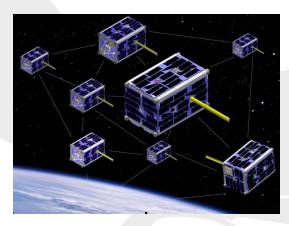
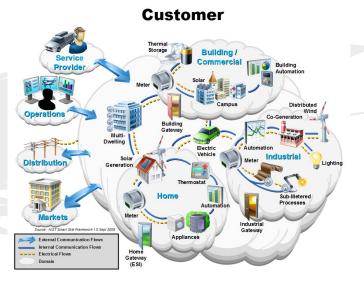
Convergence Rates in Decentralized Optimization

Alex Olshevsky Department of Electrical and Computer Engineering Boston University

Distributed and Multi-agent Control

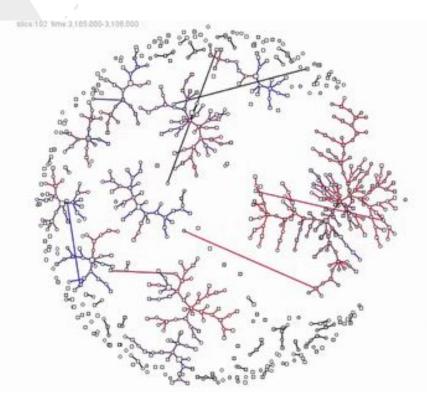




Strong need for protocols to coordinate multiple agents.
Such protocols need to be distributed in the sense of involving only local interactions among agents.

Image credit: CubeSat, TCLabs, Kmel Robotics

Challenges



- Decentralized methods.
- Unreliable links.
- Node failures.
- Too much data.
- Too much local information.
- Malicious nodes.
- Fast & scalable performance.
- Interaction of cyber & physical components.

Image credit: UW Center for Demography

Problems of Interest

Master node Slave node Border node

- Formation control
- Target Localization
- Cooperative Estimation
- Distributed Learning
- Leader-following
- Coverage control

- Load balancing
- Clock synchronization in sensor networks
- Resource allocation
- Dynamics in social networks
- Distributed Optimization

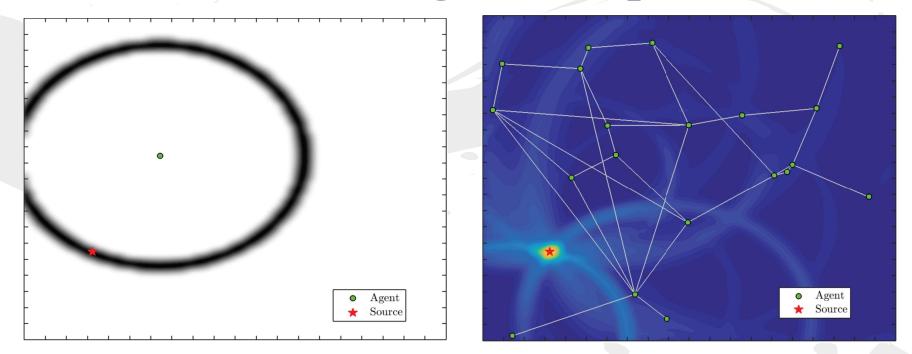
This presentation

- 1. Major concerns in multi-agent control (3 slides)
- 2. Three problems (4 slides)
 - a) Distributed learning
 - b) Localization from distance measurements
 - c) Distributed optimization
- 3. A common theme: average consensus protocols (10 slides)
 - a) Introduction
 - b) Main result
 - c) Intuition
- 4. Revisiting the three problems from part 2 (21 slides)
- 5. Conclusion (1 slide)

Distributed learning

- There is a true state of the world θ^{*} that belongs to a finite set of hypotheses Θ.
- At time †, agent i receives i.i.d. random variables s_i(†), lying in some finite set. These measurements have distributions P_i(.|θ), which are known to node i.
- Want to cooperate and identify the true state of the world.
 Can only interact with neighbors in some graph(s).
- A variation: no true state of the world, some hypotheses just explain things better than others.
- Will focus on source localization as a particular example.

Distributed learning -- example



Each agent (imprecisely) measures distance to source; these give rise to beliefs, which need to be fused in order to decide a hypotheses on the location of the source.

Decentralized optimization

- There are **n** agents. Only agent **i** knows the convex function $f_i(x)$.
- Agents want to cooperate to compute a minimizer of

 $F(x) = (1/n) \sum_{i} f_{i}(x)$

- As always, agents can only interact with neighbors in an undirected graph -- or a time-varying sequence of graphs.
- Too expensive to share all the functions with everyone.
- But: everyone can compute their own function values and (sub)gradients.

Distributed regression -- an example

- Users with feature vectors a_i are shown an ad.
- y_i is a binary variable measuring whether they ``liked it."
- One usually looks for vectors z corresponding to predictors sign(z'a_i + b)
- Some relaxations considered in the literature:

$$\begin{split} & \sum_{i} 1 - y_{i}(z'a_{i} + b) + \lambda ||z||_{1} \\ & \sum_{i} \max(0, 1 - y_{i}(z'a_{i} + b)) + \lambda ||z||_{1} \\ & \sum_{i} \log (1 + e^{-y_{i}(z'a_{i} + b)}) + \lambda ||z||_{1} \end{split}$$

Want to find **z** & **b** that minimize the above.

• If the k'th cluster has data $(y_i, a_i, i \text{ in } S_k)$, then setting

$$f_{k}(z,b) = \sum_{i \in Sk} 1 - y_{i}(z'a_{i} + b) + \lambda' ||z||_{1}$$

recovers the problem of finding a minimizer of $\sum_{k} f_{k}$

This presentation

- 1. Major concerns in multi-agent control (3 slides)
- 2. Three problems (4 slides)
 - a) Distributed learning
 - b) Localization from distance measurements
 - c) Distributed optimization & distributed regression
- 3. Average consensus protocols (10 slides)
 - a) Introduction
 - b) Main result
 - c) Intuition
- 4. Revisiting the three problems from part 2 (15 slides)
- 5. Conclusion (2 slides)

The Consensus Problem - I

- There are **n** agents, which we will label 1, ..., **n**
- Agent i begins with a real number x_i (0) stored in memory
- Goal is to compute the average $(1/n) \sum_{i} x_{i}(0)$
- Nodes are limited to interacting with neighbors in an undirected graph or a sequence of undirected graphs.

The Consensus Problem - H

 Protocols need to be fully distributed, based only on local information and interaction between neighbors. Some kind of connectivity assumption will be needed.

- Want protocols inherently robust to failing links, failing or malicious nodes, don't suffer from a ``data curse'' by storing everything.
- Want to avoid protocols based on flooding or leader election.
- Preview: this seems like a toy problem, but plays a key role in all the problems previously described.

Consensus Algorithms: Gossip

Nodes break up into a matching

...and update as

$$x_{i}(t+1), x_{j}(t+1) = \frac{1}{2} (x_{i}(t) + x_{j}(t))$$

First studied by [Cybenko, 1989] in the context of load balancing (processors want to equalize work along a network).

Consensus Algorithms: Equal-neighbor

$x_{i}(t+1) = x_{i}(t) + c \sum_{j \text{ in } N(i,t)} x_{j}(t) - x_{i}(t)$

- Here N(i,t) is the set of neighbors of node i at time t.
- Works if **c** is small enough (on a fixed graph, **c** should be smaller than the inverse of the largest degree)
- First proposed by [Mehyar, Spanos, Pongsajapan, Low, Murray, 2007].

Consensus Algorithms: Metropolis $x_i(t+1) = x_i(t) + \sum_{j \in N(i,t)} w_{ij}(t) (x_j(t) - x_i(t))$

First proposed in this context by [Xiao, Boyd, 2004].
Here w_{ii}(†) are the Metropolis weights

$$w_{ij}(t) = min(1+d_i(t), 1+d_j(t))^{-1}$$

where $d_i(t)$ is the degree of node i at time t.

Avoids the hassle of choosing the constant c before.

Consensus Algorithms: others

• All of the above protocols are linear:

$$x(++1) = A(+) x(+)$$

where $A(\dagger)=[a_{ij}(\dagger)]$ is a stochastic matrix. Note that $A(\dagger)$ is always compatible with the graph is the sense of $a_{ij}(\dagger)=0$ whenever there is no edge between i and j.

- Can design nonlinear protocols [Chapman and Mesbahi, 2012], [Krause 2000],[Hui and Haddad, 2008], [Srivastava, Moehlis, Bullo, 2011], many others....
- Most prominent is the so-called *push-sum* protocol [Dobra, Kempe, Gehrke 2003]which takes the ratio of two linear updates.

Our Focus: Designing Good Protocols

- **Our goal**: simple and robust protocols that work quickly...even in the worst case.
- What does ``worst-case'' mean?
- Look at time until the measure of disagreement $S(t) = \max_i x_i(t) - \min_i x_i(t)$ is shrunk by a factor of ε . Call this $T(n,\varepsilon)$.
- We can take worst-case over either all fixed connected graphs or all time-varying graph sequence (satisfying some long-term connectivity conditions).

Previous Work and Our Result

Authors	Bound for T(n, ϵ)	Worst-case over
[Tsitsiklis, Bertsekas, Athans, 1986]	Ο (n ⁿ log (1/ε))	Time-varying directed graphs
[Jadbabaie, Lin, Morse, 2003]	Ο (n ⁿ log (1/ε))	Time-varying directed graphs
[O .,Tsitsiklis, 2009]	Ο (n ³ log (n/ε))	Time-varying undirected graphs
[Nedic, O ., Ozdaglar, Tsitsiklis, 2011]	Ο (n² log (n/ε))	Time-varying undirected graphs
[O., 2015] , this presentation	Ο (n log (n/ε))	Fixed undirected graphs

The Accelerated Metropolis Protocol – I $y_i(t+1) = \sum_j a_{ij} x_j(t)$ $x_i(t+1) = y_i(t+1) + (1-(9n)^{-1}) (y_i(t+1) - y_i(t))$

- Here \mathbf{a}_{ij} is *half* of the Metropolis weight whenever \mathbf{i}, \mathbf{j} are neighbors. $A(\mathbf{t})=[\mathbf{a}_{ij}]$ is a stochastic matrix.
- Must be initialized as x(0)=y(0).
- Theorem [O., 2015]: If each node of an undirected connected graph uses the AM method, then each $x_i(\dagger)$ converges to the average of the initial values. Furthermore, $S(\dagger) \leq \varepsilon S(0)$ after $O(n \log (n/\varepsilon))$ updates.

The Accelerated Metropolis Protocol – II $y_i(t+1) = \sum_j a_{ij} x_j(t)$ $x_i(t+1) = y_i(t+1) + (1-(9n)^{-1})(y_i(t+1) - y_i(t))$

- The idea that iterative methods for linear systems can benefit from extrapolation is very old (~1950s). Used in consensus by [Cao, Spielman, Yeh 2006], [Johansson, Johansson 2008], [Kokiopoulou, Frossard, 2009], [Oreshkin, Coates, Rabbat 2010], [Chen, Tron, Terzis, Vidal 2011], [Liu, Anderson, Cao, Morse 2013], ...
- As written, requires knowledge of the number of nodes by each node.
 This can be relaxed: each node only needs to know an upper bound correct within a constant factor.

Proof idea

- The natural update x(t+1) = A x(t) with stochastic A corresponds to asking about the speed at which a Markov chain converges to a stationary distribution.
- Main insight 1: Metropolis chain mixes well because it decreases the centrality of high-degree vertices.
- In particular: whereas the ordinary random walk takes O(n³) to mix, the Metropolis walk takes O(n²)
- Main insight 2: can think of Markov chain mixing as gradient descent, and use Nesterov acceleration to take square root of running time.
- This argument can give O(diameter) convergence (up to log factors) on geometric random graphs or 2D grids.

This presentation

- 1. Major concerns in multi-agent control (3 slides)
- 2. Three problems (4 slides)
 - a) Distributed learning
 - b) Localization from distance measurements
 - c) Distributed optimization & distributed regression
- 3. A common theme: consensus protocols (10 slides)
 - a) Introduction
 - b) Main result
 - c) Intuition
- 4. Revisiting the three problems from part 2 (15 slides)
- 5. Conclusion (2 slides)

Back to Decentralized Optimization

- There are **n** agents. Agent i knows the convex function $f_i(x)$.
- Agents want to cooperate to compute a minimizer of $F(x) = (1/n) \sum_{i} f_{i}(x)$

This contains the consensus problem as a special case.

• In the centralized setup, assuming each $f_i(x)$ has subgradient bounded by L, the subgradient method on the function F(x) results in $F(x_a(t))-F(x^*) = O(1/Jt)$ This means that the time until the objective is within epsilon of the optimal value is $O(1/\epsilon^2)$

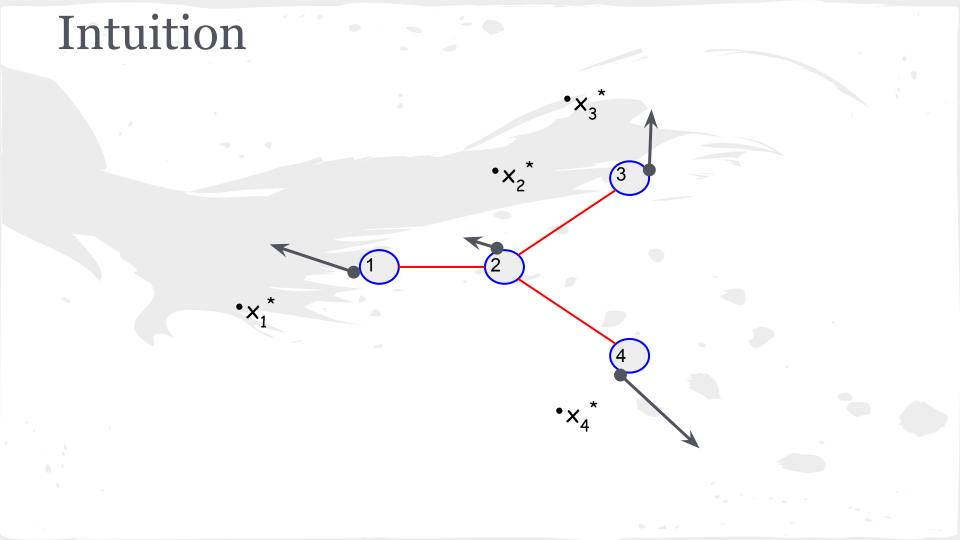
Previous work

[Nedic, Ozdaglar 2009] proposed that node i maintain the variable $x_i(\dagger)$ which is updated as

 $x_i(t+1) = \sum_j a_{ij}(t) x_j(t) - \alpha g_i(t)$ where $g_i(t)$ is the subgradient of $f_i(x)$ at $x_i(t)$ and $[a_{ij}(t)]$ is any

of the consensus matrices above.

[Nedic, Ozdaglar, 2009] showed that each averaged ×_i(†)
 converges to a small neighborhood of the same minimizer of F(•)



Linear Time Decentralized Optimization – I There is a natural algorithm inspired by the AM Method:

$$y_{i}(t+1) = \sum_{j} a_{ij} x_{j}(t) - a g_{i}(t)$$

$$z_{i}(t+1) = y_{i}(t) - a g_{i}(t)$$

$$x_{i}(t+1) = y_{i}(t+1) + (1-1/(9n)) (y_{i}(t+1) - z_{i}(t+1))$$

$$z_{i}(t) = y_{i}(t+1) + (1-1/(9n)) (y_{i}(t+1) - z_{i}(t+1))$$

...where $g_i(\dagger)$ is the subgradient of f_i at $x_i(\dagger)$, L is an upper bound on the norm of $g_i(\dagger)$, $\alpha = 1/(L \int n \int T)$, and α_{ij} are half-Metropolis weights.

Main idea: this interleaves gradient descent with an averaging scheme.

Linear Time Decentralized Optimization - II

- Theorem [O., 2015]: on any undirected connected graph, we have that all $x_i(\dagger)$ approach the same minimizer of F and $F(x_a(\dagger))-F(x^*) < \epsilon$ after $O(n/\epsilon^2)$ iterations.
- Initial paper [Nedic, Ozdaglar 2009] had a bound of $O(n^{2n}/\epsilon^2)$ to get within ϵ
- Later improved by [Ram, Nedic, Veeravalli 2011] to $O(n^4/\epsilon^2)$ time to get within ϵ
- In simulations, the linear convergence time still holds on time-varying graphs.

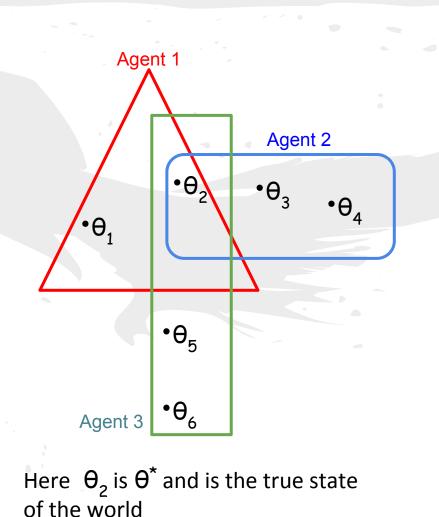
What have we accomplished?

We have proposed an algorithm that:

- Every agent stores three numbers.
- Always works in linear time on fixed graphs (this is optimal).
- Automatically robust to failing nodes.
- Simulations show it is robust to link failures.
- Simulations show it works in linear time on time-varying graphs.

Distributed (non)Bayesian Learning

- There is a finite set of hypotheses $\boldsymbol{\Theta}$.
- At time \dagger , agent i receives i.i.d. measurements $s_i(\dagger)$, lying in some finite set, having a distribution q_i .
- Under hypothesis θ , the measurements $s_i(\dagger)$ have distribution $P_i(.|\theta)$.
- Nodes want to cooperate and identify the state of the world which best explains the observations.
- Call that state of the world θ^* .
- Formally: $\theta^* = \arg \min_{\theta} \sum_i D_{KL}(q_i, P_i(.|\theta))$



Agent 1 Agent 2 **•**θ₃ •θ, • **θ**₂ •θ₅ •0, Agent 3

Here θ_2 could be θ^* although it is not the best in terms of the observations of any individual agent

Distributed Bayesian Learning

- Agent i maintains a stochastic vector over Θ , which we will denote $b_i(\uparrow, \Theta)$, initialized to be uniform. Stack these up into $b_i(\uparrow)$
- For a nonnegative vector x, define N(x) to be $x/||x||_1$.
- Bayes rule may be written as

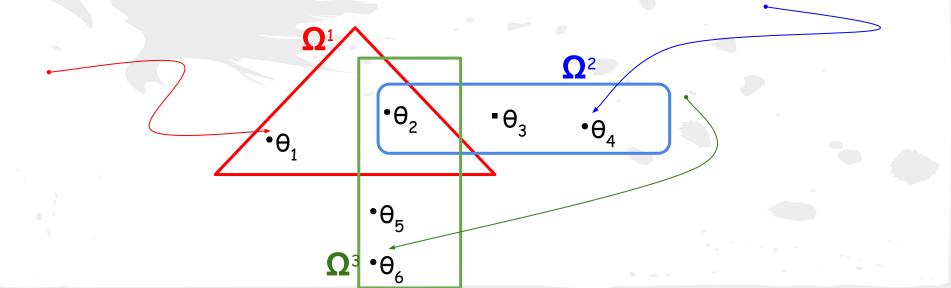
$$b_{i, \text{ temp}}(t+1) = b_{i}(t) \cdot P(s_{i}(t)|\theta))$$

$$b_{i}(t+1) = N(b_{i, \text{ temp}}(t+1))$$

where.* is elementwise multiplication of vectors.

The Independent Bayes Update

Let Ω' be the set of hypotheses best for agent i. Well-known: if agents use above rule (i.e., ignore each other) then all $b_i(\dagger, \theta)$ concentrate on Ω^i as $\dagger \rightarrow +\infty$.



Distributed (non)Bayesian Learning - II

- First attempt at an algorithm:
 - $$\begin{split} b_{i, \text{ temp}}(t+1) &= b_{i}(t) \cdot P(s_{i}(t)|\theta) \cdot \Pi_{j \in N(i,t)} b_{j}(t)^{a_{ij}} \\ b_{i}(t+1) &= N(b_{i, \text{ temp}}(t+1)) \end{split}$$
- Essentially proposed by [Alanyali, Saligrama, Savas, Aeron 2004]. Each node performs a weighted Bayes update treating the beliefs of neighbors as observations and ignoring dependencies.
 - **Theorem** [Nedic, O., Uribe 2015], [Shahrampour, Rakhlin, Jadbabaie 2015], [Lalitha, Sarwate, Javidi 2015]: if $[a_{ij}]$ is any of the stochastic consensus matrices from before, and the graph is undirected and connected, then almost surely all $b_i(\uparrow, \Theta)$ geometrically approach $\mathbf{1}(\Theta^*)$ (i.e.,

Distributed (non)Bayesian Learning - III

• The update

$$\begin{split} b_{i, \text{ temp}}(t+1) &= b_i(t) \cdot P(s_i(t)|\theta) \cdot \Pi_{j \in N(i,t)} b_j(t)^{a_{ij}} \\ b_i(t+1) &= N(b_{i, \text{ temp}}(t+1)) \end{split}$$

is very similar to a consensus update after the nonlinear change of variables $y_i(t) = \log b_i(t)$.

 Similar idea to distributed optimization: each node ``pulls'' in favor of the explanations that favor its data and these pulls are reconciled through a consensus scheme.

- Distributed (non)Bayesian Learning IV
- Well if that is the case, then how about:
 - $$\begin{split} b_{i, \text{ temp}}(t+1) &= b_{i}(t) \cdot P_{i}(s_{i}(t)|\theta) \cdot \Pi_{j \in N(i)} b_{j}(t)^{(1+\sigma)a_{ij}} \\ v_{i, \text{ temp}}(t+1) &= \Pi_{j \in N(i)} b_{j}(t-1) \cdot P_{j}(s_{j}(t)|\theta) \\ b_{i}(t+1) &= N(b_{i, \text{ temp}}(t+1) \cdot / v_{i, \text{ temp}}(t+1)) \end{split}$$

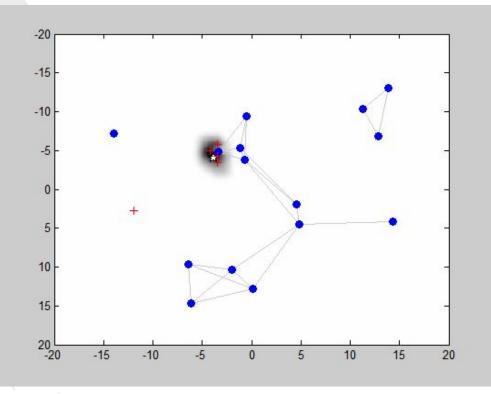
where a_{ii} are the lazy Metropolis weights and $\sigma = 1-(18n)^{-1}$.

• Intuition: each node pulls in favor its own beliefs, and these pulls are reconciled now using the AM method.

Distributed (non)Bayesian Learning - V **Theorem** [Nedic, O., Uribe 2015]: Suppose that under Θ^* all events occur with probability at least p_{min}. Then, for all $\theta \neq \theta^*$ and all \dagger , we have with probability 1- ρ the bound $b_i(t, \theta) \leq e^{-(a/2)t+c}$...holds for all $\dagger \ge N(\rho)$ where a = (1/n) min_{$\theta \neq \theta^*$} [$\sum_{j} D_{KL}(q_j || P_j(s_j(t)|\theta)) - D_{KL}(q_j || P_j(s_j(t)|\theta^*))$ $c = O(n (log n) (log (1/p_{min}))$

 $N(\rho) = O([log (1/p_{min}) log (1/\rho)] / a^2)$

Learning for Target Localization



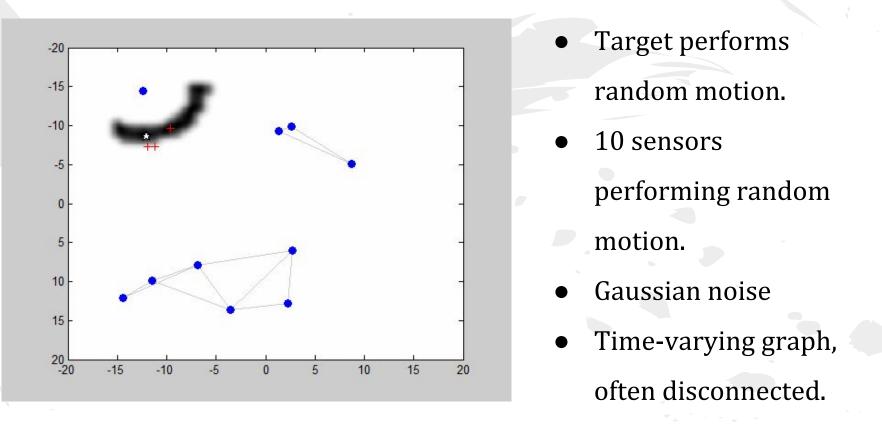
- Fixed target position.
- 15 sensors
 - performing random

motion.

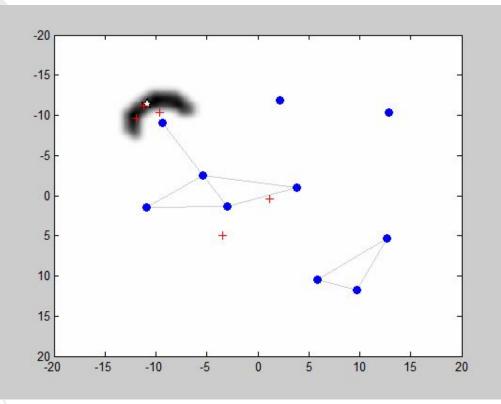
- Gaussian noise
- Time-varying graph, often disconnected.
- Learning is very

quick.

Learning for Target Tracking

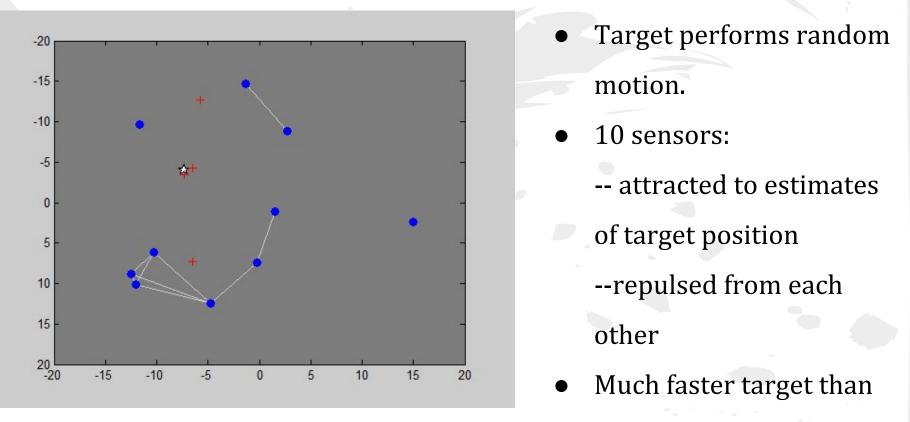


Following a target



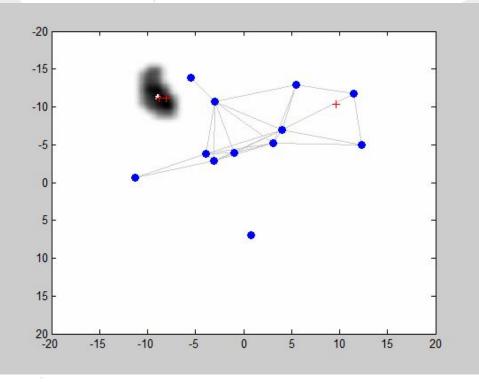
Target performs random motion. 10 sensors: -- attracted to estimates of target position --repulsed from each other Gaussian noise

Following a faster target: failure



before

Following a faster target: success



• Target performs random

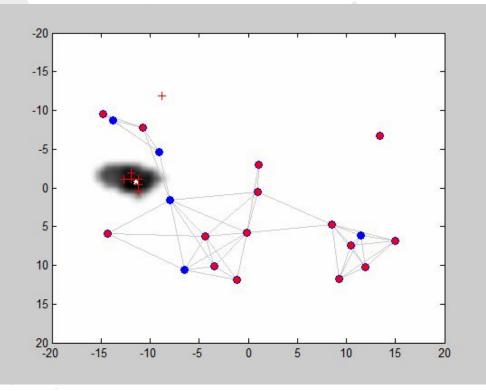
motion.

- 12 sensors:
 - 8 are:
 - -- attracted to estimates of

target position

- --repulsed from each other
- -- 4 perform random motion

Tracking with incorrect measurements



- Both target and sensors
 - perform random motion.
- Red sensors have random bias in addition to noise.
 - Blue sensors are just noisy.
- Time-varying graph.
- Now takes longer for estimates to resolve.

Conclusion

• One (very simple) result: a consensus protocol with

convergence time $O(n \log (n/\epsilon))$.

- *This talk*: linear-time algorithms for distributed optimization and distributed learning.
- Main take-away: every multi-agent problem that can be solved by coupling local objectives via consensus terms can be linearly scalable in network size with this method.