen by UC

-
()}
T

—_
T

°
n

The best-deterministic method for the stochastic unit commitment problem

Wind Expected Std
forecast cost error
q,=0.8 Vt 36720 8.1
q,=04 Vt 36412 6.7
q,: Left 36384 6.8
d.: Right 36080 6.6

Wind forecast @ iter 10
99%
87.5%
75%

Expected cost:
36080 [o: 6.6]

Solution

Time (hours)
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Summary of the talk

A\

Value of the stochastic solution over the best-deterministic solution.

A\

Best-deterministic approximation presented as a particular algorithmic
approach to two-stage stochastic unit commitment.

» Search space based on quantiles: the motivation is that quantile solutions
can be optimal for wind and reserve scheduling without capacity
constraints.

codes: www.princeton.edu/~defourny/MIP_UC_example.m
www.princeton.edu/~defourny/MIP_UC_3nodes.m

Thank you!
Boris Defourny
Princeton University
Department of Operations Research and Financial Engineering
defourny@princeton.edu
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