Branch Flow Model

relaxations, convexification, equivalence

Masoud Farivar Steven Low Subhonmesh Bose Mani Chandy

Computing + Math Sciences Electrical Engineering Caltech

February 2013

Collaborators

- S. Bose, M. Chandy, L. Chen, L. Gan, D. Gayme, J. Lavaei, L. Li, U. Topcu
- SCE: R. Sherick, Juan Castaneda, C. Clark, A. Auld, J. Gooding, M. Montoya

BFM references

- Branch flow model: relaxations and convexification
 M. Farivar and S. H. Low, April 2012
- Equivalence of BF and BI models Bose, Low and Chandy, Allerton, Oct 2012

Other references

- Lavaei, L, TPS, 2012
- Bose, Gayme, Chandy, L., 2012
- Li, Chen, L, SGC, 2012
- Gan, Li, Topcu, L, CDC 2012

Two power flow models

- Bus injection model
- Branch flow model
- OPF in BI model
 - Semidefinite relaxation
- OPF in BF model
 - SOCP relaxation
 - Convexification using phase shifters

Equivalence relationship

how to overcome nonconvexity in OPF

Foundation of LMP

- Convexity justifies the use of Lagrange multipliers as various prices
- Critical for efficient market theory

Efficient computation

Convexity delineates computational efficiency and intractability

A lot rides on (assumed) convexity structureengineering, economics, regulatory

two models

- a set of equations
- ... that describe
- Kirchhoff law
- power definition
- power balance

$$\begin{split} \widetilde{I} &= Y \widetilde{V} & \text{Kirchhoff law} \\ \widetilde{S}_j &= \widetilde{V}_j \widetilde{I}_j^* & \text{for all } j & \text{power definition} \\ \widetilde{S}_j &= s_j & \text{for all } j & \text{power balance} \end{split}$$

admittance matrix:

$$Y_{ij} := \begin{cases} \sum_{k \sim i} y_{ik} & \text{if } i = j \\ -y_{ij} & \text{if } i \sim j \\ 0 & \text{else} \end{cases}$$

$$\begin{split} \tilde{I} &= Y \tilde{V} & \text{Kirchhoff law} \\ \tilde{S}_j &= \tilde{V}_j \tilde{I}_j^* & \text{for all } j & \text{power definition} \\ \tilde{S}_j &= s_j & \text{for all } j & \text{power balance} \end{split}$$

Given
$$(Y, s)$$
 find $(\tilde{S}, \tilde{I}, \tilde{V})$

BIM is self-contained (e.g. no branch vars)

Can reduce to \tilde{V} :

$$s_j = \operatorname{tr}\left(Y^* e_j e_j^T \tilde{V} \tilde{V}^*\right)$$
 for all j

Given
$$(Y,s)$$
 find \tilde{V}

BIM is self-contained (e.g. no branch vars)

$$V_i - V_j = z_{ij} I_{ij}$$
 for all $i \rightarrow j$ Kirchhoff law

$$S_{ij} = V_i I_{ij}^*$$
 for all $i \rightarrow j$ power definition

$$V_{i} - V_{j} = z_{ij}I_{ij} \quad \text{for all } i \to j \quad \text{Kirchhoff law}$$

$$S_{ij} = V_{i}I_{ij}^{*} \quad \text{for all } i \to j \quad \text{power definition}$$

$$\sum_{i \to j} \left(S_{ij} - z_{ij} \left|I_{ij}\right|^{2}\right) + s_{j} = \sum_{j \to k} S_{jk} \quad \text{for all } j \quad \text{power balance}$$

Given
$$(z,s)$$
 find (S,I,V)

BFM is self-contained (e.g. no nodal pwr/currents)

<u>Theorem</u>

The branch flow and bus injection models are equivalent

There is bijection between solution sets

$$\begin{split} \tilde{V} &= V & V = \tilde{V} \\ \tilde{I}_{j} &= \sum_{j \to k} I_{jk} - \sum_{i \to j} I_{ij} & I_{ij} = y_{ij} \left(\tilde{V}_{i} - \tilde{V}_{j} \right) \\ \tilde{S}_{j} &= \sum_{j \to k} S_{jk} - \sum_{i \to j} \left(S_{ij} - z_{ij} \left| I_{ij} \right|^{2} \right) & S_{ij} = y_{ij}^{*} \left(\left| \tilde{V}_{i} \right|^{2} - \tilde{V}_{i} \tilde{V}_{j}^{*} \right) \\ & \overbrace{\left(\tilde{S}, \tilde{I}, \tilde{V} \right)}^{*} & \overbrace{\left(S, I, V \right)}^{*} \end{split}$$

$$\tilde{S}_{i} = \tilde{V}_{i}\tilde{I}_{i}^{*}$$

$$V_{i} \qquad S_{ij} = V_{i}I_{ij}^{*} \qquad V_{j}$$

Equivalent models of Kirchhoff laws

- Bus injection model focuses on nodal vars
- Branch flow model focuses on branch vars

Two power flow models

- Bus injection model
- Branch flow model

OPF in BI model

Semidefinite relaxation

OPF in BF model

- SOCP relaxation
- Convexification using phase shifters

Equivalence relationship

min
$$\sum_{j} f_{j}(\tilde{x})$$

over
$$\tilde{x} := \left(\tilde{S}, \tilde{I}, \tilde{V}, s\right)$$

subject to

e.g. quadratic gen cost

min
$$\sum_{j} f_{j}(\tilde{x})$$
 e.g. quadratic gen cosonor
over $\tilde{x} := (\tilde{S}, \tilde{I}, \tilde{V}, s)$
subject to $\underline{s}_{j} \le s_{j} \le \overline{s}_{j}$ $\underline{V}_{k} \le |\tilde{V}_{k}| \le \overline{V}_{k}$

nonconvex, NP-hard

In terms of V:

 $P_k = \operatorname{tr} \Phi_k V V^*$ $Q_k = \operatorname{tr} \Psi_k V V^*$

$$\min \sum_{k \in G} \operatorname{tr} M_k V V^*$$
over V
s.t.
$$\underline{P}_k^g - P_k^d \leq \operatorname{tr} \Phi_k V V^* \leq \overline{P}_k^g - P_k^d$$

$$\underline{Q}_k^g - Q_k^d \leq \operatorname{tr} \Psi_k V V^* \leq \overline{Q}_k^g - Q$$

$$\underline{V}_k^2 \leq \operatorname{tr} J_k V V^* \leq \overline{V}_k^2$$

 Q^d_k

Key observation [Bai et al 2008]: OPF = rank constrained SDP

$$\min \sum_{k \in G} \operatorname{tr} M_k W$$

over *W* positive semidefinite matrix

s.t.
$$\underline{P}_{k} \leq \operatorname{tr} \Phi_{k} W \leq P_{k}$$
$$\underline{Q}_{k} \leq \operatorname{tr} \Psi_{k} W \leq \overline{Q}_{k}$$
$$\underline{V}_{k}^{2} \leq \operatorname{tr} J_{k} W \leq \overline{V}_{k}^{2}$$
$$W \geq 0, \quad \operatorname{rank} W \equiv 1$$

convex relaxation: SDP polynomial

- min tr $C_0 W$
- over W matrices
- s.t. $\operatorname{tr} C_k W \leq b_k$

 $W \ge 0$

convex relaxation: SDP polynomial

solutions \tilde{V} : $s_j = \operatorname{tr}\left(Y^* e_j e_j^T \tilde{V} \tilde{V}^*\right)$ power flow $\mathbf{N} := \left\{ W \ge 0 \left| \text{rank } W = 1 \right\} \right\}$ $\mathbf{L} := \left\{ W \middle| s_j = \operatorname{tr} \left(Y^* e_j e_j^T W \right) \right\}$

power flow solutions \tilde{V} : $s_j = \operatorname{tr}\left(Y^* e_j e_j^T \tilde{V} \tilde{V}^*\right)$

$\mathbf{N} \cap \mathbf{L}$

power flow solutions \tilde{V} : $s_j = \operatorname{tr}\left(Y^* e_j e_j^T \tilde{V} \tilde{V}^*\right)$

Any of these rank-2 W's are \dots optimal iff

power flow
solutions
$$\tilde{V}$$
: $S_j = \operatorname{tr}\left(Y^* e_j e_j^T \tilde{V} \tilde{V}^*\right)$

SDP solution may not have Feasible rank-1 decomposition

rank-2 SDP solution that is not physically meaningful

SDP: $\operatorname{conv} N \cap L \supseteq \operatorname{conv} (N \cap L)$

$\begin{array}{lll} \mathbf{QCQP} \left(C, C_{k} \right) & & \\ \min & x^{*} C x \\ & \text{over} & x \in \mathbf{C}^{n} \\ & \text{s.t.} & x^{*} C_{k} x \leq b_{k} & k \in K \end{array}$

graph of QCQP

 $G(C,C_k)$ has edge $(i,j) \Leftrightarrow$ $C_{ij} \neq 0$ or $[C_k]_{ij} \neq 0$ for some k

QCQP over tree $G(C,C_k)$ is a tree

$\begin{aligned} & \mathsf{QCQP}(C,C_k) \\ & \min & x^*Cx \\ & \text{over} & x \in \mathbb{C}^n \\ & \text{s.t.} & x^*C_kx \leq b_k & k \in K \end{aligned}$

Semidefinite relaxation

min	tr CW	
over	$W \ge 0$	
s.t.	$\operatorname{tr} C_k W \le b_k$	$k \in K$

$\begin{array}{lll} \mathbf{QCQP} \left(C, C_{k} \right) & & \\ \min & x^{*} C x \\ & \text{over} & x \in \mathbf{C}^{n} \\ & \text{s.t.} & x^{*} C_{k} x \leq b_{k} & k \in K \end{array}$

Key condition

$$i \sim j: 0 \notin \text{int conv hull} \left(C_{ij}, [C_k]_{ij}, \forall k \right)$$

Theorem

semidefinite relaxation is exact for QCQP over tree S. Bose, D. G.

S. Bose, D. Gayme, S. H. Low and M. Chandy, March 2012

Remarks

- condition implies constraint patterns
- full AC: inc real and reactive powers
- allows constraints on line flows, loss

Key condition

$$i \sim j: 0 \notin \text{ int conv hull } \left(C_{ij}, \left[C_k\right]_{ij}, \forall k\right)$$

Theorem

semidefinite relaxation is exact for QCQP over tree S. Bose, D. G

S. Bose, D. Gayme, S. H. Low and M. Chandy, March 2012

full constraints violate key condition $i \sim j: 0 \notin \text{ int conv hull } \left(C_{ij}, [C_k]_{ij}, \forall k\right)$

P_i	Q_i	P_j	Q_j	line flow	loss
UB	UB	UB	UB	any	any
UB	LB	LB	UB	no \overline{P}_{ij}	any
LB	UB	UB	LB	no \overline{P}_{ji}	any

P_i	Q_i	P_j	Q_j	line flow	loss
UB	UB	UB	UB	any	any
UB	LB	LB	UB	no \overline{P}_{ij}	any
LB	UB	UB	LB	no \overline{P}_{ji}	any

OPF = rank constrained SDP

Sufficient conditions for SDP to be exact

- Whether a solution is globally optimal is always easily checkable
- Mesh: must solve SDP to check
- Tree: depends only on constraint pattern or r/x ratios

Two power flow models

- Bus injection model
- Branch flow model
- OPF in BI model
 - Semidefinite relaxation
- OPF in BF model
 - SOCP relaxation
 - Convexification using phase shifters

Equivalence relationship

min $\sum r_{ij} |I_{ij}|^2 + \sum \alpha_i |V_i|^2$ *i∼j*

real power loss

CVR (conservation voltage reduction)

min
$$f(x)$$

over $x := (S, I, V, s^g, s^c)$

s.t.

min
$$f(x)$$

over $x := (S, I, V, s^g, s^c)$

s.t.
$$\underline{S}_{i}^{g} \leq S_{i}^{g} \leq \overline{S}_{i}^{g}$$
 $\underline{S}_{i} \leq S_{i}^{c} \leq \overline{S}_{i}$ $\underline{V}_{i} \leq V_{i} \leq \overline{V}_{i}$

$$\begin{array}{ll} \min & f\left(x\right) \\ \text{over} & x \coloneqq (S, I, V, s^g, s^c) \\ \text{s. t.} & \underline{s}_i^g \leq s_i^g \leq \overline{s_i}^g & \underline{s}_i \leq s_i^c \leq \overline{s_i} & \underline{v}_i \leq v_i \leq \overline{v_i} \\ & \text{generation,} \\ \text{VAR control} \\ \end{array}$$

Branch flow model is more convenient for applications

$$\begin{array}{ccc} \min & f\left(x\right) \\ \text{over} & x \coloneqq (S, I, V, s^g, s^c) \\ \text{s.t.} & \underline{s}_i^g \leq s_i^g \leq \overline{s_i}^g & \underline{s}_i \leq s_i^c \leq \overline{s_i} & \underline{v}_i \leq \overline{v_i} \\ & & \text{demand} \\ \text{response} \\ \end{array}$$

$$\begin{array}{ccc} \min & f\left(x\right) \\ \text{over} & x \coloneqq (S, I, V, s^g, s^c) \\ \text{s. t.} & \underline{s}_i^g \leq \underline{s}_i^g \leq \overline{s}_i^g & \underline{s}_i \leq \underline{s}_i^c \leq \overline{s}_i & \underline{v}_i \leq \underline{v}_i \\ & & \text{demand} \\ \text{response} \\ \end{array}$$

Challenge: nonconvexity !

BFM: power flow solutions

 $\sum_{i \to j} \left(S_{ij} - z_{ij} \left| I_{ij} \right|^2 \right) - \sum_{j \to k} S_{jk} = S_j^c - S_j^g$ $V_j = V_i - z_{ij} I_{ij} \qquad S_{ij} = V_i I_{ij}^*$ (S,I,V) (S, ℓ, v)

relaxed branch flow solutions: (S, ℓ, v, s) satisfy

for radial networks

relaxed branch flow solutions: (S, ℓ, v, s) satisfy

min f(x)over $x := (S, I, V, s^g, s^c)$ s.t. $\underline{s}_i^g \le \underline{s}_i^g \le \overline{s}_i^g \qquad \underline{s}_i \le \underline{s}_i^c \le \overline{s}_i \qquad \underline{v}_i \le v_i \le \overline{v}_i$

$$\begin{array}{ll} \min & f\left(\hat{y}\right) \\ \text{over} & \hat{y} \coloneqq (S, \ell, v, s^g, s^c) \\ \text{s.t.} & \underline{s}_i^g \leq s_i^g \leq \overline{s}_i^g & \underline{s}_i \leq s_i^c \leq \overline{s}_i^c & \underline{v}_i \leq \overline{v}_i \end{array} \end{array}$$

$$\hat{\mathbf{y}} \coloneqq h(\mathbf{x}) \in \hat{\mathbf{Y}}$$

relax each voltage/current from a point in complex plane into a circle

min $f(\hat{y})$ over $\hat{y} := (S, \ell, v, s^g, s^c)$ s.t. $\underline{s}_{i}^{g} \leq \underline{s}_{i}^{g} \leq \overline{s}_{i}^{g}$ $\underline{s}_{i} \leq \underline{s}_{i}^{c} \leq \overline{s}_{i}^{c}$ $\underline{v}_{i} \leq \overline{v}_{i} \leq \overline{v}_{i}$

relax to convex hull (SOCP)

$$\min f(x)$$
over $x := (S, I, V, s^g, s^c)$
s.t. $\underline{s}_i^g \le s_i^g \le \overline{s}_i^g \quad \underline{s}_i \le s_i^c \le \overline{s}_i \quad \underline{v}_i \le \overline{v}_i$

branch flow _____ model

$$\sum_{i \to j} \left(S_{ij} - z_{ij} \left| I_{ij} \right|^2 \right) - \sum_{j \to k} S_{jk} = S_j^c - S_j^g$$
$$V_j = V_i - z_{ij} I_{ij} \qquad S_{ij} = V_i I_{ij}^*$$

min f(x)over $x := (S, I, V, s^g, s^c)$ s.t. $\underline{s}_{i}^{g} \leq \underline{s}_{i}^{g} \leq \overline{s}_{i}^{g}$ $\underline{s}_{i} \leq \underline{s}_{i}^{c} \leq \overline{s}_{i}$ $\underline{v}_{i} \leq \underline{v}_{i} \leq \overline{v}_{i}$ $\sum \left(S_{ij} - z_{ij} \ell_{ij} \right) - \sum S_{jk} = S_j^c - S_j^g$ $v_i = v_j + 2 \operatorname{Re}(z_{ij}^* S_{ij}) - |z_{ij}|^2 \ell_{ij}$ source of nonconvexity $\ell_{ij} = \frac{\left|S_{ij}\right|^2}{1}$

$$\begin{array}{ll} \min & f\left(x\right) \\ \text{over} & x \coloneqq (S, I, V, s^g, s^c) \\ \text{s. t.} & \underline{s}_i^g \leq \underline{s}_i^g \leq \overline{s}_i^g & \underline{s}_i \leq \underline{s}_i^c \leq \overline{s}_i & \underline{v}_i \leq \underline{v}_i \leq \overline{v}_i \\ & \sum_{i \to j} \left(S_{ij} - z_{ij}\ell_{ij}\right) - \sum_{j \to k} S_{jk} = \underline{s}_j^c - \underline{s}_j^g \\ & v_i = v_j + 2 \operatorname{Re}\left(z_{ij}^*S_{ij}\right) - |z_{ij}|^2 \ell_{ij} \\ & \ell_{ij} \geq \frac{\left|S_{ij}\right|^2}{v_i} \\ \end{array}$$

OPF-cr is SOCP

- when objective is linear
- SOCP much simpler than SDP

OPF-cr is exact

- optimal of OPF-cr is also optimal for OPF-ar
- for mesh as well as radial networks
- … if no upper bounds on loads
- (or alternative conds for radial networks)

OPF-ar

does there exist θ s.t. $h_{\theta}^{-1}(\hat{y}) \in \mathbf{X}$?

solution x to OPF recoverable from \hat{y} iff inverse projection exist iff $\exists ! \theta$ s.t.

incidence matrix; depends on topology depends on OPF-ar solution

solution x to OPF recoverable from \hat{y} iff inverse projection exist iff $\exists ! \theta$ s.t.

$B\theta = \beta(\hat{y}) \mod 2\pi$

implied phase angle differences sum to 0 (mod 2π) around each cycle

Two simple angle recovery algorithms
centralized: explicit formula
decentralized: recursive alg

For radial network: $\exists!\theta$

$$B\theta = \beta(\hat{y}) \mod 2\pi$$

Inverse projection exist iff $B_{\perp}(B_T^{-1}\beta_T) = \beta_{\perp}$

Unique inverse given by $\theta^* = B_T^{-1}\beta_T$

For radial network: $B_{\perp} = \beta_{\perp} = 0$

Two power flow models

- Bus injection model
- Branch flow model
- OPF in BI model
 - Semidefinite relaxation
- OPF in BF model
 - SOCP relaxation
 - Convexification using phase shifters

Equivalence relationship

ideal phase shifter

Convexification of mesh networks

OPF-ar $\min_{x} f(h(x))$ s.t. $x \in \mathbf{Y}$

OPF-ps
$$\min_{x,\phi} f(h(x))$$
 s.t. $x \in \overline{\mathbf{X}}$

optimize over phase shifters as well

<u>Theorem</u>

- $\overline{\mathbf{X}} = \mathbf{Y}$
- Need phase shifters only outside spanning tree

 $\begin{bmatrix} B_T \\ B_+ \end{bmatrix} \theta = \begin{bmatrix} \beta_T \\ \beta_+ \end{bmatrix} - \begin{bmatrix} 0 \\ \phi_+ \end{bmatrix}$

Inverse projection always exists

Unique inverse given by $\theta^* = B_T^{-1}\beta_T$

Don't need PS in spanning tree $\phi_{\perp}^* = 0$

Convexification of mesh networks

Optimization of ϕ

- Min # phase shifters (#lines #buses + 1)
- Min $\|\phi\|_2$: NP hard (good heuristics)
- Given existing network of PS, min # or angles of additional PS

		No PS	With PS
Test cases	# links	Min loss	Min loss
	(<i>m</i>)	(OPF, MW)	(OPF-cr, MW)
IEEE 14-Bus	20	0.546	0.545
IEEE 30-Bus	41	1.372	1.239
IEEE 57-Bus	80	11.302	10.910
IEEE 118-Bus	186	9.232	8.728
IEEE 300-Bus	411	211.871	197.387
New England 39-Bus	46	29.915	28.901
Polish (case2383wp)	2,896	433.019	385.894
Polish (case2737sop)	3,506	130.145	109.905

Test cases	# links	# active PS		Min #PS (°)
	(<i>m</i>)	$ \phi_i > 0.1^\circ$		$[\phi_{\min},\phi_{\max}]$
IEEE 14-Bus	20	2	(10%)	[-2.09, 0.58]
IEEE 30-Bus	41	3	(7%)	[-0.20, 4.47]
IEEE 57-Bus	80	19	(24%)	[-3.47, 3.15]
IEEE 118-Bus	186	36	(19%)	[-1.95, 2.03]
IEEE 300-Bus	411	101	(25%)	[-13.3, 9.40]
New England 39-Bus	46	7	(15%)	[-0.26, 1.83]
Polish (case2383wp)	2,896	373	(13%)	[-19.9, 16.8]
Polish (case2737sop)	3,506	395	(11%)	[-10.9, 11.9] $ $

	<u>×</u>	/	
Test cases	# links	Min #PS (°)	$ Min \ \phi\ ^2 (^\circ) $
	(<i>m</i>)	$[\phi_{\min},\phi_{\max}]$	$[\phi_{\min},\phi_{\max}]$
IEEE 14-Bus	20	[-2.09, 0.58]	[-0.63, 0.12]
IEEE 30-Bus	41	$[-0.20, \ 4.47]$	[-0.95, 0.65]
IEEE 57-Bus	80	$[-3.47, \ 3.15]$	[-0.99, 0.99]
IEEE 118-Bus	186	$[-1.95, \ 2.03]$	[-0.81, 0.31]
IEEE 300-Bus	411	[-13.3, 9.40]	[-3.96, 2.85]
New England 39-Bus	46	$[-0.26, \ 1.83]$	[-0.33, 0.33]
Polish (case2383wp)	2,896	$[-19.9, \ 16.8]$	[-3.07, 3.23]
Polish (case2737sop)	3,506	$[-10.9, \ 11.9]$	[-1.23, 2.36]

Radial networks computationally simple

- Exploit tree graph & convex relaxation
- Real-time scalable control promising

Mesh networks can be convexified

- Design for simplicity
- Need few (?) phase shifters (sparse topology)

Big picture

Two power flow models

- Bus injection model
- Branch flow model

OPF in BI model

- Semidefinite relaxation
- OPF in BF model
 - SOCP relaxation
 - Convexification using phase shifters

Equivalence relationship

Theorem

$$(S, \ell, v) \in \mathbf{X}_c$$
 iff
 $\exists \theta$ s.t. $B\theta = \beta(S, \ell, v)$

Moreover $(S,I,V) \coloneqq h_{\theta}(S,\ell,v)$ is unique

<u>Theorem</u>

For radial networks:

 $\operatorname{tr} Y_i(VV^*) = -s_i \qquad \text{for all } i$ $\Leftrightarrow \begin{cases} \text{tr } Y_i W = -s_i & \text{for all } i \\ W \ge 0, \quad \text{rank } W = 1 \end{cases}$ nonconvex \rightarrow relaxations

tr
$$Y_i W = -s_i$$
 for all *i*
 $W_1: W \ge 0$
rank $W = 1$ nonconvex

tr
$$Y_iW = -s_i$$
 for all i
 $W_1: W \ge 0$
 $W_1 = 1$ nonconvex
 $W_+: W \ge 0$ convex

$$\rightarrow$$
 SDP relaxation

tr
$$Y_i W = -s_i$$
 for all *i*
 $\mathbf{W}_1: W \ge 0$
rank $W = 1$ nonconvex

$$\mathbf{W}_2$$
: $W(i, j) \ge 0$
rank $W(i, j) = 1$ nonconvex

tr
$$Y_i W = -s_i$$
 for all *i*
 $\mathbf{W}_1: W \ge 0$
rank $W = 1$ nonconvex

$$W_2: W(i, j) \ge 0$$

rank $W(i, j) = 1$ nonconvex

 $\mathbf{W}_{2+}: W(i,j) \ge 0$ convex

Theorem

If W psd then TFAE \square W rank-1 \square W(i,j) psd rank-1 and $\sum_{(i,j)\in cycle} \angle W_{ij} = 0$ \square W(cl(chord(G))) psd

rank-1

Moreover psd completion of W(i,j) is unique

Theorem

For radial networks: W psd rank-1 iff W(i,j) psd rank-1 and

i.e.
$$\mathbf{W}_1 = \mathbf{W}_2 \cap \{W \ge 0\}$$

