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Outline 

Two power flow models 
n  Bus injection model 
n  Branch flow model 
 

OPF in BI model 
n  Semidefinite relaxation 

 

OPF in BF model 
n  SOCP relaxation 
n  Convexification using phase shifters 
 

Equivalence relationship 
 



how to overcome 
nonconvexity in OPF 



Why is convexity important 

Foundation of LMP 
n  Convexity justifies the use of Lagrange 

multipliers as various prices 
n  Critical for efficient market theory 

Efficient computation 
n  Convexity delineates computational efficiency 

and intractability 

A lot rides on (assumed) convexity structure 
•  engineering, economics, regulatory 



two models 
 



Power network 

i j k 

sj
g sj

c

zij

… that describe 
•  Kirchhoff law 
•  power definition 
•  power balance 

A mathematical model 
•  a set of variables 
•  a set of equations 



Bus injection model 

I =Y V
Sj = Vj

I j
*           for all  j

Sj = sj          for all  j

admittance matrix:  

Yij :=

yik
k~i
∑       if  i = j

−yij         if  i ~ j
0            else

#
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%
%

&

%
%

Sj :  nodal power 
I j :  nodal current
Vj :  voltage

sj = sj
g − sj

c

power definition 

power balance 

Kirchhoff law 



Bus injection model 

power definition 

power balance 

Kirchhoff law 

Given            find  Y, s( ) S, I, V( ) W1

BIM is self-contained (e.g. no branch vars) 

I =Y V
Sj = Vj

I j
*           for all  j

Sj = sj          for all  j



Bus injection model 

sj =  tr Y *ejej
T V V *( )          for all  j

Given            find  Y, s( ) V W1

BIM is self-contained (e.g. no branch vars) 

Can reduce to     : V



Vi −Vj = zij Iij               for all  i→ j

Branch flow model 

power definition 

power balance 

sj

Kirchhoff law 

Sij :  branch power 
Iij :  branch current
Vj :  voltage

Sij =ViIij
*                     for all  i→ j

Sij − zij Iij
2( )

i→ j
∑ + sj = Sjk

j→k
∑    for all j

 
loss 

sending 
end pwr 

sending 
end pwr 



Vi −Vj = zij Iij               for all  i→ j

Branch flow model 

power definition 

power balance 

Kirchhoff law 

Sij =ViIij
*                     for all  i→ j

Given          find  z, s( ) S, I,V( ) Xc

BFM is self-contained (e.g. no nodal pwr/currents) 

Sij − zij Iij
2( )

i→ j
∑ + sj = Sjk

j→k
∑    for all j



Theorem 
The branch flow and bus injection models 
are equivalent 

n  There is bijection between solution sets 
 
 
 
 

Equivalence 

S, I,V( )S, I, V( )

g
g−1



Equivalence 

S, I,V( )S, I, V( )

g

V =V
I j = I jk

j→k
∑ − Iij

i→ j
∑

Sj = Sjk
j→k
∑ − Sij − zij Iij

2( )
i→ j
∑

g−1

V = V

Iij = yij Vi − Vj( )
Sij = yij

* Vi
2
− Vi Vj

*( )



Recap: two models 

Vi Vj

Si = Vi Ii
*

Sij =ViIij
*

Equivalent models of Kirchhoff laws 
n  Bus injection model focuses on nodal vars 

n  Branch flow model focuses on branch vars 



Outline 

Two power flow models 
n  Bus injection model 
n  Branch flow model 
 

OPF in BI model 
n  Semidefinite relaxation 

 

OPF in BF model 
n  SOCP relaxation 
n  Convexification using phase shifters 
 

Equivalence relationship 
 



OPF: bus injection model 

min              f j x( )
j
∑

over             x := S, I, V, s( )
subject to     s j   ≤   sj  ≤   s j             V k  ≤  | Vk |  ≤   V k

                    I =Y V
                    Sj = sj         Sj = Vj

I j
*

e.g. quadratic gen cost 

Kirchhoff law 

power balance 



OPF: bus injection model 

e.g. quadratic gen cost 

Kirchhoff law 

power balance 

min              f j x( )
j
∑

over             x := S, I, V, s( )
subject to     s j   ≤   sj  ≤   s j             V k  ≤  | Vk |  ≤   V k

                    I =Y V
                    Sj = sj         Sj = Vj

I j
*



e.g. quadratic gen cost 

Kirchhoff law 

power balance 

nonconvex, NP-hard 

min              f j x( )
j
∑

over             x := S, I, V, s( )
subject to     s j   ≤   sj  ≤   s j             V k  ≤  | Vk |  ≤   V k

                    I =Y V
                    Sj = sj         Sj = Vj

I j
*

OPF: bus injection model 



Semidefinite relaxation 

Pk = tr ΦkVV
*

Qk = tr Ψ kVV
*

Φk : = Yk
* +Yk
2

#
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Ψ k : = Yk
* −Yk
2i

#
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%
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'
(

In terms of V:   

min     tr MkVV
*

k∈G
∑

over     V

s.t.        Pk
g −Pk

d  ≤ tr ΦkVV
* ≤   Pk

g
−Pk

d

             Q
k
g −Qk

d  ≤ tr Ψ kVV
*  ≤   Qk

g
−Qk

d

             V k
2  ≤   tr JkVV

*  ≤   V k
2
  

                   
Key observation [Bai et al 2008]:  
OPF = rank constrained SDP 



min     tr MkW
k∈G
∑

over     W   positive semidefinite matrix

s.t.        Pk  ≤ tr ΦkW ≤   Pk

             Q
k
≤  tr Ψ kW  ≤   Qk

             V k
2  ≤  tr JkW  ≤   V k

2
 

             W ≥ 0,     rank W =1 
                   convex relaxation: SDP 

polynomial 

Semidefinite relaxation 



min      tr C0W
over     W  matrices
s.t.        tr CkW ≤   bk
            W ≥ 0
            rank W =1 
                   convex relaxation: SDP 

polynomial 

General QCQP 



Solution strategy 

OPF 
nonconvex QCQP 

OPF 
rank constrained SDP 

SDP 
relaxation  rank Wopt =1

Lavaei 2010, 2012 
Radial: Bose 2011, Zhang 2011 
            Sojoudi 2011 

Lesiertre 2011 

Bai 2008 

OPF-sdp 
convex  rank Wopt >1

solution not  
meaningful 



Feasible set: OPF 

sj =  tr Y *ejej
T V V *( )power flow  

solutions    :  

L := W sj =  tr Y *ejej
TW( ){ }

N := W ≥ 0 rank W =1{ }

V



Feasible set: OPF 

power flow  
solutions    :  V

N∩L

sj =  tr Y *ejej
T V V *( )



conv N∩L( )

Feasible set: convex hull 
power flow  
solutions    :  V

Any of these rank-2 W’s are 
optimal iff  

sj =  tr Y *ejej
T V V *( )



conv N∩L( )

Feasible set: convex hull 
power flow  
solutions    :  V

 these rank-1 W’s are optimal 

sj =  tr Y *ejej
T V V *( )

This relaxation always works 
but is not SDP 



convN ∩  L

Feasible set: SDP 

rank-2 SDP solution that 
is not physically meaningful 

SDP: ⊇   conv N∩L( )

SDP solution may not have  
Feasible rank-1 decomposition 



QCQP over tree 

graph of QCQP 
G C,Ck( )   has edge (i, j)   ⇔

Cij ≠ 0  or  Ck[ ]ij ≠ 0  for some k     

QCQP 

QCQP over tree 
G C,Ck( )   is a tree

min          x*Cx

over         x ∈Cn

s.t.            x*Ckx  ≤   bk         k ∈ K     

C,Ck( )



QCQP over tree 

min          x*Cx

over         x ∈Cn

s.t.            x*Ckx  ≤   bk         k ∈ K     

Semidefinite relaxation 
min          tr CW
over         W ≥ 0
s. t.           tr CkW ≤ bk          k ∈ K

QCQP C,Ck( )



QCQP over tree 

min          x*Cx

over         x ∈Cn

s.t.            x*Ckx  ≤   bk         k ∈ K     

Key condition 
i ~ j :   0 ∉  int conv hull Cij, Ck[ ]ij ,  ∀k( )

QCQP C,Ck( )

Theorem 
       semidefinite relaxation is exact for  
       QCQP over tree  S. Bose, D. Gayme, S. H. Low and 

M. Chandy,  March 2012 



QCQP over tree 

Remarks 
•  condition implies constraint patterns 
•  full AC: inc real and reactive powers 
•  allows constraints on line flows, loss  

Theorem 
       semidefinite relaxation is exact for  
       QCQP over tree  S. Bose, D. Gayme, S. H. Low and 

M. Chandy,  March 2012 

Key condition 
i ~ j :   0 ∉  int conv hull Cij, Ck[ ]ij ,  ∀k( )



OPF over radial networks 

full constraints violate key condition 

Ck[ ]ijC[ ]ij

i ~ j :   0 ∉  int conv hull Cij, Ck[ ]ij ,  ∀k( )



OPF over radial networks 

“no lower bounds” 
removes these  Ck[ ]ij

8

Pi Qi Pj Qj line flow loss
UB UB UB UB any any
UB LB LB UB no P ij any
LB UB UB LB no P ji any

TABLE I: Theorem 8: constraints on power injections, line
flows, and losses on any line (i, j) in a radial network that
guarantees zero duality gap. UB: upper bound only; LB: lower
bound only. The condition in Theorem ?? are in the second
row.

A. Exact relaxation: numerical examples

Theorems ?? and 8 (Bose says: might need change) imply
that, over radial networks, the rank relaxation of OPF may not
be exact only when the bounds on power injections and line
flows do not satisfy the pattern in Table I, e.g., if all power
injections are lower as well as upper bounded. Indeed, [24]
illustrates how lower bounds on active powers in a simple 2-
bus network can cause inexact relaxation, so the conditions in
Theorems ?? and 8 are non-vacuous. 3

Even though we can contrive small radial networks for
which the inexact relaxation does not yield a rank 1 solution, in
our experience, inexact relaxation has been hard to come by in
practical distribution circuits, even when both real and reactive
power injections are bounded on both sides with minimization
of power loss as the objective. We do not have an analytical
explanation, but offer below some empirical observation.

We simulated a simplified version of a real distribution
network in Southern California reported in [32]. We consider
just one distribution circuit, removing the 30MW load at
the substation bus that represents other circuits in the same
substation. Moreover, we allowed the VAR output of the
capacitor banks to vary between zero and their rated values.
The circuit has a high PV penetration with around 6.4 MW of
installed capacity distributed across five sites. The total load of
the circuit peaks at around 10MW. P

G
k at the PV-enabled nodes

were scaled between 0.2 to 1.0 times their installed capacities;
PG

k = 0 for all nodes. The inverters at the PV generators
were used for VAR support with the ability to vary its VAR
output between QG

k
= �0.3P

G
k and Q

G
k = +0.3P

G
k . The

base quantities (voltage, power and impedance) for per unit
calculations were chosen as given in [32, Table 1]. The voltage
magnitudes were allowed to vary between

⌅
W k = 0.95p.u.

and
⌅

W k = 1.05p.u. The loads were varied between 0.2
to 1.0 times their peak values and their power-factors were
varied between 0.80 to 0.98. The optimization problem was
solved in MATLAB using YALMIP [38]. In all simulations,
rank(W�) = 1 which implies that the rank relaxation is exact,
even though all power injections are lower as well as upper
bounded.

We have also simulated over 120 random test circuits. The
parameters for the network are typical of sparsely loaded rural
circuits based on a collection of detailed electrical distribution

3Even though it is shown in [22] that the feasible set for the 2-bus example
is generally nonconvex, SDP relaxation can still be exact. It is sufficient that
the (possibly nonconvex) feasible set has the same Pareto front as its convex
hull, as shown in [24].

feeder information compiled in [39] with values similar to
those employed in [40]. The simulations employed random
radial networks with 50 � 150 nodes with PV generation at
15 � 60% of the nodes. The line lengths were drawn from a
uniform distribution of 200-300 meters with each line between
connected nodes having an impedance (0.33 + i0.38)⇤/km.
The upper and lower voltage limits (2) were set to 1 ± 0.05
p.u. with a base line-to-line voltage of 7.2 kV. The real power
demand PD

k at each node k ⇧ [n] was drawn from a uniform
distribution between 0 and 4.5 kW with the reactive power
demand QD

k selected from a uniform distribution between
0.2PD

k to 0.3PD
k . The upper bound on the real power P

G
k at

the PV enabled nodes was selected from a uniform distribution
between 0 and 2 kW and we set P

G
k = 0 for the non-PV nodes.

The lower bounds were fixed at PG
k = 0 for all k ⇧ [n].

The corresponding reactive power bounds were chosen as
Q

G
k = 0.3P

G
k and QG

k
= �0.3P

G
k . In order to be consistent

with the operating conditions of a real distribution circuit, the
first node was treated as the feeder with P

G
1 scaled based on

the overall demand of the system and installed PV capacity.
In all of the simulations the resulting matrix W� had rank 1
which implies that the rank relaxation is exact, despite the
lower and upper bounds on all power injections.

(Bose says: I removed the subsection in ‘Other objective
functions’, since this is now achieved already in the main
section of the paper. We might need to change the remark
about the objective functions in the start.)

B. Storage and Optimal Control

As the penetration of renewable energy increases, it is
expected that large amounts of energy storage will need to
be added to the grid [41]. The analysis described here can be
extended to incorporate storage as follows. Assume that every
node k in the network has some storage element with finite
energy capacity Bk. Consider discrete time t = [1, 2, . . . , T ],
where bk(t) denotes the state of charge of the storage at node
k and time t. The ramp rate of the storage is constrained such
that

Dk ⇤ bk(t + 1)� bk(t) ⇤ Dk, t = 1, . . . , T � 1. (43)

Given an initial state of the storage 0 ⇤ b0
k ⇤ Bk, for k ⇧ [n],

the OPF with storage problem becomes:
Primal Problem with Energy Storage (ESP ):

minimize
V (t),b(t)

T⇤

t=1

V (t)�
�

Y + Y �

2

⇥
V (t),

subject to P k(t) ⇤ V (t)��kV (t) ⇤ P k(t),
Q

k
(t) ⇤ V (t)�⇥kV (t) ⇤ Qk(t),

W k(t) ⇤ V (t)�JkV (t) ⇤ W k(t),
V (t)�M ijV (t) ⇤ Pij , i ⌅ j,

V (t)�T ijV (t) ⇤ Lij , i ⌅ j, i < j,

0 ⇤ bk(t) ⇤ Bk,

Dk ⇤ bk(t + 1)� bk(t) ⇤ Dk, t ⇧ [1, T � 1],
bk(1) = b0

k,



OPF over radial networks 

bounds on constraints 
remove these  

Ck[ ]ij
8

Pi Qi Pj Qj line flow loss
UB UB UB UB any any
UB LB LB UB no P ij any
LB UB UB LB no P ji any

TABLE I: Theorem 8: constraints on power injections, line
flows, and losses on any line (i, j) in a radial network that
guarantees zero duality gap. UB: upper bound only; LB: lower
bound only. The condition in Theorem ?? are in the second
row.

A. Exact relaxation: numerical examples

Theorems ?? and 8 (Bose says: might need change) imply
that, over radial networks, the rank relaxation of OPF may not
be exact only when the bounds on power injections and line
flows do not satisfy the pattern in Table I, e.g., if all power
injections are lower as well as upper bounded. Indeed, [24]
illustrates how lower bounds on active powers in a simple 2-
bus network can cause inexact relaxation, so the conditions in
Theorems ?? and 8 are non-vacuous. 3

Even though we can contrive small radial networks for
which the inexact relaxation does not yield a rank 1 solution, in
our experience, inexact relaxation has been hard to come by in
practical distribution circuits, even when both real and reactive
power injections are bounded on both sides with minimization
of power loss as the objective. We do not have an analytical
explanation, but offer below some empirical observation.

We simulated a simplified version of a real distribution
network in Southern California reported in [32]. We consider
just one distribution circuit, removing the 30MW load at
the substation bus that represents other circuits in the same
substation. Moreover, we allowed the VAR output of the
capacitor banks to vary between zero and their rated values.
The circuit has a high PV penetration with around 6.4 MW of
installed capacity distributed across five sites. The total load of
the circuit peaks at around 10MW. P

G
k at the PV-enabled nodes

were scaled between 0.2 to 1.0 times their installed capacities;
PG

k = 0 for all nodes. The inverters at the PV generators
were used for VAR support with the ability to vary its VAR
output between QG

k
= �0.3P

G
k and Q

G
k = +0.3P

G
k . The

base quantities (voltage, power and impedance) for per unit
calculations were chosen as given in [32, Table 1]. The voltage
magnitudes were allowed to vary between

⌅
W k = 0.95p.u.

and
⌅

W k = 1.05p.u. The loads were varied between 0.2
to 1.0 times their peak values and their power-factors were
varied between 0.80 to 0.98. The optimization problem was
solved in MATLAB using YALMIP [38]. In all simulations,
rank(W�) = 1 which implies that the rank relaxation is exact,
even though all power injections are lower as well as upper
bounded.

We have also simulated over 120 random test circuits. The
parameters for the network are typical of sparsely loaded rural
circuits based on a collection of detailed electrical distribution

3Even though it is shown in [22] that the feasible set for the 2-bus example
is generally nonconvex, SDP relaxation can still be exact. It is sufficient that
the (possibly nonconvex) feasible set has the same Pareto front as its convex
hull, as shown in [24].

feeder information compiled in [39] with values similar to
those employed in [40]. The simulations employed random
radial networks with 50 � 150 nodes with PV generation at
15 � 60% of the nodes. The line lengths were drawn from a
uniform distribution of 200-300 meters with each line between
connected nodes having an impedance (0.33 + i0.38)⇤/km.
The upper and lower voltage limits (2) were set to 1 ± 0.05
p.u. with a base line-to-line voltage of 7.2 kV. The real power
demand PD

k at each node k ⇧ [n] was drawn from a uniform
distribution between 0 and 4.5 kW with the reactive power
demand QD

k selected from a uniform distribution between
0.2PD

k to 0.3PD
k . The upper bound on the real power P

G
k at

the PV enabled nodes was selected from a uniform distribution
between 0 and 2 kW and we set P

G
k = 0 for the non-PV nodes.

The lower bounds were fixed at PG
k = 0 for all k ⇧ [n].

The corresponding reactive power bounds were chosen as
Q

G
k = 0.3P

G
k and QG

k
= �0.3P

G
k . In order to be consistent

with the operating conditions of a real distribution circuit, the
first node was treated as the feeder with P

G
1 scaled based on

the overall demand of the system and installed PV capacity.
In all of the simulations the resulting matrix W� had rank 1
which implies that the rank relaxation is exact, despite the
lower and upper bounds on all power injections.

(Bose says: I removed the subsection in ‘Other objective
functions’, since this is now achieved already in the main
section of the paper. We might need to change the remark
about the objective functions in the start.)

B. Storage and Optimal Control

As the penetration of renewable energy increases, it is
expected that large amounts of energy storage will need to
be added to the grid [41]. The analysis described here can be
extended to incorporate storage as follows. Assume that every
node k in the network has some storage element with finite
energy capacity Bk. Consider discrete time t = [1, 2, . . . , T ],
where bk(t) denotes the state of charge of the storage at node
k and time t. The ramp rate of the storage is constrained such
that

Dk ⇤ bk(t + 1)� bk(t) ⇤ Dk, t = 1, . . . , T � 1. (43)

Given an initial state of the storage 0 ⇤ b0
k ⇤ Bk, for k ⇧ [n],

the OPF with storage problem becomes:
Primal Problem with Energy Storage (ESP ):

minimize
V (t),b(t)

T⇤

t=1

V (t)�
�

Y + Y �

2

⇥
V (t),

subject to P k(t) ⇤ V (t)��kV (t) ⇤ P k(t),
Q

k
(t) ⇤ V (t)�⇥kV (t) ⇤ Qk(t),

W k(t) ⇤ V (t)�JkV (t) ⇤ W k(t),
V (t)�M ijV (t) ⇤ Pij , i ⌅ j,

V (t)�T ijV (t) ⇤ Lij , i ⌅ j, i < j,

0 ⇤ bk(t) ⇤ Bk,

Dk ⇤ bk(t + 1)� bk(t) ⇤ Dk, t ⇧ [1, T � 1],
bk(1) = b0

k,



OPF over radial networks 

bounds on constraints 
remove these  Ck[ ]ij

8

Pi Qi Pj Qj line flow loss
UB UB UB UB any any
UB LB LB UB no P ij any
LB UB UB LB no P ji any

TABLE I: Theorem 8: constraints on power injections, line
flows, and losses on any line (i, j) in a radial network that
guarantees zero duality gap. UB: upper bound only; LB: lower
bound only. The condition in Theorem ?? are in the second
row.

A. Exact relaxation: numerical examples

Theorems ?? and 8 (Bose says: might need change) imply
that, over radial networks, the rank relaxation of OPF may not
be exact only when the bounds on power injections and line
flows do not satisfy the pattern in Table I, e.g., if all power
injections are lower as well as upper bounded. Indeed, [24]
illustrates how lower bounds on active powers in a simple 2-
bus network can cause inexact relaxation, so the conditions in
Theorems ?? and 8 are non-vacuous. 3

Even though we can contrive small radial networks for
which the inexact relaxation does not yield a rank 1 solution, in
our experience, inexact relaxation has been hard to come by in
practical distribution circuits, even when both real and reactive
power injections are bounded on both sides with minimization
of power loss as the objective. We do not have an analytical
explanation, but offer below some empirical observation.

We simulated a simplified version of a real distribution
network in Southern California reported in [32]. We consider
just one distribution circuit, removing the 30MW load at
the substation bus that represents other circuits in the same
substation. Moreover, we allowed the VAR output of the
capacitor banks to vary between zero and their rated values.
The circuit has a high PV penetration with around 6.4 MW of
installed capacity distributed across five sites. The total load of
the circuit peaks at around 10MW. P

G
k at the PV-enabled nodes

were scaled between 0.2 to 1.0 times their installed capacities;
PG

k = 0 for all nodes. The inverters at the PV generators
were used for VAR support with the ability to vary its VAR
output between QG

k
= �0.3P

G
k and Q

G
k = +0.3P

G
k . The

base quantities (voltage, power and impedance) for per unit
calculations were chosen as given in [32, Table 1]. The voltage
magnitudes were allowed to vary between

⌅
W k = 0.95p.u.

and
⌅

W k = 1.05p.u. The loads were varied between 0.2
to 1.0 times their peak values and their power-factors were
varied between 0.80 to 0.98. The optimization problem was
solved in MATLAB using YALMIP [38]. In all simulations,
rank(W�) = 1 which implies that the rank relaxation is exact,
even though all power injections are lower as well as upper
bounded.

We have also simulated over 120 random test circuits. The
parameters for the network are typical of sparsely loaded rural
circuits based on a collection of detailed electrical distribution

3Even though it is shown in [22] that the feasible set for the 2-bus example
is generally nonconvex, SDP relaxation can still be exact. It is sufficient that
the (possibly nonconvex) feasible set has the same Pareto front as its convex
hull, as shown in [24].

feeder information compiled in [39] with values similar to
those employed in [40]. The simulations employed random
radial networks with 50 � 150 nodes with PV generation at
15 � 60% of the nodes. The line lengths were drawn from a
uniform distribution of 200-300 meters with each line between
connected nodes having an impedance (0.33 + i0.38)⇤/km.
The upper and lower voltage limits (2) were set to 1 ± 0.05
p.u. with a base line-to-line voltage of 7.2 kV. The real power
demand PD

k at each node k ⇧ [n] was drawn from a uniform
distribution between 0 and 4.5 kW with the reactive power
demand QD

k selected from a uniform distribution between
0.2PD

k to 0.3PD
k . The upper bound on the real power P

G
k at

the PV enabled nodes was selected from a uniform distribution
between 0 and 2 kW and we set P

G
k = 0 for the non-PV nodes.

The lower bounds were fixed at PG
k = 0 for all k ⇧ [n].

The corresponding reactive power bounds were chosen as
Q

G
k = 0.3P

G
k and QG

k
= �0.3P

G
k . In order to be consistent

with the operating conditions of a real distribution circuit, the
first node was treated as the feeder with P

G
1 scaled based on

the overall demand of the system and installed PV capacity.
In all of the simulations the resulting matrix W� had rank 1
which implies that the rank relaxation is exact, despite the
lower and upper bounds on all power injections.

(Bose says: I removed the subsection in ‘Other objective
functions’, since this is now achieved already in the main
section of the paper. We might need to change the remark
about the objective functions in the start.)

B. Storage and Optimal Control

As the penetration of renewable energy increases, it is
expected that large amounts of energy storage will need to
be added to the grid [41]. The analysis described here can be
extended to incorporate storage as follows. Assume that every
node k in the network has some storage element with finite
energy capacity Bk. Consider discrete time t = [1, 2, . . . , T ],
where bk(t) denotes the state of charge of the storage at node
k and time t. The ramp rate of the storage is constrained such
that

Dk ⇤ bk(t + 1)� bk(t) ⇤ Dk, t = 1, . . . , T � 1. (43)

Given an initial state of the storage 0 ⇤ b0
k ⇤ Bk, for k ⇧ [n],

the OPF with storage problem becomes:
Primal Problem with Energy Storage (ESP ):

minimize
V (t),b(t)

T⇤

t=1

V (t)�
�

Y + Y �

2

⇥
V (t),

subject to P k(t) ⇤ V (t)��kV (t) ⇤ P k(t),
Q

k
(t) ⇤ V (t)�⇥kV (t) ⇤ Qk(t),

W k(t) ⇤ V (t)�JkV (t) ⇤ W k(t),
V (t)�M ijV (t) ⇤ Pij , i ⌅ j,

V (t)�T ijV (t) ⇤ Lij , i ⌅ j, i < j,

0 ⇤ bk(t) ⇤ Bk,

Dk ⇤ bk(t + 1)� bk(t) ⇤ Dk, t ⇧ [1, T � 1],
bk(1) = b0

k,



Bus injection model: summary 

OPF = rank constrained SDP 

Sufficient conditions for SDP to be 
exact 

n  Whether a solution is globally optimal is 
always easily checkable 

n  Mesh: must solve SDP to check 
n  Tree: depends only on constraint pattern or 

r/x ratios 



Outline 

Two power flow models 
n  Bus injection model 
n  Branch flow model 
 

OPF in BI model 
n  Semidefinite relaxation 

 

OPF in BF model 
n  SOCP relaxation 
n  Convexification using phase shifters 
 

Equivalence relationship 
 



Sij =ViIij
*

Sij = Sjk
k: j~k
∑ + zij Iij

2
+ sj

c − sj
gKirchoff’s	  Law:	  

Vj =Vi − zij IijOhm’s	  Law:	  

min    rij
i~ j
∑ Iij

2
+ αi

i
∑ Vi

2

over   (S, I,V, sg, sc )

s. t.      si
g ≤ si

g ≤ si
g          si ≤ si

c  
            vi ≤ vi ≤ vi

OPF: branch flow model 

real	  power	  loss	   CVR	  (conserva:on	  
voltage	  reduc:on)	  	  



OPF: branch flow model 
min      f x( )
over    x := (S, I,V, sg, sc )

s. t.     si
g ≤ si

g ≤ si
g       si ≤ si

c ≤ si       vi ≤ vi ≤ vi



OPF: branch flow model 
min      f x( )
over    x := (S, I,V, sg, sc )

s. t.     si
g ≤ si

g ≤ si
g       si ≤ si

c ≤ si       vi ≤ vi ≤ vi



Sij =ViIij
*Vj =Vi − zij Iij

branch	  flow	  
model	  

Sij − zij Iij
2( )

i→ j
∑ − Sjk

j→k
∑ = sj

c − sj
g

OPF: branch flow model 

genera:on,	  
VAR	  control	  

min      f x( )
over    x := (S, I,V, sg, sc )

s. t.     si
g ≤ si

g ≤ si
g       si ≤ si

c ≤ si       vi ≤ vi ≤ vi

Branch flow model is more convenient for applications 



Sij =ViIij
*Vj =Vi − zij Iij

branch	  flow	  
model	  

Sij − zij Iij
2( )

i→ j
∑ − Sjk

j→k
∑ = sj

c − sj
g

OPF: branch flow model 

demand	  
response	  

min      f x( )
over    x := (S, I,V, sg, sc )

s. t.     si
g ≤ si

g ≤ si
g       si ≤ si

c ≤ si       vi ≤ vi ≤ vi



Sij =ViIij
*Vj =Vi − zij Iij

branch	  flow	  
model	  

Sij − zij Iij
2( )

i→ j
∑ − Sjk

j→k
∑ = sj

c − sj
g

OPF: branch flow model 

demand	  
response	  

Challenge: nonconvexity ! 

min      f x( )
over    x := (S, I,V, sg, sc )

s. t.     si
g ≤ si

g ≤ si
g       si ≤ si

c ≤ si       vi ≤ vi ≤ vi



Solution strategy 

OPF 
nonconvex 

OPF-ar 
nonconvex 

OPF-cr 
convex 

exact 
relaxation ? 

inverse 
projection 

for tree 
angle 

relaxation 

SOCP 
relaxation 



BFM: power flow solutions 

Sij =ViIij
*Vj =Vi − zij Iij

Sij − zij Iij
2( )

i→ j
∑ − Sjk

j→k
∑ = sj

c − sj
g

S, I,V( )

S,,v( )



Relaxed BF model 

Sij − zij ij( )
i→ j
∑ − Sjk

j→k
∑ = sj

c − sj
g

vi = vj + 2 Re zij
*Sij( )− zij

2
 ij

 ij =
Sij

2

vi
Baran	  and	  Wu	  1989	  
for	  radial	  networks	  

relaxed branch flow solutions:                satisfy S,,v, s( )

S, I,V( )

S,,v( )

 ij := Iij
2

vi := Vi
2



Relaxed BF model 

Sij − zij ij( )
i→ j
∑ − Sjk

j→k
∑ = sj

c − sj
g

vi = vj + 2 Re zij
*Sij( )− zij

2
 ij

 ij ≥
Sij

2

vi

relaxed branch flow solutions:                satisfy S,,v, s( )

S, I,V( )

S,,v( )

 ij := Iij
2

vi := Vi
2

second order cone ! 



OPF 
min      f x( )
over    x := (S, I,V, sg, sc )

s. t.     si
g ≤ si

g ≤ si
g       si ≤ si

c ≤ si       vi ≤ vi ≤ vi

x ∈ X X



min      f ŷ( )
over    ŷ := (S,,v, sg, sc )

s. t.      si
g ≤ si

g ≤ si
g       si ≤ si

c ≤ si
c       vi ≤ vi ≤ vi

OPF-ar 

ŷ := h(x)∈ Ŷ

Ŷ

h X( )

relax each voltage/current from a  
point in complex plane into a circle  



OPF-cr 

ŷ ∈  conv Ŷ

Ŷ

h X( )

relax to convex hull 
(SOCP) 

min      f ŷ( )
over    ŷ := (S,,v, sg, sc )

s. t.      si
g ≤ si

g ≤ si
g       si ≤ si

c ≤ si
c       vi ≤ vi ≤ vi



Sij =ViIij
*Vj =Vi − zij Iij

branch	  flow	  
model	  

Sij − zij Iij
2( )

i→ j
∑ − Sjk

j→k
∑ = sj

c − sj
g

OPF 
min      f x( )
over    x := (S, I,V, sg, sc )

s. t.     si
g ≤ si

g ≤ si
g       si ≤ si

c ≤ si       vi ≤ vi ≤ vi



OPF-ar 

Sij − zij ij( )
i→ j
∑ − Sjk

j→k
∑ = sj

c − sj
g

vi = vj + 2 Re zij
*Sij( )− zij

2
 ij

 ij =
Sij

2

vi
source of 

nonconvexity 

min      f x( )
over    x := (S, I,V, sg, sc )

s. t.     si
g ≤ si

g ≤ si
g       si ≤ si

c ≤ si       vi ≤ vi ≤ vi



OPF-cr 

Sij − zij ij( )
i→ j
∑ − Sjk

j→k
∑ = sj

c − sj
g

vi = vj + 2 Re zij
*Sij( )− zij

2
 ij

 ij =
Sij

2

vi
SOCP relaxation  ij ≥

Sij
2

vi

min      f x( )
over    x := (S, I,V, sg, sc )

s. t.     si
g ≤ si

g ≤ si
g       si ≤ si

c ≤ si       vi ≤ vi ≤ vi



Recap so far … 

OPF 
nonconvex 

OPF-ar 
nonconvex 

OPF-cr 
convex 

exact 
relaxation ? 

inverse 
projection 

for tree 
angle 

relaxation 

SOCP 
relaxation 



Theorem 
OPF-cr is SOCP 

n  when objective is linear 
n  SOCP much simpler than SDP 

OPF-cr is exact relaxation 

OPF-cr is exact 
n  optimal of OPF-cr is also optimal for OPF-ar 
n  for mesh as well as radial networks 
n  … if no upper bounds on loads 
n  (or alternative conds for radial networks) 

 
 



OPF ?? 

Angle recovery 

Ŷ

ŷ

OPF-ar 
hθ
−1(ŷ)∈  X ?

Ŷ

h X( )

Ŷ

h X( )

ŷ ŷ

does there exist     s.t. θ



Theorem 
solution    to OPF recoverable from     iff 
inverse projection exist  iff        s.t. 
 
 
 
 

Angle recovery 

Bθ = β ŷ( )      mod 2π

∃!θ

incidence matrix; 
depends on topology 

depends on  
OPF-ar solution 

ŷx



Theorem 
solution    to OPF recoverable from     iff 
inverse projection exist  iff        s.t. 
 
 
 
 

Angle recovery 

Two simple angle recovery algorithms 

n  centralized: explicit formula 
n  decentralized: recursive alg 

 
 

∃!θ

implied phase angle differences sum to 0 (mod 2π) 
around each cycle 

ŷx

Bθ = β ŷ( )      mod 2π



Theorem 
For radial network:  
 
 
 
 

Angle recovery 

∃!θ

h X( ) = Ŷ
ŷ

Ŷ

h X( )

ŷ

mesh tree 

Bθ = β ŷ( )      mod 2π



Theorem 
Inverse projection exist iff 
 

Unique inverse given by  
 

For radial network:  
 
 
 
 

Angle recovery 

B⊥ BT
−1βT( ) = β⊥

BT
B⊥

"

#
$

%

&
'θ =

βT
β⊥

"

#
$

%

&
'

#buses - 1 

#lines in T 

#lines outside T 

θ * = BT
−1βT

B⊥ = β⊥ = 0



OPF solution 

Solve	  OPF-‐cr	  

OPF	  solu:on	  

Recover	  angles	  

radial 

SOCP   

•  explicit formula 
•  distributed alg 



OPF solution 

Solve	  OPF-‐cr	  

???	  

N	  

OPF	  solu:on	  

Recover	  angles	  

radial 

angle	  recovery	  
condi:on	  holds?	   Y	  mesh 



Outline 

Two power flow models 
n  Bus injection model 
n  Branch flow model 
 

OPF in BI model 
n  Semidefinite relaxation 

 

OPF in BF model 
n  SOCP relaxation 
n  Convexification using phase shifters 
 

Equivalence relationship 
 



Recap: solution strategy 

OPF 
nonconvex 

OPF-ar 
nonconvex 

OPF-cr 
convex 

exact 
relaxation 

inverse 
projection 

for tree 
angle 

relaxation 

SOCP 
relaxation 

?? 



Phase shifter 

ideal phase shifter 

11

3) For each link (j, k) ⇥ E \ ET not in the spanning
tree, node j is an additional parent of k in addition
to k’s parent in the spanning tree from which \Vk

has already been computed in Step 2.
a) Compute current angle \Ijk using (39).
b) Compute a new voltage angle ⇥jk using the new

parent j and (40). If ⇥jk ⇤= \Vk, then angle
recovery has failed and (S, ⌅, v, s0) is spurious.

If the angle recovery procedure succeeds in Step 3, then
(S, ⌅, v, s0) together with these angles \Vk,\Ijk are
indeed a branch flow solution. Otherwise, the angles \Vk

determined in Step 1 do not satisfy the Kirchhoff voltage
law

�
i Vi = 0 around the loop that involves the link

(j, k) identified in Step 3(b). This violates the condition
BT⇥B�1

T �T = �T⇥ in Theorem 2.

C. Radial networks
Recall that all relaxed solutions in Ŷ \ ĥ(X) are

spurious. Our next key result shows that, for radial
network, ĥ(X) = Ŷ and hence angle relaxation is always
exact in the sense that there is always a unique inverse
projection that maps any relaxed solution ŷ to a branch
flow solution in X (even though X ⇤= Y).

Theorem 4: Suppose G = T is a tree. Then
1) ĥ(X) = Ŷ.
2) given any ŷ, ⇥⇥ := B�1� always exists and is the

unique phase angle vector such that h��(ŷ) ⇥ X.
Proof: When G = T is a tree, m = n and hence

B = BT and � = �T . Moreover B is n � n and of
full rank. Therefore ⇥⇥ = B�1� always exists and, by
Theorem 2, h��(ŷ) is the unique branch flow solution
in X whose projection is ŷ. Since this holds for any
arbitrary ŷ ⇥ Ŷ, Ŷ = ĥ(X).

A direct consequence of Theorem 1 and Theorem 4
is that, for a radial network, OPF is equivalent to the
convex problem OPF-cr in the sense that we can obtain
an optimal solution of one problem from that of the other.

Corollary 5: Suppose G is a tree. Given an optimal
solution (ŷ⇥, s⇥) of OPF-cr, there exists a unique ⇥⇥ such
that (h��(ŷ⇥), s⇥) is an optimal solution of the original
OPF.

Proof: Suppose (ŷ⇥, s⇥) is optimal for OPF-cr (24)–
(25). Theorem 1 implies that it is also optimal for OPF-
ar. In particular ŷ⇥ ⇥ Ŷ(s⇥). Since G is a tree, Ŷ(s⇥) =
ĥ(X(s⇥)) by Theorem 4 and hence there is a unique ⇥⇥
such that h��(ŷ⇥) is a branch flow solution in X(s⇥).
This means (h��(ŷ⇥), s⇥) is feasible for OPF (10)–(11).
Since OPF-ar is a relaxation of OPF, (h��(ŷ⇥), s⇥) is also
optimal for OPF.

Remark 3: Theorem 1 implies that we can always
solve efficiently a conic relaxation OPF-cr to obtain a
solution of OPF-ar, provided there are no upper bounds
on the power consumptions pci , q

c
i . From a solution of

OPF-ar, Theorem 4 and Corollary 5 prescribe a way to
recover an optimal solution of OPF for radial networks.
For mesh networks, however, the solution of OPF-ar may
be spurious, i.e., there are no angles \Vi,\Iij that will
satisfy the Kirchhoff laws if the angle recovery condition
in Theorem 2 fails to hold. To deal with this, we next
propose a way to convexify the network.

VI. CONVEXIFICATION OF MESH NETWORK

In this section, we explain how to use phase shifters
to convexify a mesh network so that an extended angle
recovery condition can always be satisfied by any relaxed
solution and can be mapped to a valid branch flow
solution of the convexified network. As a consequence,
the OPF for the convexified network can always be
solved efficiently (in polynomial time).

A. Branch flow solutions
In this section we study power flow solutions

and hence we fix an s. All quantities, such as
x, ŷ,X, Ŷ, X,XT , are with respect to the given s, even
though that is not explicit in the notation. In the next
section, s is also an optimization variable and the sets
X, Ŷ, X,XT are for any s; c.f. the more accurate nota-
tion in (4) and (5).

Phase shifters can be traditional transformers or
FACTS (Flexible AC Transmission Systems) devices.
They can increase transmission capacity and improve
stability and power quality [37], [38]. In this paper,
we consider an idealized phase shifter that only shifts
the phase angles of the sending-end voltage and current
across a line, and has no impedance nor limits on the
shifted angles. Specifically, consider an idealized phase
shifter parametrized by ⇤ij across line (i, j), as shown
in Figure 4. As before, let Vi denote the sending-end

k
zij

i j!ij

Fig. 4: Model of a phase shifter in line (i, j).

voltage. Define Iij to be the sending-end current leaving
node i towards node j. Let k be the point between



Convexification of mesh networks 

OPF min
x

   f h(x)( )    s.t.     x ∈ X    

Theorem 
•    
•  Need phase shifters only 
     outside spanning tree 

X =Y

OPF-ar min
x

   f h(x)( )    s.t.     x ∈ Y   

Y

X

OPF-ps min
x,φ

   f h(x)( )    s.t.     x ∈ X    

X

X

optimize over phase shifters as well 



Theorem 
Inverse projection always exists 
 

Unique inverse given by  
 

Don’t need PS in spanning tree 
 
 
 
 

Angle recovery with PS 

BT
B⊥

"
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&
'θ =

βT
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−1βT

φ⊥
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Convexification of mesh networks 

Optimization of φ	

•  Min # phase shifters (#lines - #buses + 1) 

•  Min       : NP hard  (good heuristics) 

•  Given existing network of PS, min # or 
     angles of additional PS  

OPF-ps min
x,φ

   f h(x)( )    s.t.     x ∈ X    

X

X

optimize over phase shifters as well 

φ
2



OPF solution 

Solve	  OPF-‐cr	  

Op:mize	  phase	  
shiTers	  

N	  

OPF	  solu:on	  

Recover	  angles	  

radial 

angle	  recovery	  
condi:on	  holds?	   Y	  mesh 

•  explicit formula 
•  distributed alg 
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No PS With phase shifters (PS)
Test cases # links Min loss Min loss # required PS # active PS Angle range (�)

(m) (OPF, MW) (OPF-cr, MW) (m� n) |�i| > 0.1� [�min,�max]

IEEE 14-Bus 20 0.546 0.545 7 (35%) 2 (10%) [�2.1, 0.1]
IEEE 30-Bus 41 1.372 1.239 12 (29%) 3 (7%) [�0.2, 4.5]
IEEE 57-Bus 80 11.302 10.910 24 (30%) 19 (24%) [�3.5, 3.2]
IEEE 118-Bus 186 9.232 8.728 69 (37%) 36 (19%) [�1.9, 2.0]
IEEE 300-Bus 411 211.871 197.387 112 (27%) 101 (25%) [�11.9, 9.4]

New England 39-Bus 46 29.915 28.901 8 (17%) 7 (15%) [�0.2, 2.2]
Polish (case2383wp) 2,896 433.019 385.894 514 (18%) 376 (13%) [�20.1, 16.8]
Polish (case2737sop) 3,506 130.145 109.905 770 (22%) 433 (12%) [�21.9, 21.7]

TABLE II: Loss minimization. Min loss without phase shifters (PS) was computed using SDP relaxation of OPF
(10)–(11); min loss with phase shifters was computed using SOCP relaxations OPF-cr (24)–(23) of OPF-ar. The
“(%)” indicates the number of PS as a percentage of #links.

No PS With phase shifters (PS)
Test cases Max loadability Max loadability # required PS # active PS Angle range (�)

(OPF) (OPF-cr) (m� n) |�i| > 0.1� [�min,�max]

IEEE 14-Bus 195.0% 195.2% 7 (35%) 6 (30%) [�0.5, 1.4]
IEEE 30-Bus 156.7% 158.7% 12 (29%) 9 (22%) [�0.4, 12.4]
IEEE 57-Bus 108.2% 118.3% 24 (30%) 24 (30%) [�13.1, 23.2]

IEEE 118-Bus 203.7% 204.9% 69 (37%) 64 (34%) [�16.5, 22.3]
IEEE 300-Bus 106.8% 112.8% 112 (27%) 103 (25%) [�15.0, 16.5]

New England 39-Bus 109.1% 114.8% 8 (17%) 5 (11%) [�6.3, 10.6]
Polish (case2383wp) 101.4% 106.6% 514 (18%) 435 (15%) [�19.6, 19.4]
Polish (case2737sop) 127.6% 132.5% 770 (22%) 420 (12%) [�16.7, 17.0]

TABLE III: Loadability maximization. Max loadability without phase shifters (PS) was computed using SDP
relaxation of OPF (10)–(11); max loadability with phase shifters was computed using SOCP relaxations OPF-cr
(24)–(23) of OPF-ar. The “(%)” indicates the number of PS as a percentage of #links.

the corresponding unique (h�(ŷ), s) that was an optimal
solution of OPF for the convexified network.

To place the phase shifters, we have used a minimum
spanning tree of the network where the weights on the
lines are their reactance values. In Tables II and III, we
report the number m � n of phase shifters potentially
required on every link outside the minimum spanning
tree, as well as the number of active phase shifters (i.e.,
those with a phase angles greater than 0.1⇥) and the range
of their phase angles at optimality. The optimal choice
of spanning tree, e.g., to minimize the number of active
phase shifters and the range of their angles, remains an
open problem.

We also report the optimal objective values of OPF
with and without phase shifters in Tables II and III.
The optimal values of OPF without phase shifters were
obtained by implementing the SDP formulation and
relaxation proposed in [16] for solving OPF (10)–(11).
We verified the exactness of the SDP relaxation by
checking if the solution matrix was of rank one [13],
[16]. In all test cases, the SDP relaxation was exact and
hence the optimal objective values reported were indeed
the optimal value of OPF (10)–(11). As expected, the
optimal loss (Table II) and the optimal loadability (Table

III) for OPF-ar (equivalently OPF-cr) are, respectively,
lower and higher than the corresponding optimal values
of OPF. This confirms that the solutions obtained from
the SOCP relaxation are infeasible for the original OPF
but can be implemented with phase shifters, at a lower
loss or higher loadability.

The SDP relaxation requires the addition of small
resistances (10�6 pu) to every link that has a zero
resistance in the original model, as suggested in [13].
This addition is, on the other hand, not required for the
SOCP relaxation: OPF-cr is tight with respect to OPF-ar
with or without this addition. For comparison, we report
the results where the same resistances are added for both
the SDP and SOCP relaxations.

Summary. From Tables II and III:

1) Across all test cases, the convexified networks
have higher performance (lower minimum loss and
higher maximum loadability) than the original net-
works. More important than the modest perfor-
mance improvement, convexification is design for
simplicity: it guarantees an efficient solution for
optimal power flow.

2) The networks are (mesh but) very sparse, with the
ratios m/(n + 1) of the number of lines to the

With PS 
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No PS With phase shifters (PS)
Test cases # links Min loss Min loss # required PS # active PS Angle range (�)

(m) (OPF, MW) (OPF-cr, MW) (m� n) |�i| > 0.1� [�min,�max]

IEEE 14-Bus 20 0.546 0.545 7 (35%) 2 (10%) [�2.1, 0.1]
IEEE 30-Bus 41 1.372 1.239 12 (29%) 3 (7%) [�0.2, 4.5]
IEEE 57-Bus 80 11.302 10.910 24 (30%) 19 (24%) [�3.5, 3.2]
IEEE 118-Bus 186 9.232 8.728 69 (37%) 36 (19%) [�1.9, 2.0]
IEEE 300-Bus 411 211.871 197.387 112 (27%) 101 (25%) [�11.9, 9.4]

New England 39-Bus 46 29.915 28.901 8 (17%) 7 (15%) [�0.2, 2.2]
Polish (case2383wp) 2,896 433.019 385.894 514 (18%) 376 (13%) [�20.1, 16.8]
Polish (case2737sop) 3,506 130.145 109.905 770 (22%) 433 (12%) [�21.9, 21.7]

TABLE II: Loss minimization. Min loss without phase shifters (PS) was computed using SDP relaxation of OPF
(10)–(11); min loss with phase shifters was computed using SOCP relaxations OPF-cr (24)–(23) of OPF-ar. The
“(%)” indicates the number of PS as a percentage of #links.

No PS With phase shifters (PS)
Test cases Max loadability Max loadability # required PS # active PS Angle range (�)

(OPF) (OPF-cr) (m� n) |�i| > 0.1� [�min,�max]

IEEE 14-Bus 195.0% 195.2% 7 (35%) 6 (30%) [�0.5, 1.4]
IEEE 30-Bus 156.7% 158.7% 12 (29%) 9 (22%) [�0.4, 12.4]
IEEE 57-Bus 108.2% 118.3% 24 (30%) 24 (30%) [�13.1, 23.2]

IEEE 118-Bus 203.7% 204.9% 69 (37%) 64 (34%) [�16.5, 22.3]
IEEE 300-Bus 106.8% 112.8% 112 (27%) 103 (25%) [�15.0, 16.5]

New England 39-Bus 109.1% 114.8% 8 (17%) 5 (11%) [�6.3, 10.6]
Polish (case2383wp) 101.4% 106.6% 514 (18%) 435 (15%) [�19.6, 19.4]
Polish (case2737sop) 127.6% 132.5% 770 (22%) 420 (12%) [�16.7, 17.0]

TABLE III: Loadability maximization. Max loadability without phase shifters (PS) was computed using SDP
relaxation of OPF (10)–(11); max loadability with phase shifters was computed using SOCP relaxations OPF-cr
(24)–(23) of OPF-ar. The “(%)” indicates the number of PS as a percentage of #links.

the corresponding unique (h�(ŷ), s) that was an optimal
solution of OPF for the convexified network.

To place the phase shifters, we have used a minimum
spanning tree of the network where the weights on the
lines are their reactance values. In Tables II and III, we
report the number m � n of phase shifters potentially
required on every link outside the minimum spanning
tree, as well as the number of active phase shifters (i.e.,
those with a phase angles greater than 0.1⇥) and the range
of their phase angles at optimality. The optimal choice
of spanning tree, e.g., to minimize the number of active
phase shifters and the range of their angles, remains an
open problem.

We also report the optimal objective values of OPF
with and without phase shifters in Tables II and III.
The optimal values of OPF without phase shifters were
obtained by implementing the SDP formulation and
relaxation proposed in [16] for solving OPF (10)–(11).
We verified the exactness of the SDP relaxation by
checking if the solution matrix was of rank one [13],
[16]. In all test cases, the SDP relaxation was exact and
hence the optimal objective values reported were indeed
the optimal value of OPF (10)–(11). As expected, the
optimal loss (Table II) and the optimal loadability (Table

III) for OPF-ar (equivalently OPF-cr) are, respectively,
lower and higher than the corresponding optimal values
of OPF. This confirms that the solutions obtained from
the SOCP relaxation are infeasible for the original OPF
but can be implemented with phase shifters, at a lower
loss or higher loadability.

The SDP relaxation requires the addition of small
resistances (10�6 pu) to every link that has a zero
resistance in the original model, as suggested in [13].
This addition is, on the other hand, not required for the
SOCP relaxation: OPF-cr is tight with respect to OPF-ar
with or without this addition. For comparison, we report
the results where the same resistances are added for both
the SDP and SOCP relaxations.

Summary. From Tables II and III:

1) Across all test cases, the convexified networks
have higher performance (lower minimum loss and
higher maximum loadability) than the original net-
works. More important than the modest perfor-
mance improvement, convexification is design for
simplicity: it guarantees an efficient solution for
optimal power flow.

2) The networks are (mesh but) very sparse, with the
ratios m/(n + 1) of the number of lines to the
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No PS With phase shifters (PS)
Test cases # links Min loss Min loss # required PS # active PS Min #PS (�) Min k�k2 (�)

(m) (OPF, MW) (OPF-cr, MW) (m� n) |�i| > 0.1� [�
min

,�

max

] [�
min

,�

max

]

IEEE 14-Bus 20 0.546 0.545 7 (35%) 2 (10%) [�2.09, 0.58] [ -0.63, 0.12]
IEEE 30-Bus 41 1.372 1.239 12 (29%) 3 (7%) [�0.20, 4.47] [-0.95, 0.65]
IEEE 57-Bus 80 11.302 10.910 24 (30%) 19 (24%) [�3.47, 3.15] [-0.99, 0.99]

IEEE 118-Bus 186 9.232 8.728 69 (37%) 36 (19%) [�1.95, 2.03] [-0.81, 0.31]
IEEE 300-Bus 411 211.871 197.387 112 (27%) 101 (25%) [�13.3, 9.40] [-3.96, 2.85 ]

New England 39-Bus 46 29.915 28.901 8 (17%) 7 (15%) [�0.26, 1.83] [-0.33, 0.33]
Polish (case2383wp) 2,896 433.019 385.894 514 (18%) 373 (13%) [�19.9, 16.8] [-3.07, 3.23]
Polish (case2737sop) 3,506 130.145 109.905 770 (22%) 395 (11% ) [�10.9, 11.9] [ -1.23, 2.36]

TABLE I: Loss minimization. Min loss without phase shifters (PS) was computed using SDP relaxation of OPF;
min loss with phase shifters was computed using SOCP relaxations OPF-cr of OPF-ar. The “(%)” indicates the
number of PS as a percentage of #links.

No PS With phase shifters (PS)
Test cases Max load. Max load. # required PS # active PS Min #PS (�) Min k�k2 (�) Simu. time

(OPF) (OPF-cr) (m� n) |�i| > 0.1� [�
min

,�

max

] [�
min

,�

max

] (seconds)
IEEE 14-Bus 195.0% 195.2% 7 (35%) 6 (30%) [�0.51, 1.35] [-0.28, 0.23] 1.92
IEEE 30-Bus 156.7% 158.7% 12 (29%) 9 (22%) [�0.42, 12.4] [-2.68, 1.86] 3.86
IEEE 57-Bus 108.2% 118.3% 24 (30%) 24 (30%) [�13.1, 23.2] [-4.12, 4.12] 7.13

IEEE 118-Bus 203.7% 204.9% 69 (37%) 64 (34%) [�8.47, 17.6] [-4.61, 5.36] 15.96
IEEE 300-Bus 106.8% 112.8% 112 (27%) 103 (25%) [�15.0, 16.5] [-4.28, 6.31] 34.6

New England 39-Bus 109.1% 117.0% 8 (17%) 5 (11%) [�1.02, 1.28] [-0.28, 0.18] 2.82
Polish (case2383wp) 101.4% 106.6% 514 (18%) 435 (15%) [�19.6, 19.4] [-4.06, 4.32] 434.5
Polish (case2737sop) 127.6% 132.5% 770 (22%) 420 (12%) [�13.9, 17.1] [-2.07, 3.62] 483.7

TABLE II: Loadability maximization. Max loadability without phase shifters (PS) was computed using SDP
relaxation of OPF; max loadability with phase shifters was computed using SOCP relaxations OPF-cr of OPF-
ar. The “(%)” indicates the number of PS as a percentage of #links.

of links to 37%.
3) The numbers of active phase shifters in the test

cases vary from 7% of the numbers m of links to
25% for loss minimization, and 11% to 34% for
loadability maximization. The phase angles required
at optimality is no more than 20� in magnitude with
the minimum number of phase shifters. With the
maximum number of phase shifters, the range of
the phase angles is much smaller (less than 7�).

4) The simulation times range from a few secs to
mins. This is much faster than SDP relaxation.
Furthermore they appear linear in network size.

VI. CONCLUSION

We have presented a branch flow model and demon-
strated how it can be used for the analysis and opti-
mization of mesh as well as radial networks. Our results
confirm that radial networks are computationally much
simpler than mesh networks. For mesh networks, we
have proposed a simple way to convexify them using
phase shifters that will render them computationally as
simple as radial networks for power flow solution and
optimization. The addition of phase shifters thus convert
a nonconvex problem into a different, simpler problem.

We have proposed a solution strategy for OPF that
consists of two steps:

1) Compute a relaxed solution of OPF-ar by solving
its conic relaxation OPF-cr.

2) Recover from a relaxed solution an optimal solu-
tion of the original OPF using an angle recovery
algorithm.

We have proved that, for radial networks, both steps
are always exact, provided there are no upper bounds
on loads, so this strategy guarantees a globally optimal
solution. For mesh networks the angle recovery condition
may not hold but can be used to check if a given relaxed
solution is globally optimal.

Since practical power networks are very sparse, the
number of required phase shifters may be relatively
small. Moreover, their placement depends only on net-
work topology, but not on power flows, generations,
loads, or operating constraints. Therefore an one-time
deployment cost is required to achieve the subsequent
simplicity in network and market operations.
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No PS With phase shifters (PS)
Test cases # links Min loss Min loss # required PS # active PS Angle range (�)

(m) (OPF, MW) (OPF-cr, MW) (m� n) |�i| > 0.1� [�min,�max]

IEEE 14-Bus 20 0.546 0.545 7 (35%) 2 (10%) [�2.1, 0.1]
IEEE 30-Bus 41 1.372 1.239 12 (29%) 3 (7%) [�0.2, 4.5]
IEEE 57-Bus 80 11.302 10.910 24 (30%) 19 (24%) [�3.5, 3.2]
IEEE 118-Bus 186 9.232 8.728 69 (37%) 36 (19%) [�1.9, 2.0]
IEEE 300-Bus 411 211.871 197.387 112 (27%) 101 (25%) [�11.9, 9.4]

New England 39-Bus 46 29.915 28.901 8 (17%) 7 (15%) [�0.2, 2.2]
Polish (case2383wp) 2,896 433.019 385.894 514 (18%) 376 (13%) [�20.1, 16.8]
Polish (case2737sop) 3,506 130.145 109.905 770 (22%) 433 (12%) [�21.9, 21.7]

TABLE II: Loss minimization. Min loss without phase shifters (PS) was computed using SDP relaxation of OPF
(10)–(11); min loss with phase shifters was computed using SOCP relaxations OPF-cr (24)–(23) of OPF-ar. The
“(%)” indicates the number of PS as a percentage of #links.

No PS With phase shifters (PS)
Test cases Max loadability Max loadability # required PS # active PS Angle range (�)

(OPF) (OPF-cr) (m� n) |�i| > 0.1� [�min,�max]

IEEE 14-Bus 195.0% 195.2% 7 (35%) 6 (30%) [�0.5, 1.4]
IEEE 30-Bus 156.7% 158.7% 12 (29%) 9 (22%) [�0.4, 12.4]
IEEE 57-Bus 108.2% 118.3% 24 (30%) 24 (30%) [�13.1, 23.2]

IEEE 118-Bus 203.7% 204.9% 69 (37%) 64 (34%) [�16.5, 22.3]
IEEE 300-Bus 106.8% 112.8% 112 (27%) 103 (25%) [�15.0, 16.5]

New England 39-Bus 109.1% 114.8% 8 (17%) 5 (11%) [�6.3, 10.6]
Polish (case2383wp) 101.4% 106.6% 514 (18%) 435 (15%) [�19.6, 19.4]
Polish (case2737sop) 127.6% 132.5% 770 (22%) 420 (12%) [�16.7, 17.0]

TABLE III: Loadability maximization. Max loadability without phase shifters (PS) was computed using SDP
relaxation of OPF (10)–(11); max loadability with phase shifters was computed using SOCP relaxations OPF-cr
(24)–(23) of OPF-ar. The “(%)” indicates the number of PS as a percentage of #links.

the corresponding unique (h�(ŷ), s) that was an optimal
solution of OPF for the convexified network.

To place the phase shifters, we have used a minimum
spanning tree of the network where the weights on the
lines are their reactance values. In Tables II and III, we
report the number m � n of phase shifters potentially
required on every link outside the minimum spanning
tree, as well as the number of active phase shifters (i.e.,
those with a phase angles greater than 0.1⇥) and the range
of their phase angles at optimality. The optimal choice
of spanning tree, e.g., to minimize the number of active
phase shifters and the range of their angles, remains an
open problem.

We also report the optimal objective values of OPF
with and without phase shifters in Tables II and III.
The optimal values of OPF without phase shifters were
obtained by implementing the SDP formulation and
relaxation proposed in [16] for solving OPF (10)–(11).
We verified the exactness of the SDP relaxation by
checking if the solution matrix was of rank one [13],
[16]. In all test cases, the SDP relaxation was exact and
hence the optimal objective values reported were indeed
the optimal value of OPF (10)–(11). As expected, the
optimal loss (Table II) and the optimal loadability (Table

III) for OPF-ar (equivalently OPF-cr) are, respectively,
lower and higher than the corresponding optimal values
of OPF. This confirms that the solutions obtained from
the SOCP relaxation are infeasible for the original OPF
but can be implemented with phase shifters, at a lower
loss or higher loadability.

The SDP relaxation requires the addition of small
resistances (10�6 pu) to every link that has a zero
resistance in the original model, as suggested in [13].
This addition is, on the other hand, not required for the
SOCP relaxation: OPF-cr is tight with respect to OPF-ar
with or without this addition. For comparison, we report
the results where the same resistances are added for both
the SDP and SOCP relaxations.

Summary. From Tables II and III:

1) Across all test cases, the convexified networks
have higher performance (lower minimum loss and
higher maximum loadability) than the original net-
works. More important than the modest perfor-
mance improvement, convexification is design for
simplicity: it guarantees an efficient solution for
optimal power flow.

2) The networks are (mesh but) very sparse, with the
ratios m/(n + 1) of the number of lines to the
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No PS With phase shifters (PS)
Test cases # links Min loss Min loss # required PS # active PS Min #PS (�) Min k�k2 (�)

(m) (OPF, MW) (OPF-cr, MW) (m� n) |�i| > 0.1� [�
min

,�

max

] [�
min

,�

max

]

IEEE 14-Bus 20 0.546 0.545 7 (35%) 2 (10%) [�2.09, 0.58] [ -0.63, 0.12]
IEEE 30-Bus 41 1.372 1.239 12 (29%) 3 (7%) [�0.20, 4.47] [-0.95, 0.65]
IEEE 57-Bus 80 11.302 10.910 24 (30%) 19 (24%) [�3.47, 3.15] [-0.99, 0.99]

IEEE 118-Bus 186 9.232 8.728 69 (37%) 36 (19%) [�1.95, 2.03] [-0.81, 0.31]
IEEE 300-Bus 411 211.871 197.387 112 (27%) 101 (25%) [�13.3, 9.40] [-3.96, 2.85 ]

New England 39-Bus 46 29.915 28.901 8 (17%) 7 (15%) [�0.26, 1.83] [-0.33, 0.33]
Polish (case2383wp) 2,896 433.019 385.894 514 (18%) 373 (13%) [�19.9, 16.8] [-3.07, 3.23]
Polish (case2737sop) 3,506 130.145 109.905 770 (22%) 395 (11% ) [�10.9, 11.9] [ -1.23, 2.36]

TABLE I: Loss minimization. Min loss without phase shifters (PS) was computed using SDP relaxation of OPF;
min loss with phase shifters was computed using SOCP relaxations OPF-cr of OPF-ar. The “(%)” indicates the
number of PS as a percentage of #links.

No PS With phase shifters (PS)
Test cases Max load. Max load. # required PS # active PS Min #PS (�) Min k�k2 (�) Simu. time

(OPF) (OPF-cr) (m� n) |�i| > 0.1� [�
min

,�

max

] [�
min

,�

max

] (seconds)
IEEE 14-Bus 195.0% 195.2% 7 (35%) 6 (30%) [�0.51, 1.35] [-0.28, 0.23] 1.92
IEEE 30-Bus 156.7% 158.7% 12 (29%) 9 (22%) [�0.42, 12.4] [-2.68, 1.86] 3.86
IEEE 57-Bus 108.2% 118.3% 24 (30%) 24 (30%) [�13.1, 23.2] [-4.12, 4.12] 7.13

IEEE 118-Bus 203.7% 204.9% 69 (37%) 64 (34%) [�8.47, 17.6] [-4.61, 5.36] 15.96
IEEE 300-Bus 106.8% 112.8% 112 (27%) 103 (25%) [�15.0, 16.5] [-4.28, 6.31] 34.6

New England 39-Bus 109.1% 117.0% 8 (17%) 5 (11%) [�1.02, 1.28] [-0.28, 0.18] 2.82
Polish (case2383wp) 101.4% 106.6% 514 (18%) 435 (15%) [�19.6, 19.4] [-4.06, 4.32] 434.5
Polish (case2737sop) 127.6% 132.5% 770 (22%) 420 (12%) [�13.9, 17.1] [-2.07, 3.62] 483.7

TABLE II: Loadability maximization. Max loadability without phase shifters (PS) was computed using SDP
relaxation of OPF; max loadability with phase shifters was computed using SOCP relaxations OPF-cr of OPF-
ar. The “(%)” indicates the number of PS as a percentage of #links.

of links to 37%.
3) The numbers of active phase shifters in the test

cases vary from 7% of the numbers m of links to
25% for loss minimization, and 11% to 34% for
loadability maximization. The phase angles required
at optimality is no more than 20� in magnitude with
the minimum number of phase shifters. With the
maximum number of phase shifters, the range of
the phase angles is much smaller (less than 7�).

4) The simulation times range from a few secs to
mins. This is much faster than SDP relaxation.
Furthermore they appear linear in network size.

VI. CONCLUSION

We have presented a branch flow model and demon-
strated how it can be used for the analysis and opti-
mization of mesh as well as radial networks. Our results
confirm that radial networks are computationally much
simpler than mesh networks. For mesh networks, we
have proposed a simple way to convexify them using
phase shifters that will render them computationally as
simple as radial networks for power flow solution and
optimization. The addition of phase shifters thus convert
a nonconvex problem into a different, simpler problem.

We have proposed a solution strategy for OPF that
consists of two steps:

1) Compute a relaxed solution of OPF-ar by solving
its conic relaxation OPF-cr.

2) Recover from a relaxed solution an optimal solu-
tion of the original OPF using an angle recovery
algorithm.

We have proved that, for radial networks, both steps
are always exact, provided there are no upper bounds
on loads, so this strategy guarantees a globally optimal
solution. For mesh networks the angle recovery condition
may not hold but can be used to check if a given relaxed
solution is globally optimal.

Since practical power networks are very sparse, the
number of required phase shifters may be relatively
small. Moreover, their placement depends only on net-
work topology, but not on power flows, generations,
loads, or operating constraints. Therefore an one-time
deployment cost is required to achieve the subsequent
simplicity in network and market operations.
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n  Exploit tree graph & convex relaxation  
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Mesh networks can be convexified 
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Two power flow models 
n  Bus injection model 
n  Branch flow model 
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n  SOCP relaxation 
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