Convergence Rates in
Decentralized Optimization

Alex Olshevsky

Department of Electrical and Computer Engineering

Boston University

Distributed and Multi-agent Control

Customer

Strong need for protocols to coordinate multiple agents.
Such protocols need to be distributed in the sense of involving only

local interactions among agents.
Image credit: CubeSat, TCLabs, Kmel Robotics

Decentralized methods.

Challenges

FrAss it Unreliable links.

Node failures.

Too much data.

Too much local information.
Malicious nodes.

Fast & scalable performance.

Interaction of cyber &
physical components.

Image credit: UW Center for Demography

Problems of Interest

T //.\\ "r:ﬁ—\?\ /// ;\\
r Ll W L s
sevson - S \ j,ll /Hﬁquﬁ:kx. | {\ 4-+_‘ /M'
- G i ™~
|~ 2 &ﬂ@\f\.' s Al -
% I !' »~ [m : L B :\ A
ﬁ | \ @ \\"*’;/ﬁ\a\ﬁﬁﬂ.f b } . \1
i \,‘:L\‘iﬁ_x.ﬂ(' ./led
! \\ -//f\!:_,\[/l:_// - ;:d dd
e Formation control ® |load balancing
® Target Localization e Clock synchronization in sensor
® (Cooperative Estimation networks
o Distributed Learning ® Resource a”ocation
® Leader-following e Dynamics in social networks

e Coverage control e Distributed Optimization

This presentation

1. Major concerns in multi-agent control (3 slides)
Three problems (4 slides)
a) Distributed learning
b) Localization from distance measurements
c) Distributed optimization
3. A common theme: average consensus protocols (10 slides)
a) Introduction
b) Main result
c) Intuition
4. Revisiting the three problems from part 2 (21 slides)
5. Conclusion (1 slide)

Distributed learning

There is a true state of the world 8" that belongs to a finite
set of hypotheses ©.

At time 1, agent i receives i.i.d. random variables s.(1) , lying
in some finite set. These measurements have distributions
P.(.|8), which are known to node i.

Want to cooperate and identify the true state of the world.
Can only interact with neighbors in some graph(s).

A variation: no true state of the world, some hypotheses just
explain things better than others.

Will focus on source localization as a particular example.

Distributed learning -- example

Each agent (imprecisely) measures distance to source; these give rise to
beliefs, which need to be fused in order to decide a hypotheses on the
location of the source.

Decentralized optimization

e There are n agents. Only agent i knows the convex function f,(x).
® Agents want to cooperate to compute a minimizer of
F(x)=(1/n) 2, f, (x)
® As always, agents can only interact with neighbors in an
undirected graph -- or a time-varying sequence of graphs.
® Too expensive to share all the functions with everyone.
® But: everyone can compute their own function values and

(sub)gradients.

Distributed regression -- an example

Users with feature vectors a. are shown an ad.

Y, is a binary variable measuring whether they "liked it.”

One usually looks for vectors z corresponding to predictors Sign(z'ai +b)
Some relaxations considered in the literature:

T 1-y(Za +b)+Alzll,

> . max(0,1-y(za + b))+ A [|z][,

%, log (1 +eY-ei+5) 4 A ||2]|,

Want to find z & b that minimize the above.

e |Ifthe K'th cluster has data (y,, a, i in S,), then setting

f(2b) = I, cg 1-y(Za +b)+ N Izl

recovers the problem of finding a minimizer of 3 f,

This presentation

1. Major concerns in multi-agent control (3 slides)

Three problems (4 slides)

a) Distributed learning

b) Localization from distance measurements

c) Distributed optimization & distributed regression
3. Average consensus protocols (10 slides)

a) Introduction

b) Main result

c) Intuition
4. Revisiting the three problems from part 2 (15 slides)
5. Conclusion (2 slides)

The Consensus Problem - 1

® There are n agents, which we will label 1, ..., n

e Agent i begins with a real number x. (O) stored in memory
® Goal is to compute the average

(1/n) Z. x. (0)

e Nodes are limited to interacting with neighbors in an
undirected graph or a sequence of undirected graphs.

The Consensus Problem - 11

® Protocols need to be fully distributed, based only on local information
and interaction between neighbors. Some kind of connectivity
assumption will be needed.

o—0O0—C—-—0

e \Want protocols inherently robust to failing links, failing or malicious
nodes, don’t suffer from a ""data curse” by storing everything.
e Want to avoid protocols based on flooding or leader election.

® Preview: this seems like a toy problem, but plays a key role in all
the problems previously described.

Consensus Algorithms: Gossip

Nodes break up into a matching

...and update as

X (t+1), x,(1+1) = 3 (x(1) + x,(1))

First studied by [Cybenko, 1989] in the context of load balancing
(processors want to equalize work along a network).

Consensus Algorithms: Equal-neighbor

X(t+1) = x(t) +c 2. X. (‘r) X ()

j in N(i,t)

e Here N(i,t) is the set of neighbors of node i at time .
e Works if ¢ is small enough (on a fixed graph, ¢ should be

smaller than the inverse of the largest degree)
® First proposed by [Mehyar, Spanos, Pongsajapan, Low,
Murray, 2007].

Consensus Algorithms: Metropolis
X(1+1) = X, (1) + ;i Wy (1) (X, (1)-x,(1))

® First proposed in this context by [Xiao, Boyd, 2004].
e Here wiJ.(T) are the Metropolis weights

Wij('l') = min(1+d (1), 1 + dj(‘l'))?
where d.(1) is the degree of node i at time t.

® Avoids the hassle of choosing the constant ¢ before.

Consensus Algorithms: others

® All of the above protocols are linear:
x(t+1) = A(T) x(t)
where A(T):[GEJ(T)] is a stochastic matrix. Note that A(t) is

always compatible with the graph is the sense of aiJ.(T)=O
whenever there is no edge between 1 and j.

® (Can design nonlinear protocols [Chapman and Mesbahi, 2012],

[Krause 2000],[Hui and Haddad, 2008], [Srivastava, Moehlis, Bullo, 2011],
many others....

® Most prominent is the so-called push-sum protocol [Dobra,
Kempe, Gehrke 2003 Jwhich takes the ratio of two linear updates.

Our Focus: Designing Good Protocols

® Our goal: simple and robust protocols that work
quickly...even in the worst case.

e \What does 'worst-case’” mean?

® Look at time until the measure of disagreement
S(t) = max. x.(1) - min. x.(t) is shrunk by a factor of €.
Call this T(n,e).

e \We can take worst-case over either all fixed connected
graphs or all time-varying graph sequence (satisfying some

long-term connectivity conditions).

Previous Work and Our Result

Authors

Bound for T(n,€)

Worst-case over

[Tsitsiklis, Bertsekas, Athans,
1986]

o(n" log (1/¢))

Time-varying directed graphs

[Jadbabaie, Lin, Morse, 2003]

o(n" log (1/¢))

Time-varying directed graphs

[O., Tsitsiklis, 2009]

O(n3 log (n/¢))

Time-varying undirected graphs

[Nedic, O., Ozdaglar, Tsitsiklis,

2011]

0(n? log (n/¢))

Time-varying undirected graphs

[O., 2015], this presentation

O(n log (n/¢))

Fixed undirected graphs

The Accelerated Metropolis Protocol - I
y(t+1) = Z, a;; x,(¥)
x,(t+1) = y,(++1) + (1-(9n)™) (y,(++1) - y{(1))

e Here a; is half of the Metropolis weight whenever i,j are neighbors. A(T)=[aij] is
a stochastic matrix.

® Must be initialized as x(0)=y(0).

e Theorem [O., 2015]: If each node of an undirected connected graph

uses the AM method, then each x.(1) converges to the average of the

initial values. Furthermore, S(1)<€S(0) after O(n log (n/€)) updates.

The Accelerated Metropolis Protocol - I1
y,(t+1) = 2, a; xj(’r)

x.(1+1) = y.(t+1) + (1-(9n)?) (y,(++1) - y.())

e The idea that iterative methods for linear systems can benefit from extrapolation

is very old (~1950s). Used in consensus by [Cao, Spielman, Yeh 2006], [Johansson,

Johansson 2008], [Kokiopoulou, Frossard, 2009], [Oreshkin, Coates, Rabbat 2010],
[Chen, Tron, Terzis, Vidal 2011], [Liu, Anderson, Cao, Morse 2013], ...
® As written, requires knowledge of the number of nodes by each node.

This can be relaxed: each node only needs to know an upper bound
correct within a constant factor.

Proof idea

The natural update x(t+1) = A x(t) with stochastic A corresponds
to asking about the speed at which a Markov chain converges to a
stationary distribution.

Main insight 1: Metropolis chain mixes well because it decreases the
centrality of high-degree vertices.

In particular: whereas the ordinary random walk takes O(n®) to mix,
the Metropolis walk takes O(n?)

Main insight 2: can think of Markov chain mixing as gradient descent,
and use Nesterov acceleration to take square root of running time.
This argument can give O(diameter) convergence (up to log factors)
on geometric random graphs or 2D grids.

This presentation

1. Major concerns in multi-agent control (3 slides)
Three problems (4 slides)
a) Distributed learning
b) Localization from distance measurements
c) Distributed optimization & distributed regression
3. A common theme: consensus protocols (10 slides)
a) Introduction
b) Main result
c) Intuition
4. Revisiting the three problems from part 2 (15 slides)
5. Conclusion (2 slides)

Back to Decentralized Optimization

e There are n agents. Agent i knows the convex function f.(x).
® Agents want to cooperate to compute a minimizer of
F(x) = (1/n) £, f, (%)
This contains the consensus problem as a special case.

e Inthe centralized setup, assuming each f.(x) has
subgradient bounded by L, the subgradient method on the
function F(x) results in F(x_(1))-F(x) = O (1//1)

This means that the time until the objective is within epsilon
of the optimal value is O(1/¢€?)

Previous work
[Nedic, Ozdaglar 2009] proposed that node | maintain the variable

x.(t) which is updated as
x(t+1) = 3, a,(1) x(H) - ag, (1
where g. (1) is the subgradient of f_(x) at x.(1) and [aiJ.(’r)] is any
of the consensus matrices above.
[Nedic, Ozdaglar, 2009] showed that each averaged x (%)

converges to a small neighborhood of the same minimizer of F(+)

Intuition

Linear Time Decentralized Optimization - I
There is a natural algorithm inspired by the AM Method:

y,(t+1) = Z, a; X,(t) - a g ()
Zi("""l) = Y,(T) -a 9,(1-)
x.(t+1) = y.(1+1) + (1-1/(9n)) (y.(1+1) - z(1+1))
..where g.(t) is the subgradient of f. at x.(t), L is an upper bound
on the norm of g(t), a=1/(L/n/T), and a;; are half-Metropolis
weights.

Main idea: this interleaves gradient descent with an averaging
scheme.

Linear Time Decentralized Optimization - II

® Theorem [O., 2015]: on any undirected connected graph, we
have that all x.(1) approach the same minimizer of F and
F(x (1))-F(x") < € after O(n/€?) iterations.

e |nitial paper [Nedic, Ozdaglar 2009] had a bound of
O(n®"/€?) to get within €

e Later improved by [Ram, Nedic, Veeravalli 2011] to
O(n*/€?) time to get within €

® |n simulations, the linear convergence time still holds on

time-varying graphs.

What have we accomplished?

We have proposed an algorithm that:
e Every agent stores three numbers.
e Always works in linear time on fixed graphs (this is optimal).
e Automatically robust to failing nodes.

e Simulations show it is robust to link failures.

e Simulations show it works in linear time on time-varying

graphs.

Distributed (non)Bayesian Learning

There is a finite set of hypotheses ©.

At time T, agent | receives i.i.d. measurements Si(T), lying in
some finite set, having a distribution q..

Under hypothesis 6, the measurements s (t) have
distribution P (.|6).

Nodes want to cooperate and identify the state of the world
which best explains the observations.

Call that state of the world 6.

Formally: ©°= arg min, ¥ DKL(qi, Pi(.le))

Agent 1

\ Agent 2
oe °
2 0, . 0,
oel
\
065
Agent 3 .66

Here 62 is ©” and is the true state
of the world

Agent 1 Agent 2
n 63 .64
e1
e2
e5
Agent 3 .66

Here 6, could be 0" although it is
not the best in terms of the
observations of any individual
agent

Distributed Bayesian Learning

Agent | maintains a stochastic vector over ©, which we will denote
b.(t, ©), initialized to be uniform. Stack these up into b.(t)

For a nonnegative vector X, define N(x) to be x/||x]]|..

Bayes rule may be written as
D temp(T+1) = by(1) * P(s(1)]6))
b(t+1) = N(b, ,,.,(++1)

where.* is elementwise multiplication of vectors.

The Independent Bayes Update

Let Q' be the set of hypotheses best for agent i. Well-known: if agents
use above rule (i.e., ignore each other) then all bi(T, ©) concentrate on
Q'as T -> +oo,

Distributed (non)Bayesian Learning - II
® First attempt at an algorithm:
D, temp(T+1) = b(1) * P(s(1)I8)).* TT.
b(t+1) = N(bimp(f +1))

e Essentially proposed by [Alanyali, Saligrama, Savas, Aeron 2004]. Each node

performs a weighted Bayes update treating the beliefs of neighbors
as observations and ignoring dependencies.

j € N(i,1) b, (T)G -

e Theorem [Nedic, O., Uribe 2015], [Shahrampour, Rakhlin, Jadbabaie 2015], [Lalitha,
Sarwate, Javidi 2015]: if [aiJ.] is any of the stochastic consensus matrices
from before, and the graph is undirected and connected, then
almost surely all b.(t, ©) geometrically approach 1(87) (i.e.,

‘-A*

Distributed (non)Bayesian Learning - 111
e The update
b, temp(1+1) = bi(1) * P(s(1)|0)).* TT
b(t+1) = N(biltemp(’ﬁl))

is very similar to a consensus update after the nonlinear change
of variables y.(t) = log b.(t).

e Similar idea to distributed optimization: each node pulls” in

j € NG, 1) bj(T)a_{ij}

favor of the explanations that favor its data and these pulls are
reconciled through a consensus scheme.

Distributed (non)Bayesian Learning - IV

e Well if thatis the case, then how about:

b, 1omp(T+1) = b(1) * P(s,(1)1€)).*TT b. () (1)

JENC())
b,(t-1) * P(s,(1)16))

I, ‘remp(T 1) = r

JENG) 7
b(t+1) = N(b, ,,.(++1) ./ v, . (1+1))
where a; are the lazy Metropolis weights and o = 1-(18n).

® Intuition: each node pulls in favor its own beliefs, and these pulls

are reconciled now using the AM method.

Distributed (non)Bayesian Learning - V
Theorem [Nedic, O., Uribe 2015]: Suppose that under 8" all events occur

with probability at least Prin.

Then, for all © 28" and all T, we have with probability 1- p the bound
bi('l', e) < e-(a/Z)’r+c

...holds for all + > N(p) where

az (1/n) Ming,q. [3, Dy (; 11 P(s,(N16)) - Dy (g1 P(s,(1)167)

¢ = O(n (log n) (log (1/p,,.))

N(p) = O([log (1/p,,,) log (1/p)]/ a®)

Learning for Target Localization

o | | | , | | | e Fixed target position.
e * e 15 sensors
-0 . . .
. v performing random
5 g *
= motion.
+ . L] L]
5| » B o= e (Gaussian noise
10+] . .
=% e Time-varying graph,
16 L

often disconnected.

N T 0 s 0 : 10 15 20
e [earningisvery

quick.

Learning for Target Tracking

2 - e Target performs
N s i random motion.
10 - .. =

® 10 sensors
e - il

performing random

5 & g motion.

10+ » . . .
* ® (Gaussian noise

8-

e Time-varying graph,

20

often disconnected.

Following a target

e Target performs
-20

. random motion.
ol ﬁ » é | e 10 sensors:

St 7 -- attracted to

&
&
0 - .
3 el estimates of target
A - Y -
position
10} -
&

= i --repulsed from each
T, 5 0 5 10 5 20 other

® (Gaussian noise

Following a faster target: failure

e Target performs random
motion.

e 10 sensors:
-- attracted to estimates
of target position
--repulsed from each

other

e Much faster target than

before

Following a faster target: success

-20

451

10 -

10 -

15 -

20

-20

1
-15

1 1
-10 -5

1
10

|
15

20

Target performs random
motion.

12 sensors:

8 are:

-- attracted to estimates of
target position

--repulsed from each other

-- 4 perform random motion

Tracking with incorrect measurements

-20

18+

10}

10

15+

20

Both target and sensors
perform random motion.
Red sensors have random
bias in addition to noise.
Blue sensors are just noisy.
Time-varying graph.

Now takes longer for

estimates to resolve.

Conclusion

® One (very simple) result: a consensus protocol with
convergence time O(n log (n/g)).

® This talk: linear-time algorithms for distributed optimization
and distributed learning.

e Main take-away: every multi-agent problem that can be
solved by coupling local objectives via consensus terms can be

linearly scalable in network size with this method.

