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Motivation: Autonomous Driving
• Network of autonomous automobiles + one human-driven car 
• Sensing for “anomalous” driving from human 
• Want to jointly sense over communications links

Challenges:
• Need to detect/act quickly
• Wireless links have limited rate — can’t 

exchange raw data

Questions:
• How well can devices jointly learn when 

links are slow(/not fast)?
• What are good strategies?
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• Defining two time scales: one rate for data arrival, and one for message 
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Contributions of This Talk
• Frame the problem as distributed stochastic optimization
• Network of devices trying to minimize an objective function from streams of 

noisy data

• Focus on communications aspect: how to collaborate when links have 
limited rates? 

• Defining two time scales: one rate for data arrival, and one for message 
exchanges

• Solution: distributed versions of stochastic mirror descent that carefully 
balance gradient averaging and mini-batching

• Derive network/rate conditions for near-optimum convergence
• Accelerated methods provide a substantial speedup
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Distributed Stochastic Learning
• Network of m nodes, each with an i.i.d. data stream 

{ξi(t)}, for sensor i at time t 
• Nodes communicate over wireless links, modeled by graph

(ξ1(1),ξ1(2),…)

(ξ2(1),ξ2(2),…)

(ξ3(1),ξ3(2),…)

(ξ4(1),ξ4(2),…)

(ξ5(1),ξ5(2),…)

(ξ6(1),ξ6(2),…)
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Stochastic Optimization Model

(ξ1(1),ξ1(2),…)

(ξ2(1),ξ2(2),…)

(ξ3(1),ξ3(2),…)

(ξ4(1),ξ4(2),…)

(ξ5(1),ξ5(2),…)

(ξ6(1),ξ6(2),…)

• Nodes want to solve the stochastic optimization problem:

minx∈X ψ(x) = minx∈X Eξ[ɸ(x,ξ)]
• ɸ is convex, X⊂ℝd is compact and convex
• ψ has Lipschitz gradients: [composite optimization later!]

||∇ψ(x) - ∇ψ(y)|| ≤ L||x - y||, x,y ∈X
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Stochastic Optimization Model

(ξ1(1),ξ1(2),…)

(ξ2(1),ξ2(2),…)

(ξ3(1),ξ3(2),…)

(ξ4(1),ξ4(2),…)

(ξ5(1),ξ5(2),…)

(ξ6(1),ξ6(2),…)

• Nodes want to solve the stochastic optimization problem:

minx∈X ψ(x) = minx∈X Eξ[ɸ(x,ξ)]
• ɸ is convex, X⊂ℝd is compact and convex
• ψ has Lipschitz gradients: [composite optimization later!]

||∇ψ(x) - ∇ψ(y)|| ≤ L||x - y||, x,y ∈X
• Nodes have access to noisy gradients:

gi(t) := ∇ɸ(xi(t),ξi(t)) 

Eξ[gi(t)] = ∇ψ(xi(t)) 

Eξ[||gi(t) - ∇ψ(xi(t)||2] ≤ σ2 

• Nodes keep search points xi(t)
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Algorithm: Stochastic Mirror Descent 

Stochastic Mirror Descent
• (Centralized) SO is well understood 
• Optimum convergence via mirror descent

[Lan, “An Optimal Method for Stochastic Composite Optimization”, 2012]

 Initialize xi(0) ← 0 
 for t=1 to T: 

 xi(t) ← Px[xi(t-1) - γt gi(t-1)] 
 xav

i(t) ← 1/t Qτ xi(τ) 
end for t

[Xiao, “Dual averaging methods for regularized stochastic learning and online optimization”, 2010]
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Algorithm: Stochastic Mirror Descent 

Stochastic Mirror Descent
• (Centralized) SO is well understood 
• Optimum convergence via mirror descent

[Lan, “An Optimal Method for Stochastic Composite Optimization”, 2012]

 Initialize xi(0) ← 0 
 for t=1 to T: 

 xi(t) ← Px[xi(t-1) - γt gi(t-1)] 
 xav

i(t) ← 1/t Qτ xi(τ) 
end for t

• Extensions via Bregman divergences + prox mappings 
• After T rounds:

E[ (xav
i (T ))�  (x⇤)]  O(1)


L

T
+

�p
T

�

[Xiao, “Dual averaging methods for regularized stochastic learning and online optimization”, 2010]
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Stochastic Mirror Descent

• Can speed up convergence via accelerated stochastic mirror descent: 
• Similar SGD steps, but more complex iterate averaging 
• After T rounds:

[Lan, “An Optimal Method for Stochastic Composite Optimization”, 2012]

E[ (xi(T ))�  (x⇤)]  O(1)


L

T 2
+

�p
T

�

[Xiao, “Dual averaging methods for regularized stochastic learning and online optimization”, 2010]
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Stochastic Mirror Descent

• Can speed up convergence via accelerated stochastic mirror descent: 
• Similar SGD steps, but more complex iterate averaging 
• After T rounds:

[Lan, “An Optimal Method for Stochastic Composite Optimization”, 2012]

• Optimum convergence order-wise 
• Noise term dominates in general, but ASMD provides a universal solution to 

the SO problem 

• Will prove significant in distributed stochastic learning

E[ (xi(T ))�  (x⇤)]  O(1)


L

T 2
+

�p
T

�

[Xiao, “Dual averaging methods for regularized stochastic learning and online optimization”, 2010]
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Back to Distributed Stochastic Learning
• With m nodes, after T rounds, the best possible performance is

E[ (xi(T ))�  (x⇤)]  O(1)


L

(mT )2
+

�p
mT

�
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Back to Distributed Stochastic Learning
• With m nodes, after T rounds, the best possible performance is

[Ram et al., “Incremental stochastic sub-gradient algorithms for convex optimization”, 2009]

E[ (xi(T ))�  (x⇤)]  O(1)


L

(mT )2
+

�p
mT

�

• Achievable with sufficiently fast communications 
• In distributed computing environment, noise term is achievable via 

gradient averaging: 
1. Use AllReduce to average gradients over a spanning tree 
2. Take a SMD step 

• Upshot: Averaging reduces gradient noise, provides speedup 
• Perfect averages difficult to compute over wireless networks 
• Approaches: average consensus, incremental methods, etc.

[Duchi et al., “Dual averaging for distributed optimization…”, 2012]
[Dekel et al., “Optimal distributed online prediction using mini-batches”, 2012]
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Communications Model
• Nodes connected over an undirected graph G = (V,E) 

• Every communications round, each node broadcasts a single gradient-like 
message mi(r) to its neighbors   

• Rate limitations modeled by the communications ratio ρ 

• ρ communications rounds for every data sample that arrives

m2(r)

m1(r)

m3(r)

m4(r)



Matthew Nokleby, Wayne State University   	 	 	 	 	      “Distributed Approaches to Mirror Descent…”

Communications Model

ρ = 1/2

data rounds

comms rounds

data rounds

comms rounds
ξi(t=1) ξi(t=2)

mi(r=1) mi(r=2) mi(r=3) mi(r=4)
ρ = 2

ξi(t=1) ξi(t=2) ξi(t=3) ξi(t=4)

mi(r=1) mi(r=2)

• Nodes connected over an undirected graph G = (V,E) 

• Every communications round, each node broadcasts a single gradient-like 
message mi(r) to its neighbors   

• Rate limitations modeled by the communications ratio ρ 

• ρ communications rounds for every data sample that arrives
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Distributed Mirror Descent Outline
• Distribute stochastic MD via averaging consensus: 

1. Nodes obtain local gradients  
2.Compute distributed gradient averages via consensus 
3. Take MD step using the average gradients

ξi(t=1) ξi(t=2)

mi(r=1) mi(r=2) mi(r=3) mi(r=4)

xi(t=1) xi(t=2)

data rounds

consensus rounds

search point updates
ρ = 2
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Distributed Mirror Descent Outline
• Distribute stochastic MD via averaging consensus: 

1. Nodes obtain local gradients  
2.Compute distributed gradient averages via consensus 
3. Take MD step using the average gradients

ξi(t=1) ξi(t=2)

mi(r=1) mi(r=2) mi(r=3) mi(r=4)

xi(t=1) xi(t=2)

data rounds

consensus rounds

search point updates

• If links are slow (ρ small), there isn’t much time for consensus 

• New data samples arrives before the network can process the previous one

ρ = 2



Matthew Nokleby, Wayne State University   	 	 	 	 	      “Distributed Approaches to Mirror Descent…”

Mini-batching Gradients
• Solution: mini-batch together b gradients, batch size b ≥ 1

• Hold search point constant for b rounds
• Average together b gradient evaluations:

• Reduces gradient noise: Eξ[||ϴi(s) - ∇ψ(xi(s)||2] ≤ σ2/b

✓i(s) =
1

b

sbX

t=(s�1)b+1

gi(t)
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Mini-batching Gradients
• Solution: mini-batch together b gradients, batch size b ≥ 1

• Hold search point constant for b rounds
• Average together b gradient evaluations:

• Reduces gradient noise: Eξ[||ϴi(s) - ∇ψ(xi(s)||2] ≤ σ2/b

• Allows for more consensus rounds

✓i(s) =
1

b

sbX

t=(s�1)b+1

gi(t)

ξi(t=1) ξi(t=2) ξi(t=3) ξi(t=4) ξi(t=5) ξi(t=6) ξi(t=7) ξi(t=8)

mi(r=1) mi(r=2) mi(r=3) mi(r=4)

ϴi(s=1) ϴi(s=2)

xi(t=1) xi(t=5)

ρ = 1/2, b=4

data rounds
consensus rounds
mini-batch rounds

search points
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Mini-batching Gradients
• Solution: mini-batch together b gradients, batch size b ≥ 1

• Hold search point constant for b rounds
• Average together b gradient evaluations:

• Reduces gradient noise: Eξ[||ϴi(s) - ∇ψ(xi(s)||2] ≤ σ2/b

• Allows for more consensus rounds

✓i(s) =
1

b

sbX

t=(s�1)b+1

gi(t)

ξi(t=1) ξi(t=2) ξi(t=3) ξi(t=4) ξi(t=5) ξi(t=6) ξi(t=7) ξi(t=8)

mi(r=1) mi(r=2) mi(r=3) mi(r=4)

ϴi(s=1) ϴi(s=2)

xi(t=1) xi(t=5)

ρ = 1/2, b=4

data rounds
consensus rounds
mini-batch rounds

search points

• However, fewer search point updates
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Gradient Averaging via Consensus
• Averaging consensus: nodes compute local averages with neighbors, 

which converge on the global average 
• Choose a doubly-stochastic matrix W ∈ ℝmxm such that wij ≠ 0 only if nodes 

are connected, i.e. (i,j) ∈ E 

• At mini-batch round s and communications round r: 

• For mini-batch size b and communications ratio ρ, nodes can carry out bρ 
consensus rounds per mini-batch. 

• Iterates converge on true average as # of rounds -> infinity

✓ri (s) =
X

i,j

wij✓
r�1
j (s)

[Tsianos and Rabbat, “Efficient distributed online prediction and stochastic optimization”, 2016]
[Duchi et al., “Dual averaging for distributed optimization…”, 2012]
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Gradient Averaging via Consensus
• At mini-batch round s and communications round r:

✓ri (s) =
X

i,j

wij✓
r�1
j (s)

Lemma: The equivalent gradient noise variance is bounded by 
�2
eq :=E[||✓⇢bi (s)�r (xi(s))||2] 

O(1)

"
�2⇢b2 (W )||xi(s)� xj(s)||2 +

�2⇢b2 (W )�2

b
+
�2

mb

#
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Gradient Averaging via Consensus
• At mini-batch round s and communications round r:

✓ri (s) =
X

i,j

wij✓
r�1
j (s)

Lemma: The equivalent gradient noise variance is bounded by 

• Noise components: gap in nodes’ search points, error due to imperfect 
consensus averaging, residual noise 

• For ρ or b large, noise converges on perfect-average case

�2
eq :=E[||✓⇢bi (s)�r (xi(s))||2] 

O(1)

"
�2⇢b2 (W )||xi(s)� xj(s)||2 +

�2⇢b2 (W )�2

b
+
�2

mb

#
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Distributed SA Mirror Descent
Algorithm: Distributed Stochastic Approximation Mirror Descent 
(D-SAMD) 

Initialize xi(0) ← 0, for all i 
for s=1 to T/b: [iterate over mini-batches] 

θ0
i(s) ← θi(s) 

for r=1 to ρb: [iterate over consensus rounds] 
θr

i(s) = Qj wij θr-1
i(s), for all i 

end for r 
xi(sb+1) ← Px[xi(sb) - γs θρb

i(s)] 
xav

i(t) ← 1/s Qτ xi(τb) 
end for s

• Outer loop: nodes compute mini-batches, take MD steps 
• Inner loop: nodes engage in average consensus
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D-SAMD Convergence Analysis

• Recall that Mirror Descent has convergence rate:

E[ (xav
i (T ))�  (x⇤)]  O(1)


L

T
+

�p
T

�
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D-SAMD Convergence Analysis

• Recall that Mirror Descent has convergence rate:

• With mini-batch size b and equivalent gradient noise σ2eq, D-SAMD has

E[ (xav
i (T ))�  (x⇤)]  O(1)


L

T
+

�p
T

�

E[ (xav
i (T ))�  (x⇤)]  O(1)

"
Lb

T
+

r
�2
eqb

T

#

�2
eq = O(1)

"
�2⇢b
2 (W )||xi(s)� xj(s)||2 +

�2⇢b
2 (W )�2

b
+

�2

mb

#
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D-SAMD Convergence Analysis

• Recall that Mirror Descent has convergence rate:

• With mini-batch size b and equivalent gradient noise σ2eq, D-SAMD has

• Need to choose b big enough to ensure: 
1. Nodes’ iterates don’t diverge 
2. Equivalent noise variance is on par with residual noise variance

E[ (xav
i (T ))�  (x⇤)]  O(1)


L

T
+

�p
T

�

E[ (xav
i (T ))�  (x⇤)]  O(1)

"
Lb

T
+

r
�2
eqb

T

#

�2
eq = O(1)

"
�2⇢b
2 (W )||xi(s)� xj(s)||2 +

�2⇢b
2 (W )�2

b
+

�2

mb

#
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D-SAMD Convergence Analysis

Lemma: D-SAMD iterates are guaranteed to converge provided 

Furthermore, this condition is sufficient to ensure that 

b � O(1)


1 +

log(mT )

⇢ log(1/�2(W ))

�

�2
eq  O(1)

r
�2

mT
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D-SAMD Convergence Analysis

Lemma: D-SAMD iterates are guaranteed to converge provided 

Furthermore, this condition is sufficient to ensure that 

• Results in convergence rate 

• When is this order optimum?

b � O(1)


1 +

log(mT )

⇢ log(1/�2(W ))

�

�2
eq  O(1)

r
�2

mT

E[ (xi(T ))�  (x⇤
)]  O(1)

"
L log(mT )

⇢ log(1/�2(W ))T
+

r
�2

mT

#
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D-SAMD Convergence Analysis

Theorem: If  

Then the conditions of the previous lemma ensure that  

E[ (xi(T ))�  (x⇤)]  O(1)

"r
�2

mT

#

⇢ � O(1)


m1/2

log(mT )

�T 1/2
log(1/�2(W ))

�
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D-SAMD Convergence Analysis

Theorem: If  

Then the conditions of the previous lemma ensure that  

• Larger mini-batches decreases gradient noise, but also decreases the 
number of MD steps taken 

• Eventually, the deterministic term dominates the convergence rate 

• Natural idea: use accelerated mirror descent

E[ (xi(T ))�  (x⇤)]  O(1)

"r
�2

mT

#

⇢ � O(1)


m1/2

log(mT )

�T 1/2
log(1/�2(W ))

�
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Accelerated Distributed SA Mirror Descent

Algorithm: Accelerated Distributed Stochastic Approximation 
Mirror Descent (AD-SAMD) [simplified] 

for s=1 to T/b: [iterate over mini-batches] 
compute mini-batch gradients 
for r=1 to ρb: 

perform consensus iterations on gradients 
end for r 
perform accelerated MD updates 

end for s

• Recall: accelerated MD takes similar projected gradient descent steps, uses 
more complicated averaging scheme
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AD-SAMD Convergence Analysis

• With mini-batch size b and equivalent gradient noise σ2eq,  
AD-SAMD has 

• The equivalent gradient noise has approx. the same variance:

E[ (xi(T ))�  (x⇤)]  O(1)

"
Lb2

T 2
+

r
�2
eqb

T

#

�2
eq = O(1)


�2⇢b||xi(s)� xj(s)||2 +

�2⇢b�2

b
+

�2

mb

�
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AD-SAMD Convergence Analysis

• With mini-batch size b and equivalent gradient noise σ2eq,  
AD-SAMD has 

• The equivalent gradient noise has approx. the same variance:

E[ (xi(T ))�  (x⇤)]  O(1)

"
Lb2

T 2
+

r
�2
eqb

T

#

�2
eq = O(1)


�2⇢b||xi(s)� xj(s)||2 +

�2⇢b�2

b
+

�2

mb

�

Lemma: AD-SAMD iterates are guaranteed to converge, and σ2
eq 

has optimum scaling, provided 

b � O(1)


1 +

log(mT )

⇢ log(1/�2(W ))

�
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AD-SAMD Convergence Analysis
• Results in a convergence rate

E[ (xi(T ))�  (x⇤
)]  O(1)

"
L log

2
(mT )

⇢2 log2(1/�2(W ))T 2
+

r
�2

mT

#
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AD-SAMD Convergence Analysis
• Results in a convergence rate

Theorem: If  

Then the conditions of the previous lemma ensure that  

E[ (xi(T ))�  (x⇤)]  O(1)

"r
�2

mT

#

⇢ � O(1)


m1/4

log(mT )

�T 3/4
log(1/�2(W ))

�

E[ (xi(T ))�  (x⇤
)]  O(1)

"
L log

2
(mT )

⇢2 log2(1/�2(W ))T 2
+

r
�2

mT

#
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AD-SAMD Convergence Analysis
• Results in a convergence rate

Theorem: If  

Then the conditions of the previous lemma ensure that  

E[ (xi(T ))�  (x⇤)]  O(1)

"r
�2

mT

#

• AD-SAMD permits more aggressive mini-batching 
• Improvement of 1/4 in the exponents of m and T

⇢ � O(1)


m1/4

log(mT )

�T 3/4
log(1/�2(W ))

�

E[ (xi(T ))�  (x⇤
)]  O(1)

"
L log

2
(mT )

⇢2 log2(1/�2(W ))T 2
+

r
�2

mT

#
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Numerical example: Logistic Regression
• Logistic regression: learn a binary classifier from streams of input data 
• Measurements are Gaussian-distributed, unknown mean, d=50 
• Network drawn from Erdos-Reyni model with m=20 
• Log-loss cost function

9

(a) ⇢ = 1

(b) ⇢ = 10

Fig. 1: Performance of D-SAMD and AD-SAMD on logistic
regression.

VI. CONCLUSION

We have presented two distributed schemes, D-SAMD and
AD-SAMD, for convex stochastic optimization over networks
of nodes that collaborate via rate-limited links. Further, we
have derived sufficient conditions for the order-optimum con-
vergence of D-SAMD and AD-SAMD, showing that acceler-
ated mirror descent provides a foundation for distributed SO
that better tolerates slow communications links. These results
characterize relationships between network communications
speed and the convergence speed of stochastic optimization.

A limitation of this work is that we are restricted to
settings in which the prox mapping is Lipschitz continuous,
which excludes important Bregman divergences such as the
Kullbeck-Liebler divergence. Further, the conditions for op-
timum convergence restrict the Lipschitz constant of non-
smooth component of the objective function to be small.
Future work includes study of the limits on convergence
speed for more general divergences and composite objective
functions.

APPENDIX

A. Proof of Lemma 2
The first claim follows immediately from the definitions

of the constituent matrices. The second claim follows from

Lemma 1. To establish the final claim, we first bound the
norm of the columns of E(s):

E(s) , G(s)Wr �G(s) (32)
= G(s)(Wr � 1/n11T

), (33)
= (G(s)�G(s))(Wr � 1/n11T

), (34)

where the first equality follows from ¯G(s) = G(s)1/n11T

by definition, and the second equality follows from the fact
that the dominant eigenspace of a column-stochastic matrix
W is the subspace of constant vectors, thus the rows of ¯G(s)
lie in the null space of Wr � 1/n11T . We bound the norm
of the columns of E(s) via the Frobenius norm of the entire
matrix:

ke
i

(s)k⇤ 
p

C1 kE(s)k
F

=

p
C1

��
(G(s)�G(s))(Wr � 1/n11T

)

��
F


p

C1m�r

2

��G(s)�G(s)
��
F

 max

j,k

m2
p

C⇤�
r

2 kgj

(s)� g
k

(s)k⇤ ,
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Fig. 1: Performance of D-SAMD and AD-SAMD on logistic
regression.

VI. CONCLUSION

We have presented two distributed schemes, D-SAMD and
AD-SAMD, for convex stochastic optimization over networks
of nodes that collaborate via rate-limited links. Further, we
have derived sufficient conditions for the order-optimum con-
vergence of D-SAMD and AD-SAMD, showing that acceler-
ated mirror descent provides a foundation for distributed SO
that better tolerates slow communications links. These results
characterize relationships between network communications
speed and the convergence speed of stochastic optimization.

A limitation of this work is that we are restricted to
settings in which the prox mapping is Lipschitz continuous,
which excludes important Bregman divergences such as the
Kullbeck-Liebler divergence. Further, the conditions for op-
timum convergence restrict the Lipschitz constant of non-
smooth component of the objective function to be small.
Future work includes study of the limits on convergence
speed for more general divergences and composite objective
functions.

APPENDIX

A. Proof of Lemma 2
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Composite Optimization

• What if objective is not smooth? 
• Composite convex optimization: 

• f(x) has Lipschitz gradients, but h(x) is only Lipschitz:  

• Accelerated MD via subgradients gives the optimum convergence

 (x) = f(x) + h(x)

||rf(x)�rf(y)||  L||x� y||
||h(x)� h(y)||  M||x� y||

E[ (xi(T ))�  (x⇤)]  O(1)


L

T 2
+

M+ �p
T

�
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Composite Optimization

• Small perturbations lead to significant deviations in subgradients 
• Two new challenges: 

1. Mini-batching doesn’t help — gradient noise variance doesn’t matter! 
2. Imperfect average consensus results in a “noise floor” 

• Results in sub-optimum convergence rates:

E[ (xi(T ))�  (x⇤)]  O(1)

"
Lb2
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M+ �/
p
mbp

T/b
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Conclusions

Summary: 
• Investigated stochastic learning from the perspective of rate-

limited, wireless links 
• Developed two schemes, D-SAMD and AD-SAMD, that balance in-

network gradient averaging and local mini-batching 
• Derived conditions for order-optimum convergence 

Future work: 
• Optimum distributed SO for composite objectives 
• Can we improve the convergence rates of AD-SAMD? 
• Other communications issues: delay, quantization, etc. 
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