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Large-Scale Systems
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Sensor Networks −− > Internet of Things

Wireless Sensor Networks (WSN), https://www.linkedin.com/pulse/internet-things-part-7-wireless-sensor-networks-mahendra-bhatia

“WSN technology applications for smart grid, smart water, intelligent transportation sys-

tems, and smart home generate huge amounts of data, ...

The term internet of things refers to uniquely identifiable objects and their virtual represen-

tations in an “internet-like” structure. These objects can be anything from large buildings,

industrial plants, planes, cars, machines, any kind of goods.” ∗

∗An article by Mahendra Bhatia at https://www.linkedin.com/pulse/internet-things-part-7-wireless-sensor-networks-mahendra-
bhatia
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Challenges: Requirements and System Characteristics

• Variety of operations/applications:

• Detection, Identification, Estimation, Learning

• Signal Processing, Communication

• Data Processing: Storage and Retreival, Data Association, Data Mining, Clustering

• Resource Allocation, Optimization and Control

• A wide range of performance requirements

• Reliability, Robustness, Sustainability

• Efficiency, Fairness

• Security, Privacy

• Characteristics of the problems arising in the networked systems

• Mobility, variability with time (not necessarily predictable)

• Size (number of nodes/agents or number of the decision and/or constraints)
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Agreement Model

Renewed interest in agreement problem by Vicsek 1995 Jadbabaie, Lin, Morse 2003

Literature:

Hegselmann and Krause 2002, Kempe, Dobra, and Gehrke 2003

Lin, Morse, Anderson 2003, 2004, Xiao and Boyd 2004, Moreau 2004, 2005

Olfati-Saber and Murray 2004, Lorenz 2005, Blondel, Hendrickx, Olshevsky, Tsitsiklis 2005

Cao, Spielman, Morse 2005, Boyd, Ghosh, Prabhakar, Shah 2005

Hatano, Das, and Mesbahi 2005, Ren and Beard 2005, Xiao, Boyd, and Lall 2005

Moallemi and Van Roy 2006, Carli, Fagnani, Speranzon, and Zampieri 2006

Nedić and Ozdaglar 2007, Marden, Arslan, and Shamma 2007

Kashyap, Başar, and Srikant 2007, Olfati-Saber, Fax, and Murray 2007

Patterson, Bamieh, and Abbadi 2007, Ren 2007, Xiao, Boyd, and Kim 2007

Huang and Manton 2007, 2008, Bliman and Ferrari-Trecate 2008

Bliman, Nedić, and Ozdaglar 2008, Cao, Morse, and Anderson 2008, Hendrickx 2008

Sundaram and Hadjicostis 2008, 2011, Olshevsky and Tsitsiklis 2008, 2009
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Tahbaz-Salehi and Jadbabaie 2008, 2010, Patterson and Bamieh 2008, 2010

Aysal, Yildiz, Sarwate, and Scaglione 2009, Bullo, Corés, and Mart́ınez 2009

Kar and Moura 2009, 2010, Nedić, Olshevsky, Ozdaglar, and Tsitsiklis 2009

Benezit, Blondel, Thiran, Tsitsiklis, Vetterli 2010, Carli, Fagnani, Frasca, Zampieri 2010

Dimakis, Kar, Moura, Rabbat, and Scaglione 2010, Olshevsky 2010, 2014

Zhu and S. Mart́ınez 2010, Dominguez-Garcia and Hadjicostis 2011

Liu, Morse, Anderson, and Yu 2011, Cai and Ishii 2011

Lavaei and Murray 2012, Bolouki and Malhamé 2012, Sundaram, Revzen, Pappas 2012

Touri and Nedić 2009-2012, 2014, Touri 2012, Etesami and Başar 2013

Bajović, Xavier, Moura, and Sinopoli 2013, Hendrickx and Tsitsiklis 2013

Mathkar and Borkar 2014, Başar, Etesami, and Olshevsky 2014

Borkar, Makhijani, and Sundaresan 2014, Touri and Langbort 2014, Bolouki 2014
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Agreement and Optimization

• Suppose now each agent i has a

local objective fi(x)

• The agents are connected through an

undirected graph G and can commu-

nicate locally

• Each agent can perform computa-

tions and has a buffer

• They need to cooperatively solve the following network problem

minimize
m∑
i=1

fi(x) subject to x ∈ Rn

where each fi is locally known to agent i only

• We assume that each fi is convex and differentiable†

†For sake of discussion, convex and nondifferentiable will also work
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• Assuming (for the moment) that the graph is static, connected and undirected

• Distributed and local consensus-based algorithm‡

xi(t+ 1) =

 m∑
j=1

aijxj(t)

− αt∇fi(xi(t))

or

xi(t+ 1) =

 m∑
j=1

aijxj(t)

− αt∇fi
 m∑
j=1

aijxj(t)


where aij > 0 if j ∈ Ni ∪ {i} and aij = 0 otherwise, and αt > 0 is a stepsize

Basic Convergence Result: assuming that the problem has a solution, the graph G is

connected, the matrix A is doubly stochastic, the gradients are bounded and stepsize

satisfies
∑∞

t=0 αt = +∞ and
∑∞

t=0 α
2
t <∞, one can show that

lim
t→∞

xi(t) = x∗ for all i

for an optimal solution x∗.

• In terms of time convergence the rate is of the order of O( ln t√
t
).

• If the function
∑m

i=1 fi(x) is strongly convex the rate is of the order of O( ln t
t

)

‡AN and A. Ozdaglar 2009
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Work

AN, Olshevsky, Ozdaglar, and Tsitsiklis 2008 (with quantization effects)

Johansson, Rabi and M. Johansson 2009 (a randomized variant)

Ram, AN, Veeravalli 2009-2010, 2012 (various extensions)

Burger, Notarstefano, F. Bullo, and F. Allgöwer 2010 (distributed simplex)

AN, Ozdaglar, and Parrilo 2010 (with distributed constraints)

Cattivelli and Sayed 2010 (distributed estimation)

Wang and Elia 2011 (a control perspective)

Jakovetić, Xavier, and Moura 2011 (distributed Augmented Lagrangian)

Lobel and Ozdaglar 2011 (over random graphs)

Lobel, Ozdaglar, and Feijer 2011 (with state dependent weights)

Zanella, Varagnolo, Cenedese, Pillonetto, and Schenato 2011 (Newton-Raphson)

Chen and Sayed 2012, Lu and Tang 2012 (zero-gradient sum method)

Ram 2009, Srivastava 2011, Lee 2013, Wei (phD work on distributed optimization)

Zhu and Mart́ınez 2012, 2013 (with constraints)

Ghadimi, Schame, Johansson 2013

Kvaternik 2014 (PhD work continuous model for distributed optimization)
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Duchi, Agarwal, and Wainwright 2012 (distributed dual Nesterov method)

Li and Marden 2013 (designing games for distributed optimization)

Yan, Sundaram, Vishwanathan, and Qi 2013 (online)

Chang, AN, and Scaglione 2014 (distributed primal-dual perturbation method)

Gharesifard and Cortés 2012 (distributed continuous time model)

Xu 2016 (phD), Xu, Zhu, Soh, and Xie 2015 (augmented gradient methods)

Koshal, AN and Shanbhag 2016 (distributed algorithm for aggregative games)

AN, Lee, and Raginsky 2016 (online global objective minimization)

Notarnicolo and Notarstefano 2016, Scaman, Bach Bubeck, Lee, Massoulié 2017

Distributed ADMM Boyd, Parikh, Chu, Peleato, and Eckstein 2010

Ling and Ribeiro 2014, Wei and Ozdaglar 2012, 2013

Shi, Ling, Yuan, Wu, and Yin 2014

Aybat, Wang, Lin, and Ma 2015

Distributed Hypothesis Testing

Shahrampour and Jadbabaie 2013, Jadbabaie, Molavi, and Tahbaz-Salehi 2013, 2015

Shahrampour, Rakhlin, and Jadbabaie 2014, Lalitha, Javidi, and Sarwate 2014, 2015

AN, Olshevsky and Uribe 2015, 2016 Sahu and Kar 2016
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Algorithm Properties

• It is robust to network delays and other imperfections (e.g., missed messages)

• It can solve online problems, where the functions fi may change with time

• It is efficient when dealing with (possibly stochastic) computational and/or communi-

cation errors

• Reliable and efficient in imperfect situations

• Extendable to variants for solving saddle-point problems and games
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Drawback: Balanced-Graph Requirement

xi(t+ 1) =

 n∑
j=1

aijxj(t)

− αt∇fi(xi(t))

• The matrix A has to be doubly stochastic, otherwise if only row-stochastic the

algorithm would produce the iterates converging to a point that solves the problem

minimize
m∑
i=1

πifi(x),

where π′A = π′.

The algorithm cannot be efficiently implemented in directed time-varying

graphs§

• An alternative to the weighted averaging is available through push-sum algorithm for

consensus∗¶

§Gharesifard and Cortés, ”Distributed strategies for generating weight-balanced and doubly stochastic digraphs,” European
Journal of Control, 18 (6), 539–557, 2012
¶∗D. Kempe, A. Dobra, and J. Gehrke Gossip-based computation of aggregate information, In Proceedings of the 44th

Annual IEEE Symposium on Foundations of Computer Science, pages 482–491, 2003
F. Benezit, V. Blondel, P. Thiran, J. Tsitsiklis, and M. Vetterli Weighted gossip: distributed averaging using non-doubly

stochastic matrices, In Proceedings of the 2010 IEEE International Symposium on Information Theory, 2010
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Push-sum and Optimization methods

• Dominguez-Garcia and Hadjicostis. Distributed strategies for average consensus in

directed graphs. In Proceedings of the IEEE Conference on Decision and Control, Dec

2011.

• Hadjicostis, Dominguez-Garcia, and Vaidya, ”Resilient Average Consensus in the

Presence of Heterogeneous Packet Dropping Links” CDC, 2012

• Tsianos and Rabbat. Distributed consensus and optimization under communication

delays. In Proc. of Allerton Conference on Communication, Control, and Computing,

2011.

• Tsianos, Lawlor, and Rabbat. Consensus-based distributed optimization: Practical

issues and applications in large-scale machine learning. In Proceedings of the 50th

Allerton Conference on Communication, Control, and Computing, 2012.

• Tsianos, Lawlor, and Rabbat. Push-sum distributed dual averaging for convex opti-

mization. In Proceedings of the IEEE Conference on Decision and Control, 2012.

• Tsianos. The role of the Network in Distributed Optimization Algorithms: Conver-

gence Rates, Scalability, Communication / Computation Tradeoffs and Communication

Delays. PhD thesis, McGill University, Dept. of Electrical and Computer Engineering,

2013.
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Push-sum: Column Stochastic Matrix

• Given a directed and strongly connected graph ([m], E), let A be a matrix compatible

with the graph

Aij = 0 when (j, i) 6∈ E

• Assume that A has positive diagonal entries

• Also, let A be a column-stochastic matrix

Aij ≥ 0 for all i, j and 1′A = 1′

where ”prime” denotes the transpose and 1 = [1; . . . ; 1]

• Then

lim
t→∞

At = π1′

where π is a stochastic vector with πi > 0 for all i
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• Consider a process

x(t) = Ax(t− 1) for t ≥ 1

with an arbitrary x(0) ∈ Rn

• Then

lim
t→∞

x(t) = lim
t→∞

Atx(0) = π1′x(0) =
(
1′x(0)

)
π

• Repeating this process with a different initial point, y(0) we obtain

y(t) = Ay(t− 1) for t ≥ 1

lim
t→∞

y(t) =
(
1′y(0)

)
π

• Look at the coordinate-wise ratio

zi(t) =
xi(t)

yi(t)
, lim

t→∞
zi(t) =

(1′x(0))πi
(1′y(0))πi

=
1′x(0)

1′y(0)

• If we want

lim
t→∞

zi(t) =
1

n
1′x(0)

it can be done by choosing the initial values yi(0) = 1
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Push-Sum Algorithm for Consensus

We given a directed graph G
Every node i maintains scalar variable xi(t) and yi(t)

These quantities will be updated by the nodes according to the rules,

xi(t+ 1) =
∑

j∈N in
i
∪{i}

xj(t)

dj + 1
,

yi(t+ 1) =
∑

j∈N in
i
∪{i}

yj(t)

dj + 1
,

zi(t+ 1) =
xi(t+ 1)

yi(t+ 1)
• Each node i ”knows” its out degree di

• N in
i is the set of ”in”-neighbors of node i

• The method†‖ is initiated with yi(0) = 1 for all i.
‖†D. Kempe, A. Dobra, and J. Gehrke ”Gossip-based computation of aggregate information” In Proceedings of the 44th

Annual IEEE Symposium on Foundations of Computer Science, pages 482491, Oct. 2003
F. Benezit, V. Blondel, P. Thiran, J. Tsitsiklis, and M. Vetterli ”Weighted gossip: distributed averaging using non-doubly
stochastic matrices” In Proceedings of the 2010 IEEE International Symposium on Information Theory, Jun. 2010.
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Perturbed Push-Sum: Scalar Case, Time-varying graphs

wi(t+ 1) =
∑

j∈N in
i

(t)∪{i}

xj(t)

dj(t) + 1
,

yi(t+ 1) =
∑

j∈N in
i

(t)∪{i}

yj(t)

dj(t) + 1
,

zi(t+ 1) =
wi(t+ 1)

yi(t+ 1)

xi(t+ 1) = wi(t+ 1) + εi(t+ 1) (1)

where εi(t+ 1) are perturbations experienced by node i

This allows for studying the (sub)gradient methods as a special perturbations

εi(t+ 1) = αt∇fi(zi(t+ 1))
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Convergence Result

Consider the sequences {zi(t)}, i = 1, . . . ,m, generated by the push-sum method.

Lemma 1 (Key) Assuming that the graph sequence {G(t)} is B-uniformly strongly

connected, for all t ≥ 1 we have∣∣∣∣zi(t+ 1)−
∑m

i=1 xi(t)

m

∣∣∣∣ ≤ 8

δ

(
λt‖x(0)‖1 +

t∑
s=1

λt−s‖ε(s)‖1

)
,

where δ > 0 and λ ∈ (0,1) satisfy

δ ≥
1

mmB
, λ ≤

(
1−

1

mmB

)1/B

.

Define matrices A(t) by Aij(t) = 1/(dj(t) + 1) for j ∈ N in
i (t) ∪ {i} and 0 otherwise

If each of the matrices A(t) are doubly stochastic, then

δ = 1, λ ≤
(

1−
1

4m3

)1/B

.
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Optimization

The subgradient-push method can be used for minimizing F (z) =
∑m

i=1 fi(z) over

z ∈ Rn

Every node i maintains vectors xi(t),wi(t) in Rn, as well as an auxiliary scalar variable

yi(t), initialized as yi(0) = 1 for all i. These quantities will be updated by the nodes

according to the rules,

wi(t+ 1) =
∑

j∈N in
i

(t)∪{i}

xj(t)

dj(t) + 1
,

yi(t+ 1) =
∑

j∈N in
i

(t)∪{i}

yj(t)

dj(t) + 1
,

zi(t+ 1) =
wi(t+ 1)

yi(t+ 1)
,

xi(t+ 1) = wi(t+ 1)− α(t+ 1)gi(t+ 1), (2)

where gi(t+ 1) is a subgradient of the function fi at zi(t+ 1).

The method is initiated with arbitrary xi(0) and yi(0) = 1 for all i.

19



Rutgers University DIMACS Workshop on Distributed Optimization, Information Processing, and Learning Aug. 21–23, 2017

The stepsize α(t+ 1) > 0 satisfies the following decay conditions
∞∑
t=1

α(t) =∞,
∞∑
t=1

α2(t) <∞

Under this stepsize (and B-uniform strong connectivity), the algorithm produces the

iterates that converge to a consensual minimizer of F (z) =
∑m

i=1 fi(z) over z ∈ Rn.

• Simple broadcast-based implementation: each node i broadcasts the quantities

xi(t)/(di(t) + 1), yi(t)/(di(t) + 1) to all of the nodes in its out-neighborhood∗∗,

which simply sum all the messages they receive to obtain wi(t+ 1) and yi(t+ 1).

• The update equations for zi(t + 1),xi(t + 1) can then be executed without any

further communications between nodes during step t.

• Convergence rate is of the order of O(ln t/
√
t) for convex functions and O(ln t/t) for

strongly convex functions#††

• Tatarenko and Touri 2015 (Non-Convex Distributed Optimization)
∗∗We note that we make use here of the assumption that node i knows its out-degree di(t).
††#AN and Olshevsky Distributed Optimization over Time-varying Directed Graphs IEEE Transactions on Automatic Control

60 (3) 601-615, 2015
AN and Olshevsky Stochastic Gradient-Push for Strongly Convex Functions on Time-Varying Directed Graphs arxiv 2015
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Yet Another Issue

• The consensus-type algorithms discussed thus far will not produce convergent iterates

when a fixed stepsize is used even when the functions fi have Lipschitz gradients and∑m
i=1 fi(x) is strongly convex

• Brought to attention in work of Shi, Ling, Wu, and Yin (EXTRA) 2014, 2015

xi(t+ 1) =

 m∑
j=1

aijxj(t)

− αt∇fi(xi(t))

x∗ = x∗ − α∇fi(x∗) =⇒ ∇fi(x∗) = 0

• No hope that the algorithms using the diminishing step can achieve a geometric rate!

• They are still good - work well in noisy environment - just the stepsize cannot be

constant

• Achieving linear rate - is it possible?
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Achieving Linear Rate: Static (Undirected) Graphs

minimize
m∑
i=1

fi(x) subject to x ∈ Rn

Reformulate by making local copies

minimize
m∑
i=1

fi(xi) subject to xi = xj ∀i, j ∈ [m].

Exploit the fact that the agents are embedded in a connected graph

minimize
m∑
i=1

fi(xi) subject to xi = xj ∀i ∈ [m], ∀j ∈ Ni,

where Ni is the set of neighbors in the given graph.

It allows for solving it by using local agent communications by applying dual, or primal-dual

approaches, which under suitable conditions admit linear rate ADMM, EXTRA, PG-EXTRA

• Ermin Wei (ADMM), Wei (Wilbur Shi), Wotao Yin (EXTRA, PG-EXTRA)

Can linear rate be achieved in time-varying graphs?
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Achieving Linear Rate: Time-varying (Undirected)

Graphs

minimize
m∑
i=1

fi(xi) subject to xi = xj ∀i, j ∈ [m].

The agent system connectivity changes in time according to a graph sequence {Gk}.

minimize
m∑
i=1

fi(xi) subject to xi = xj ∀i ∈ [m], ∀j ∈ Ni(k),

where Ni(k) is the set of neighbors in the graph Gk.

The constraint set {xi = xj ∀i, j ∈ [m]} does not change, but the agents get a

different “description of the set” every time they update.

There is a hope for linear rate.
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Achieving Linear Rate: Methods that Track Gradients

• Centralized: z(t+ 1) = z(t) + αt
∑m

i=1∇fi(z(t)).

• Distributed Inexact Gradient Tracking (DIGing)

Basic Idea: agents need to be ”aware” that they are solving a ”system problem”, i.e.,

they should track the gradient sums of the other agents

For this, each agent uses a “surrogate” for the sum of gradients

xi(t+ 1) =

 m∑
j=1

aijxj(t)

− αt gi(t)︸︷︷︸
est. of

∑m
i=1∇fi(z(t))

gi(t+ 1) =

 m∑
j=1

aijgj(t)

+∇fi(xi(t+ 1))−∇fi(xi(t))

When the matrix A is doubly stochastic, it can be seen that
m∑
i=1

gi(t+ 1) =
m∑
i=1

∇fi(xi(t+ 1)).
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• The convergence rate is geometric (variants for time-varying undirected and directed

graphs)

• AN, Alex Olshevsky, Wei Shi Achieving Geometric Convergence for Distributed

Optimization over Time-Varying Graphs, arxiv https://arxiv.org/abs/1607.03218

• AN, Alex Olshevsky, Wei Shi, Cesar Uribe Geometrically Convergent Distributed Op-

timization with Uncoordinated Step-Sizes, https://arxiv.org/pdf/1609.05877v1.pdf,

2016
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Closely Related Literature and Simultaneous Work
Static Undirected Graph

• Tracking technique used in (not for gradients)

M. Zhu and S. Mart́ınez, Discrete-Time Dynamic Average Consensus, Automatica,

46, 2010,
• A method using gradient tracking proposed in

J. Xu, S. Zhu, Y. Soh, and L. Xie, Augmented Distributed Gradient Methods for

Multi-Agent Optimization Under Uncoordinated Constant Stepsizes, in Proceedings

of the 54th IEEE Conference on Decision and Control (CDC), 2015, pp. 2055–2060.
• A part of Xu’s thesis work

J. Xu, Augmented Distributed Optimization for Networked Systems, PhD thesis,

Nanyang Technological University, 2016.
• G. Qu and N. Li, Harnessing Smoothness to Accelerate Distributed Optimization, on

arXiv at https://arxiv.org/abs/1605.07112, 2016.
• G. Qu and N. Li, Accelerated Distributed Nesterov Gradient Descent on arXiv at

https://arxiv.org/abs/1705.07176, 2017

Static directed graph

• Xi, Mai, Xin, Abed, Khan Linear convergence in optimization over directed graphs

with row-stochastic matrices https://arxiv.org/pdf/1611.06160.pdf, 2017
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Algorithm NEXT (Lorenzo and Scutari)

Gradient-tracking approach to solve nonconvex problem
∑m

i=1 fi(x)

xi(t+ 1) =

 m∑
j=1

aijxj(t)

− αt gi(t)︸︷︷︸
est. of

∑m
i=1∇fi(z(t))

gi(t+ 1) =

 m∑
j=1

aijgj(t)

+∇f̃i(xi(t+ 1); t)−∇f̃i(xi(t); t− 1)

where f̃(·; t) is a convex local approximation of f at x(t) such that the linear approxi-

mations of f(x) and f̃(x; t) coincide at x = x(t).

NEXT is more general than DIGing

Our focus is on convex case - chasing a linear rate, while

Aldo’s work is dealing with convergence properties for a larger class of functions
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• Gesualdo Scutari and Ying Sun. ”Distributed Nonconvex Constrained Optimization

over Time-Varying Digraphs,” (submitted for publication, 2017).

• P. Di Lorenzo and G. Scutari Distributed nonconvex optimization over networks, in

IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive

Processing (CAMSAP), 2015, pp. 229–232.

• P. Di Lorenzo and G. Scutari, NEXT: In-Network Nonconvex Optimization, IEEE

Transactions on Signal and Information Processing over Networks, vol. 2, no. 2, pp.

120–136, 2016.

• P. Di Lorenzo and G. Scutari Distributed nonconvex optimization over time-varying

networks, in IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), 2016, pp. 4124–4128.
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Compact notation

• Each node i has variable xi ∈ Rn, placed on the ith row of a matrix x.

x ,


— xT1 —

— xT2 —
...

— xTm —

 ∈ Rm×n.

• x is consensual if all rows are equal: xTi = xTj , ∀i 6= j.

f(x) ,
m∑
i=1

fi(xi), ∇f(x) ,


— (∇f1(x1))T —

— (∇f2(x2))T —
...

— (∇fm(xm))T —

 ∈ Rm×n.

• original problem ⇐⇒ min f(x), s.t. xi = xj, ∀i 6= j
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DIGing Method for Undirected Graphs

DIGing: matrices W(k) are doubly stochastic

Choose step-size α > 0 and pick any x(0) ∈ Rm×n;

Initialize y(0) = ∇f(x(0));

for k = 0,1, · · · do

x(k + 1) = W(k)x(k)− αy(k);

y(k + 1) = W(k)y(k) +∇f(x(k + 1))−∇f(x(k));

end

Each agent i:

xi(k + 1) = Wii(k)xi(k) +
∑

j∈N in
i

(k)
Wij(k)xj(k)− αyi(k);

yi(k + 1) = Wii(k)yi(k) +
∑

j∈N in
i

(k)
Wij(k)yj(k)

+∇fi(xi(k + 1))−∇fi(xi(k)).

W(k) is compatible with the graph G(k): Wij(k) > 0 when {i, j} ∈ Ek and Wii(k) > 0.
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Assumptions for Linear Convergence Rate for DIGing

• The functions fi are convex with Lipschitz gradients (with Lipschitz constant Li)

• The sum 1
m

∑m
i=1 fi is strongly convex with a coefficient µ̄ > 0

• The graphs G(k) areB-connected: for some integerB ≥ 1, the graph ([m],∪k+B−1
t=k Et)

is connected for all k.

•W(k) is doubly stochastic, compatible with the graph G(k), and there is a τ > 0

such that for all k,

Wij(k) ≥ τ whenever W (k) > 0.

Under these assumptions we have the following result.
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Theorem 1 (DIGing: Explicit geometric rate) The sequence {xk} generated by DIG-

ing converges to the unique optimal solution x∗ at a global R-linear rate O(λk), where

λ =



2B
√

1− αµ̄
1.5
, if α ∈

0,
1.5

(√
J2

1
+(1−δ2)J1−δJ1

)2

µ̄J1(J1+1)2

 ,
B

√√
αµ̄J1
1.5

+ δ, if α ∈

1.5

(√
J2

1
+(1−δ2)J1−δJ1

)2

µ̄J1(J1+1)2 , 1.5(1−δ)2

µ̄J1

 ,
δ , max

k≥B−1

{
σmax

{
WB(k)−

1

m
11T

}}
and J1 , 3κ̄B2

(
1 + 4

√
m
√
κ̄
)
,

for any step-size α ∈
(

0, 1.5(1−δ)2

µ̄J1

]
, with κ̄ = L

µ̄
, L = maxiLi.
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Push-DIGing for Directed graphs

Push-DIGing: matrices C(k) are column stochastic

Choose step-size α > 0 and pick any x(0) = u(0) ∈ Rm×n;

Initialize y(0) = ∇f(x(0)), v(0) = 1 ∈ Rm, and V(0) = diag {v(0)};
for k = 0,1, · · · do

u(k + 1) = C(k)(u(k)− αy(k));

v(k + 1) = C(k)v(k); V(k + 1) = diag {v(k + 1)};
x(k + 1) = (V(k + 1))−1u(k + 1);

y(k + 1) = C(k)y(k) +∇f(x(k + 1))−∇f(x(k));

end

C(k) is compatible with the directed graph G(k): Cij = 1
1+do

j
(k)

when (j, i) ∈ Ek where

doj(k) is the out-degree of node j at time k.
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Specialized result

Corollary 2 (DIGing: Polynomial networks scalability) If the graph is undirected, W(k)

is a lazy Metropolis matrix

wij(k) =


1/ (1 + max{di(k), dj(k)}) , if {i, j} ∈ Ek,
1−

∑
`∈N (k)Wi`(k), if j = i,

0, else,

and the agents choose the step-size

α =
3(2/71)2

128B2m4.5L
√
κ̄
−

1.5

µ̄

(
(2/71)2

128B2m4.5κ̄1.5

)2

,

then to reach ε-accuracy, the number of iterations needed by DIGing is

O

(
B3m4.5κ̄1.5 ln

1

ε

)
.

(polynomial scaling in directed graph is still open)
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Difficulties in analysis

(i) Asymmetric operators W(k), C(k): no cocoercivity, even no monotonicity

(ii) Asymmetric operators W(k), C(k): hard to find a Lyapunov function

(iii) Time-varying graphs: may need time-varying metric

Main Proof Idea for DIGing

Choose step-size α > 0 and pick any x(0) ∈ Rm×n;

Initialize y(0) = ∇f(x(0));

for k = 0,1, · · · do

x(k + 1) = W(k)x(k)− αy(k);

y(k + 1) = W(k)y(k) +∇f(x(k + 1))−∇f(x(k));

end for
‖q(k)‖F = ‖x(k)− x∗‖F (optimality residual)

‖z(k)‖F = ‖∇f(x(k))−∇f(x(k − 1))‖F (gradient difference)

‖y̌(k)‖F = ‖y(k)− (1/m)11Ty(k)‖F (consensus violation of y)

‖x̌(k)‖F = ‖x(k)− (1/m)11Tx(k)‖F (consensus violation of x)

We show that the sequences are upper bounded geometrically q→ z→ y̌→ x̌→ q
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Small Gain Theorem

Theorem 3 Suppose that s1, . . . , sm are sequences such that for all positive integers K,

we have that s1 → s2 → · · · → sm → s1:

‖si+1‖λ,KF ≤ γi‖si‖λ,KF + ωi for i = 1, · · · ,m− 1

and ‖s1‖λ,KF ≤ γm‖sm‖λ,KF + ωm

where the constants (gains) γ1, . . . , γm are nonnegative and satisfy γ1γ2 · · · γm < 1,

(and the constants ωi, ∀i are bounded), then

‖si‖λ,KF ≤ γ1γ2 · · · γm‖si‖λ,KF + ci, ∀i
where for a sequence of matrices s = {s0, s1, . . .}

‖s‖λ,KF = max
0≤k≤K

1

λk
‖s(k)‖F.
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Numerical experiments: static directed graph
Each agent has a cost function given by a Huber loss. The DIGing is applied with a doubly

stochastic matrix W (off line construction); DIGing and DIGing-ATC are fast
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Numerical experiments: time-varying undirected graphs
Time-varying graphs are generated randomly from a static graph (arc activation chance

40%) W(k) are Metropolis weights
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Numerical experiments: time-varying directed graphs
Time-varying graphs are generated randomly from a static graph (arc activation ratio 80%

and then randomly choosing link direction)
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Conclusions

• We have algorithms with linear convergence rate

• Theoretical bounds on the stepsize are ”conservative” as the graphs are ”general”

• Specializations to particular graph structure needed for practical purpose
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