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Motivation: Autonomous Driving

e Network of autonomous automobiles + one human-driven car
e Sensing for “anomalous” driving from human

e Wantto jointly sense over communications links
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e Network of autonomous automobiles + one human-driven car
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e Wantto jointly sense over communications links

Challenges:

e Need to detect/act quickly

o \Wireless links have limited rate — can’t
exchange raw data
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Motivation: Autonomous Driving

e Network of autonomous automobiles + one human-driven car
e Sensing for “anomalous” driving from human

e Wantto jointly sense over communications links

Challenges:
e Need to detect/act quickly

o \Wireless links have limited rate — can’t
exchange raw data

Questions:

e How well can devices jointly learn when
links are slow(/not fast)?

e What are good strategies?
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Contributions of This Talk

* Frame the problem as distributed stochastic optimization

e Network of devices trying to minimize an objective function from streams of
noisy data
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Contributions of This Talk

* Frame the problem as distributed stochastic optimization

e Network of devices trying to minimize an objective function from streams of
noisy data

* Focus on communications aspect: how to collaborate when links have
imited rates?

e Defining two time scales: one rate for data arrival, and one for message
exchanges
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Contributions of This Talk

* Frame the problem as distributed stochastic optimization

e Network of devices trying to minimize an objective function from streams of
noisy data

* Focus on communications aspect: how to collaborate when links have
imited rates?

e Defining two time scales: one rate for data arrival, and one for message
exchanges

e Solution: distributed versions of stochastic mirror descent that carefully
balance gradient averaging and mini-batching

e Derive network/rate conditions for near-optimum convergence
 Accelerated methods provide a substantial speedup
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Distributed Stochastic Learning

e Network of m nodes, each with an i.i.d. data stream

{&(t)}, for sensoriattimet

e Nodes communicate over wireless links, modeled by graph
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Stochastic Optimization Model

e Nodes want to solve the stochastic optimization problem:

minxex P(x) = minxex Eg[p(x,6)]

e ¢ is convex, XcRYis compact and convex
e 1 has Lipschitz gradients: [composite optimization later!]

VU (x) - VP (y)]] = Ll|x -yl xy €X
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Stochastic Optimization Model

e Nodes want to solve the stochastic optimization problem:

minxex P(x) = minxex Eg[p(x,6)]

e ¢ is convex, XcRYis compact and convex
e 1 has Lipschitz gradients: [composite optimization later!]

IV (x) - VU (y)|| = L[[x-y]|, xy €X
e Nodes have access to noisy gradients:
gi(t) := Vo (xi(1),6i(t))
Eg[gi(t)] — V\lJ(Xl(t)) (Es(1),E6(2), )
Ee[|[gi(D) - VI (xi(D]]*] < 0
(E5(1)85(2),..) ﬂ d (E3(1),85(2),..)

e Nodes keep search points x;(t) \n{mm )

m  (G(1),81(2),..)

(§2(1),82(2),...)
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Stochastic Mirror Descent

e (Centralized) SO is well understood

e Optimum convergence via mirror descent

Algorlthm Stochastic Mirror Descent

Initialize xi(0) « 0

fort=1to T:
Xi(t) < Px[xi(t-1) - ye gi(t-1)]
X¥i(t) « 1/t 2 xi(T)

end fort

[Xiao, “Dual averaging methods for regularized stochastic learning and online optimization”, 2010]

[Lan, "An Optimal Method for Stochastic Composite Optimization”, 2012]
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Stochastic Mirror Descent

e (Centralized) SO is well understood

e Optimum convergence via mirror descent

Algorithm: Stochastic Mirror Descent
Initialize xi(0) « 0
fort=1to T:

Xi(t) < Px[xi(t-1) - ye gi(t-1)]
X¥i(t) « 1/t 2 xi(T)
end for t

e Extensions via Bregman divergences + prox mappings
o After T rounds:

Bl (<3 (1)) — (x)] < O() |+ 7

[Xiao, “Dual averaging methods for regularized stochastic learning and online optimization”, 2010]

[Lan, "An Optimal Method for Stochastic Composite Optimization”, 2012]

Matthew Nokleby, Wayne State University “Distributed Approaches to Mirror Descent...”



Stochastic Mirror Descent

e Can speed up convergence via accelerated stochastic mirror descent:

e Similar SGD steps, but more complex iterate averaging
o After T rounds:

L
T2

[Xiao, “Dual averaging methods for regularized stochastic learning and online optimization”, 2010]

[Lan, "An Optimal Method for Stochastic Composite Optimization”, 2012]
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Stochastic Mirror Descent

e Can speed up convergence via accelerated stochastic mirror descent:
e Similar SGD steps, but more complex iterate averaging
e After T rounds:

L

Elp(xi(T)) —(x7)] < O(1) |

i
T2 VT

e Optimum convergence order-wise

* Noise term dominates in general, but ASMD provides a universal solution to
the SO problem

e Will prove significant in distributed stochastic learning

[Xiao, “Dual averaging methods for regularized stochastic learning and online optimization”, 2010]

[Lan, "An Optimal Method for Stochastic Composite Optimization”, 2012]
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Back fo Distributed Stochastic Learning

e With m nodes, after T rounds, the best possible performance is

Bl (x(T) ~ 0()) £ 01) | o+~
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Back fo Distributed Stochastic Learning

e With m nodes, after T rounds, the best possible performance is

Bw(xi(T)) ~ ¥(x")] £ O1) | s +

* Achievable with sufficiently fast communications

e |n distributed computing environment, noise term is achievable via
gradient averaging:

1. Use AllReduce to average gradients over a spanning tree
2. Take a SMD step
e Upshot: Averaging reduces gradient noise, provides speedup
e Perfect averages difficult to compute over wireless networks

e Approaches: average consensus, incremental methods, etc.

[Dekel et al., “Optimal distributed online prediction using mini-batches”, 2012]
[Duchi et al., “Dual averaging for distributed optimization...”, 2012]

[Ram et al., “Incremental stochastic sub-gradient algorithms for convex optimization”, 2009]
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Communications Model

e Nodes connected over an undirected graph G = (VE)

e Every communications round, each node broadcasts a single gradient-like
message m;i(r) to its neighbors

e Rate limitations modeled by the communications ratio p

* pcommunications rounds for every data sample that arrives

\“‘““)/
mz (1) »/mg (r)
i coied

l m4(r)

/
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Communications Model

e Nodes connected over an undirected graph G = (VE)

e Every communications round, each node broadcasts a single gradient-like
message m;i(r) to its neighbors

e Rate limitations modeled by the communications ratio p

* pcommunications rounds for every data sample that arrives

data rounds

m;i(r=1) m;(r=2) comms rounds

p=1/2

data rounds

mi(r=1) | mi(r=2) | mi(r=3) | mi(r=4) comms rounds
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Distributed Mirror Descent Qutline

e Distribute stochastic MD via averaging consensus:
1. Nodes obtain local gradients
2.Compute distributed gradient averages via consensus

3. Take MD step using the average gradients

data rounds

search point updates
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Distributed Mirror Descent Qutline

e Distribute stochastic MD via averaging consensus:
1. Nodes obtain local gradients
2.Compute distributed gradient averages via consensus

3. Take MD step using the average gradients

data rounds

search point updates

p=2

e |flinks are slow (p small), there isn"t much time for consensus

e New data samples arrives before the network can process the previous one
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Mini-batching Gradients

e Solution: mini-batch together b gradients, batch size b > 1
e Hold search point constant for b rounds

e Average together b gradient evaluations:
sb

s =7 > al)

t=(s—1)b+1
e Reduces gradient noise: E¢[||Bi(s) - VI(xi(s)]||?] < 0%/b
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Mini-batching Gradients

e Solution: mini-batch together b gradients, batch size b > 1
e Hold search point constant for b rounds

e Average together b gradient evaluations:
sb

=3 D

t=(s—1)b+1
e Reduces gradient noise: E¢[||Bi(s) - VI(xi(s)]||?] < 0%/b

e Allows for more consensus rounds

data rounds

mi(r=1) m;(r=2) m;(r=3) mi(r=4) consensus rounds

Oi(s=1) Oi(s=2) mini-batch rounds

0=1/2,b=4
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Mini-batching Gradients

e Solution: mini-batch together b gradients, batch size b > 1
e Hold search point constant for b rounds

e Average together b gradient evaluations:
sb

=3 D

t=(s—1)b+1
e Reduces gradient noise: E¢[||Bi(s) - VI(xi(s)]||?] < 0%/b

e Allows for more consensus rounds

data rounds

mi(r=1) m;(r=2) m;(r=3) mi(r=4) consensus rounds

Oi(s=1) Oi(s=2) mini-batch rounds

0=1/2,b=4

e However, fewer search point updates
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Gradient Averaging via Consensus

 Averaging consensus: nodes compute local averages with neighbors,
which converge on the global average

e Choose a doubly-stochastic matrix W € R™m sych that wij # 0 only if nodes
are connected, i.e. (i) €E

e At mini-batch round s and communications round r:
r L - ar—1
0; (s) = E :ww@j (s)
1,]

 For mini-batch size b and communications ratio p, nodes can carry out bp
consensus rounds per mini-batch.

* |terates converge on true average as # of rounds -> infinity

[Duchi et al., “Dual averaging for distributed optimization...”, 2012]

[Tsianos and Rabbat, “Efficient distributed online prediction and stochastic optimization”, 2016]
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Gradient Averaging via Consensus

e At mini-batch round s and communications round r:

Z wwer 1

'Lemma: The equivalent gradient noise variance is bounded by

0o =E[107(s) — Vi (xi(s))[|?] <
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Gradient Averaging via Consensus

e At mini-batch round s and communications round r:

Z wwe”r‘ 1

'Lemma: The equivalent gradient noise variance is bounded by

0o =E[107(s) — Vi (xi(s))[|?] <

* Noise components: gap in nodes’ search points, error due to imperfect
consensus averaging, residual noise

e For porblarge, noise converges on perfect-average case

Matthew Nokleby, Wayne State University “Distributed Approaches to Mirror Descent...”



Distributed SA Mirror Descent

Algorithm: Distributed Stochastic Approximation Mirror Descent

(D-SAMD)
Initialize xi(0) « 0, for all i

for s=1 to T/b: [iterate over mini-batches]
901(8) — 91(8)

xi(sb+1) < Px[xi(sb) - ys 6°Pi(s)]
x¥i(t) « 1/s X xi(Tb)
end fors

e Quter loop: nodes compute mini-batches, take MD steps
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D-SAMD Convergence Analysis

e Recall that Mirror Descent has convergence rate:

Elp(xi™(T)) —¢(x7)] < O(1)
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D-SAMD Convergence Analysis

e Recall that Mirror Descent has convergence rate:
T o

B (< (1)) — (x)] < O() |+ 7

e With mini-batch size b and equivalent gradient noise 0%.q, D-SAMD has

By () — p(x)] < 0(1) | 22 4 /%

0oq = O(1) [ X7 (W)|[xi(s) —x;(s)[|> + =2
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D-SAMD Convergence Analysis

e Recall that Mirror Descent has convergence rate:
L o

Eyx"(T)) —y(x™)| <0O(1 |
(1)~ ve)] < O) | 7+
e With mini-batch size b and equivalent gradient noise 0%.q, D-SAMD has

By () — p(x)] < 0(1) | 22 4 /%
o2 = O(1) | A2 (Wi (s) — 5 (s)||2 4+ 22— V)" L @

e Need to choose b big enough to ensure:

1. Nodes' iterates don't diverge

2. Equivalent noise variance is on par with residual noise variance
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D-SAMD Convergence Analysis

Lemma: D-SAMD iterates are guaranteed to converge provided
. ) | T _
b>0(1) |14 og(mT)

o plog(1/A2(W))_

Furthermore this condition is sufficient to ensure that
' 2
>

o2 < O(1)) —

€eq —
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D-SAMD Convergence Analysis

Lemma: D-SAMD iterates are guaranteed to converge provided
. ) | T _

b>0(1) |14 og(mT)
plog(1/A2(W))_

Furthermore this condition is sufficient to ensure that

o2 < 0| 2
. Resultsinconvergence rate
Blo(xi(T)) — ()] < OQ) |~ LlesmD) _ [o*
Z - _plog(l/)\g(W))T | mT"

e When is this order optimum?
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D-SAMD Convergence Analysis

i 1/21 T
s o [_mlog(m®)
| o1 21og(1/Xa(W))
EThen the conditions of the previous lemma ensure that
ow |2
b (7)) — )] < O(1 —
W(xi(T)) —b(x")] < 0(1) |y 2
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D-SAMD Convergence Analysis

Theorem: If

r 1/21 T
> 01 | ™ og(mT)
oT/2log(1/A2(W))._
Then the conditions of the previous lemma ensure that
ow |/ 2
i) (1)) — ) < O(1 —
W(xi(T)) —b(x")] < 0(1) |y 2

 |arger mini-batches decreases gradient noise, but also decreases the
number of MD steps taken

e Eventually, the deterministic term dominates the convergence rate

e Natural idea: use accelerated mirror descent
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Accelerated Distributed SA Mirror Descent

e Recall: accelerated MD takes similar projected gradient descent steps, uses
more complicated averaging scheme

Algorithm: Accelerated Distributed Stochastic Approximation
Mirror Descent (AD-SAMD) [simplified]
for s=1 to T/b: [iterate over mini-batches]
compute mini-batch gradients
for r=1 to pb:
perform consensus iterations on gradients
end forr
perform accelerated MD updates
end for s
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AD-SAMD Convergence Analysis

e With mini-batch size b and equivalent gradient noise 0%,

AD-SAMD has _Lbz \/0_2 b

Bl (xi(T)) — 0(x")] < O(1) | o5 + 1/ ==

e The equivalent gradient noise has approx. the same variance:

\2pb 52 2"
ooy = O(1) | NP°|x;(s) — x;(s)||* - bg I f:%b

Matthew Nokleby, Wayne State University “Distributed Approaches to Mirror Descent...”



AD-SAMD Convergence Analysis

e With mini-batch size b and equivalent gradient noise 0%,
AD-SAMD has * 752 o2.b
Eli(x(T) - v(x) < 0(1) | o +1/ 7%

e The equivalent gradient noise has approx. the same variance:

\20b 52 2
02 = O(1) [N?|Ixis) = x;()[I” + “—— + —

Lemma: AD-SAMD iterates are guaranteed to converge, and 62
“has optimum scaling, provided

b> O(1) |14 log(mT)
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AD-SAMD Convergence Analysis

e Results in a convergence rate

(T)) — W (x* - Llog*(mT) e
Bly(a(T) =06 < O0) | m v \/;
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AD-SAMD Convergence Analysis

e Results in a convergence rate

_ Llog®(mT) o2

Bl (D) =6 < O | oz gy VT

Theorem: If

»> 0(1) - mY%log(mT)
| oT3/*log(1/A2(W)) _
Then the conditions of the previous lemma ensure that
X _ 0-2 _
Bl (x(T)) — v(x")] < 0(1) |/ =
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AD-SAMD Convergence Analysis

e Results in a convergence rate

_ Llog®(mT) o2

Bl (D) =6 < O | oz gy VT

Theorem: If

»> 0(1) - mY%log(mT)
| oT3/*log(1/A2(W)) _
Then the conditions of the previous lemma ensure that
X _ 0-2 _
Bl (x(T)) — v(x")] < 0(1) |/ =

e AD-SAMD permits more aggressive mini-batching
* |Improvement of 1/4 in the exponents of mand T
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Numerical example: Logistic Regression

e |ogistic regression: learn a binary classifier from streams of input data
e Measurements are Gaussian-distributed, unknown mean, d=50

e Network drawn from Erdos-Reyni model with m=20

 |Log-loss cost function
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Composite Optimization

e What if objective is not smooth?

e Composite convex optimization:

() = f(z) + h(z)

e f(x) has Lipschitz gradients, but h(x) is only Lipschitz:

IVf(x) =V [yl <Lz -y
|h(x) — h(y)|| < M|z —y]]

e Accelerated MD via subgradients gives the optimum convergence

LIM—I—O'_
T T .

Elp(xi(T)) — ¢(x7)] < O(1)
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Composite Optimization

e Small perturbations lead to significant deviations in subgradients

e Two new challenges:
1. Mini-batching doesn’t help — gradient noise variance doesn’t matter!
2. Impertect average consensus results in a “noise floor”

® Results in sub-optimum convergence rates:

L M+ o/vVmb
o - M
I T/b

Elp(xi(T)) — ¢(x7)] < O(1)
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Conclusions

Summary:

* |nvestigated stochastic learning from the perspective of rate-
imited, wireless links

e Developed two schemes, D-SAMD and AD-SAMD, that balance in-
network gradient averaging and local mini-batching

e Derived conditions for order-optimum convergence

Future work:
e Optimum distributed SO for composite objectives
e Can we improve the convergence rates of AD-SAMD?

e Other communications issues: delay, quantization, etc.

Preprint available: https://arxiv.org/abs/1704.07888
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