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Motivating History

• While working on the structure of Bn I ran 
into lattice theory

• Join-irreducibles and meet-irreducibles 
occur naturally in this context

• Seemed to be ignored in lattice theory 
once they were defined

• Will focus on finite lattices – can 
generalize to infinite lattices

• To me lattice are very much combinatorial 
and geometrical objects



Quick Test for Distributivity

• The following is all that is required 
(Markowsky 1972)

• Jordan-Dedekind chain condition
• Join-rank = meet-rank = length
• Previously discovered by Avann (1961)



Quick Test for Distributivity

No! 
Too 
Short

No! Too Many 
Join-Irreducibles

Dark Elements Are Join-irreducibles And * Elements Are Meet-irreducibles

JD-Chain Condition and #JI = #MI = length



Birkhoff's Theorem

• A finite distributive lattice is isomorphic to 
the lattice of all closed from below subsets 
of the poset of join-irreducibles

• Can extend to give direct factorization
• Can extend to give automorphism group
• For distributive lattices poset of meet-

irreducibles ≅ poset of join-irreducibles



Birkhoff's Theorem

The dark 
elements are the 
join-irreducibles



Distributivity is Too Special

• Must consider join-irreducibles and meet-
irreducibles in general

• Since elements can be both join-
irreducible and meet-irreducible it seems 
natural to consider bipartite graphs



Candidates for Poset of 
Irreducibles



Candidates for Poset of 
Irreducibles



Candidates for Poset of 
Irreducibles

• Note that the complementary extended 
induced order shows the direct 
factorization of the lattice

• Use this as the Poset of Irreducibles
• The Poset of Irreducibles was introduced 

in my thesis in 1972-73



Candidates for Poset of 
Irreducibles

• Presented as a new approach to analysis 
of lattices in 1973 at the Houston Lattice 
Theory conference

• Developed in a series of papers from 1973 
through 1994

• The complement of the Poset of 
Irreducibles is referred to as the reduced 
context by the Darmstadt  school

• Used for data mining and concept analysis



Candidates for Poset of 
Irreducibles

• The Darmstadt school refuses to reference 
my work even though it preceded their 
work and they were aware of it

• In my opinion, the Poset of Irreducibles is 
a better representation than its dual

• You can get many of their results more 
simply by working with the Poset of 
Irreducibles



Reconstructing the Lattice

a       b       c

c       b       a a ⇒ {b,c} Call this Rep(a)
b ⇒ {a,c} Call this Rep(b)
c ⇒ {a,b} Call this Rep(c)

{a,b,c}

{b,c}            {a,c}         {a,b}

{ }



Reconstructing the Lattice

a       b       c

f       e       d a ⇒ {f}
b ⇒ {e}
c ⇒ {d}

{d,e,f}

{e,f}            {d,f}         {d,e}

{f}               {e}             {d}

{ }
A lot more can be said



More About the Poset of 
Irreducibles P(L)

• Possibly a compact representation of a 
lattice (exponentially good in some cases)

• Work with the poset of irreducibles rather 
than the lattices

• Gives direct factorization
• Gives automorphism group
• Let's use J(L) for the set of join-

irreducibles and M(L) for the set of meet-
irreducibles



One More Example



Characterizing Lattices using 
P(L)

• Markowsky (1973)
– Distributive Lattices
– Geometric Lattices

• Mario Petrich and I (1975) produced a 
purely point and hyperplane, numerical-
parameter-free, self-dual axiomatization of 
finite dimensional projective lattices



Characterizing Lattices using 
P(L)

• Avann (1961), Greene & Markowsky 
(1974)

• Upper Locally Distributive:
– Jordan-Dedekind
– Meet-rank = length

• Lower Locally Distributive:
– Jordan-Dedekind
– Join-rank = length



Removing the Jordan-Dedekind 
Chain Condition

• Clearly, length(L) ≤ |J(L)|, |M(L)|
• Some definitions
• Join-extremal: length(L) = |J(L)|
• Meet-extremal: length(L) = |M(L)|
• Extremal: length(L) = |J(L)| = |M(L)|
• P-extremal means you can substitute any 

of the previous three definitions
• Theorem: A Cartesian product of lattices 

is p-extremal iff each factor is p-extremal



P-Extremal Lattices

• Many interesting properties and generalize 
decompositions of finite Boolean algebras

• Cannot be categorized algebraically
• Strong retracts for distributive and Tamari 

lattices
• Structure theorems for distributive and 

locally-distributive lattices



P-Extremal Lattices

• Include distributive, locally distributive and 
Tamari Associativity lattices

• Theorem: A bidigraph (X, Y, Arcs) is P(L) 
for an extremal lattice iff:
– |X| = |Y| = n
– Can number X and Y from 1 to n such that

• (xi,yi) is an arc for all i
• if (xi,yj) is an arc, i ≥ j



P(L) for Extremal Lattices



Embeddings of Lattices

• Theorem: Any finite lattice is isomorphic 
to an interval  of some finite extremal 
lattice

• Corollary: Extremal lattices cannot be 
characterized algebraically



Embeddings of Lattices



Coprimes and Primes
• Definition: An element a ≠ O in L is called 

coprime if for all x and y in L, x∨y ≥ a
implies that x ≥ a or y ≥ a.

• Definition: An element a ≠ I in L is called 
prime if for all x and y in L, x∧y ≤ a implies 
that x ≤ a or y ≤ a.

• Coprimes are special kinds of join-
irreducibles

• Primes are special kinds of meet-
irreducibles



Coprimes and Primes
• Theorem: The following are equivalent

– L is distributive
– All join-irreducibles are coprime
– All meet-irreducibles are prime

• Theorem: L is meet-
pseudocomplemented iff each atom is 
coprime

• Theorem: In a Cartesian product 
elements are coprime iff one component is 
coprime and the others are O



Coprimes and Primes

• Theorem: In any lattice the subposet of 
coprimes is isomorphic to the subposet of 
primes

• Corollary: In a distributive lattice J(L) is 
isomorphic to M(L)

• Extremal lattices are the combinatorial 
generalization of distributive lattices 



Coprime/Prime Decompositions

• Theorem: The following are equivalent:
– L contains a coprime a
– L contains a prime b
– L = [O,b] ⊕ [a,I] (disjoint union)



Coprime/Prime Decomposition 
Summary



Additional Applications

• Checking posets for 
being lattices

• Analysis of the 
Permutation Lattices

• Concept Lattices
• Tamari Associativity

Lattices
• Various lattice 

decompositions

• Semigroup of Binary 
Relations

• Biological 
Applications
– Anti-body/Antigen 

Systems
– Specificity Covers
– Factor-Union Systems



The Case Against Lattices

• Early on I got interested in Scott's Theory 
of Continuous Lattices

• Bothered by the fact that many structures 
of interest in computer science were not 
naturally lattices

• Let Str(A) be the set of all strings over the 
alphabet A, and let s ≤ t iff s is a prefix of t.

• Thus, sta ≤ star ≤ start, etc.



The Case Against Lattices

• However, there is no natural element x
such that a ≤ x and b ≤ x, where a and b 
are letters

• In general, for two different words there is 
no natural way to find a third word which 
has both of them as prefixes

• Similarly, if you let Pfun(X,Y) be the set of 
partial functions from X into Y, with f ≤ g iff
f(x) defined means g(x) = f(x).



The Case Against Lattices

• This is the order of more definition, but 
again there is no natural way to bound two 
functions that have different values at the 
same point

• The usual solution was to create a lattice 
by adding ┬ and calling it the 
"overdefined" element



The Case Against ┬

• One problem with using ┬ is that it tends 
to breed!

• In Dana Scott's work he made extensive 
use of repeated Cartesian products.

• This would result in many elements having 
┬ in at least one component

• In fact, if you use (n+1) elements instead 
of n you quickly run across the following 
famous theorem:



Conclusion: almost all elements 
are eventually bogus!



What is the Solution?

• Abandon the requirement for a lattice!
• What should we replace it with?
• The minimal requirements seemed to be 

that you needed a poset in which chains 
had sups

• Definition: A poset is chain-complete iff
every chain has a sup.
– There was some confusion about whether you 

should require directed sets to have sups and 
not just chains.



Chain-Complete Posets

• I got interested in seeing how far I could 
get with CPOs

• First, it turns out that if every chain has a 
supremum, then every directed set does 
as well. (CPOs have bottom elements)

• This is not as simple to establish as it 
appears

• I wrote a paper laying out a variety of 
properties of CPOs, including fixpoint
theorems



Chain-Complete Posets

• Another nice feature of the definition of 
chain-completeness, is that if a lattice 
happens to be chain-complete, then it is a 
complete lattice.

• CPOs have a nice chain-completion.
• CPOs have lots of nice categorical 

properties – better than complete lattices 
with chain-*complete maps

• These are maps that preserve sups of arbitrary 
chains including the empty chain



A Pet Peeve

• This is probably a vain hope, but I would 
be a happier man if people would use 
isotone when they mean order-
preserving instead of monotone, which 
can be either increasing or decreasing

• Birkhoff has had isotone in his Lattice 
Theory for quite some type and once 
straightened me out about using the right 
term.



CPO Fixpoint Theory

• For CPO with chain-continuous maps it is 
easy to construct fixpoints:

• 0 ≤ f(0) ≤ f(f(0)) ≤ …
• limn→∞fn(0) = x and f(x) = x
• It turns out that continuity is not needed for 

the basic fixpoint result



CPO Fixpoint Theory

• Abian and Brown proved that every 
isotone self-map on a CPO has a fixpoint

• I proved that the set of fixpoints forms a 
CPO in the induced order and has a least 
fixpoint

• Proof does not require the axiom of choice



Useful Classes of Posets

• A poset has bounded joins iff every finite
subset that has an upper bound, has a 
sup.

• If a poset has bounded joins and is a 
CPO, then every set that has an upper 
bound has a sup.



Useful Classes of Posets

• A poset is coherent iff every set which is 
pairwise bounded has a sup

• Coherence → Bounded Joins, CPO
• Many posets of computational interest are  

coherent:
– Partial functions
– Strings



Basis for a Poset

• Poset of irreducible focused on a basis of 
sorts for lattices

• Want to explore this concept for posets
• In general, a basis incorporates two 

features
• Independence of its elements
• Generation of the total set



Basis for a Poset

• Barry Rosen and I came up with the 
following definition

• A subset B of a CPO P is a basis for P iff
for every CPO Q and isotone f:B→Q there 
is a unique extension of f to a continuous 
function g:P→Q

• Notice how this captures the ideas of 
generation and independence



Basis for a Poset

• How does this translate into more concrete 
terms?

• Definition: An element, x,  in a poset, P, 
is called compact iff x ≤ sup D, for some 
directed subset of P implies that ∃ dεD
such that x ≤ d

• In other words, the only way a sup of a 
directed set can get above a compact 
element is if some element of D is above 
that element



Fundamental Basis Theorem

• Let P be a CPO and C its subset of 
compact elements

• P has a basis iff
• For each x in P, the set Cx = { y ε C | y ≤ x} 

is directed and
• sup Cx = x
• Note the unique basis is C 



Recursively Based Posets

• Since want to have posets that are useful 
in computer science, need to have a basis  
which you can grasp computationally

• This leads to the idea of a recursively 
based CPO.

• Will skip the details, but basically can 
computationally answer certain questions 
about basis elements and their bounds 
and sups



Connection with Scott's Work

• These bases for CPOs do generalize 
Scott's concept of basis

• One chief goal of Scott's work is to 
construct domains that have the property 
that D ≅ [D→D] where [D→D] is some 
appropriate set of mappings from D to D

• Scott used "continuous lattices" and 
continuous maps

• Can use CPOs and chain continuous 
maps



Connection with Scott's Work

• Have results like the following
• If P and Q are coherent, recursively based 

posets, then [P→Q] is a coherent, 
recursively based poset

• The variaties of CPOs seem like the 
natural environment for the theory of 
computation.



Contact Information

• http://www.cs.umaine.edu/~markov

• All papers will be available on-line soon –
many are already available on-line


