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Distributed and Multi-agent Control

● Strong need for protocols to coordinate multiple agents.

● Such protocols need to be distributed in the sense of  involving only 

local interactions among agents.
Image credit: CubeSat, TCLabs, Kmel Robotics



Challenges
● Decentralized methods.

● Unreliable links.

● Node failures.

● Too much data. 

● Too much local information.

● Malicious nodes.

● Fast & scalable performance. 

● Interaction of cyber &

physical components. 
Image credit: UW Center for Demography



Problems of Interest 

● Formation control

● Target Localization

● Cooperative Estimation

● Distributed Learning

● Leader-following

● Coverage control 

● Load balancing

● Clock synchronization in sensor 

networks

● Resource allocation

● Dynamics in social networks

● Distributed Optimization



This presentation
1. Major concerns in multi-agent control (3 slides)

2. Three problems (4 slides) 

a) Distributed learning

b) Localization from distance measurements

c) Distributed optimization

3. A common theme: average consensus protocols (10 slides)

a) Introduction

b) Main result

c) Intuition

4. Revisiting the three problems from part 2 (21 slides) 

5. Conclusion (1 slide)



Distributed learning
● There is a true state of the world θ* that belongs to a finite 

set of hypotheses ϴ. 

● At time t, agent i receives i.i.d. random variables si(t) , lying 

in some finite set. These measurements have distributions 

Pi(.|θ), which are known to node i. 
● Want to cooperate and identify the true state of the world. 

Can only interact with neighbors in some graph(s).

● A variation: no true state of the world, some hypotheses just 

explain things better than others.

● Will focus on source localization as a particular example.



Distributed learning -- example

Each agent (imprecisely) measures distance to source; these give rise to 

beliefs, which need to be fused in order to decide a hypotheses on the 

location of the source. 



Decentralized optimization  
● There are n agents. Only agent i knows the convex function fi(x).

● Agents want to cooperate to compute a minimizer of 

F(x) = (1/n) ∑i  fi (x)

● As always, agents can only interact with neighbors in an 

undirected graph -- or a time-varying sequence of graphs.

● Too expensive to share all the functions with everyone. 

● But: everyone can compute their own function values and 

(sub)gradients.



Distributed regression -- an example  
● Users with feature vectors ai are shown an ad.

● yi is a binary variable measuring whether they ``liked it.’’

● One usually looks for vectors z corresponding to predictors sign(z’ai + b)
● Some relaxations considered in the literature:

      ∑i 1 - yi(z’ai + b) + λ ||z||1
      ∑i max(0,1 - yi(z’ai + b)) + λ ||z||1
      ∑i  log (1 + e-y_i(z’a_i + b)) + λ ||z||1

   Want to find z & b that minimize the above. 

● If the k’th cluster has data (yi, ai, i in Sk), then setting 

fk(z,b) = ∑i ∈Sk 1 - yi(z’ai + b) + λ’ ||z||1 

 recovers the problem of finding a minimizer of ∑kfk



This presentation
1. Major concerns in multi-agent control (3 slides)

2. Three problems (4 slides) 

a) Distributed learning

b) Localization from distance measurements

c) Distributed optimization & distributed regression

3. Average consensus protocols (10 slides)

a) Introduction

b) Main result

c) Intuition

4. Revisiting the three problems from part 2 (15 slides)

5. Conclusion (2 slides)



The Consensus Problem - I

● There are n agents, which we will label 1, …, n
● Agent i begins with a real number xi (0) stored in memory

● Goal is to compute the average 

(1/n) ∑i  xi (0) 

       

● Nodes are limited to interacting with neighbors in an 

undirected graph or a sequence of undirected graphs.



The Consensus Problem - II
● Protocols need to be fully distributed, based only on local information 

and interaction between neighbors. Some kind of connectivity 

assumption will be needed.

● Want protocols inherently robust to failing links, failing or malicious 
nodes, don’t suffer from a ``data curse’’ by storing everything. 

● Want to avoid protocols based on flooding or leader election.
● Preview: this seems like a toy problem, but plays a key role in all

the problems previously described.



Consensus Algorithms: Gossip
Nodes break up into a matching

...and update as

xi(t+1), xj(t+1) = ½ (xi(t) + xj(t))
First studied by [Cybenko, 1989] in the context of load balancing 
(processors want to equalize work along a network).



Consensus Algorithms: Equal-neighbor

xi(t+1) = xi(t) + c ∑j in N(i,t) xj(t)-xi(t)

● Here N(i,t) is the set of neighbors of node i at time t. 

● Works if c is small enough (on a fixed graph, c should be 

smaller than the inverse of the largest degree) 

● First proposed by [Mehyar, Spanos, Pongsajapan, Low, 

Murray, 2007]. 



Consensus Algorithms: Metropolis

xi(t+1) = xi(t) +  ∑j ∊ N(i,t) wij(t) (xj(t)-xi(t))

● First proposed in this context by [Xiao, Boyd, 2004].

● Here wij(t) are the Metropolis weights 

wij(t) = min( 1+di(t), 1 + dj(t) )-1  

where di(t) is the degree of node i at time t. 

● Avoids the hassle of choosing the constant c before.



Consensus Algorithms: others
● All of the above protocols are linear:

x(t+1) = A(t) x(t)
where A(t)=[aij(t)] is a stochastic matrix. Note that A(t) is 

always compatible with the graph is the sense of  aij(t)=0 
whenever there is no edge between i and j.

● Can design nonlinear protocols [Chapman and Mesbahi, 2012], 
[Krause 2000],[Hui and Haddad, 2008], [Srivastava, Moehlis, Bullo, 2011],  
many others…. 

● Most prominent is the so-called push-sum protocol [Dobra, 

Kempe, Gehrke 2003 ]which takes the ratio of two linear updates. 



Our Focus: Designing Good Protocols
● Our goal: simple and robust protocols that work 

quickly...even in the worst case.

● What does ``worst-case’’ mean? 

● Look at time until the measure of disagreement 

S(t) = maxi xi(t) - mini xi(t)  is shrunk by a factor of ɛ. 
Call this T(n,ɛ). 

● We can take worst-case over either all fixed connected 

graphs or all time-varying graph sequence (satisfying some 

long-term connectivity conditions). 



Previous Work and Our Result

Authors Bound for T(n,ɛ) Worst-case over

[Tsitsiklis, Bertsekas, Athans, 
1986] O(nn log (1/ɛ)) Time-varying directed graphs

[Jadbabaie, Lin, Morse, 2003] O(nn log (1/ɛ)) Time-varying directed graphs

[O.,Tsitsiklis, 2009] O(n3 log (n/ɛ)) Time-varying undirected graphs

[Nedic, O., Ozdaglar, Tsitsiklis, 
2011] O(n2 log (n/ɛ)) Time-varying undirected graphs

[O., 2015] , this presentation O(n log (n/ɛ)) Fixed undirected graphs



The Accelerated Metropolis Protocol - I 
yi(t+1) = Σj aij xj(t) 

xi(t+1) = yi(t+1) + (1-(9n)-1) (yi(t+1) - yi(t))

● Here aij is half of the Metropolis weight whenever i,j are neighbors. A(t)=[aij] is 

a stochastic matrix.

● Must be initialized as  x(0)=y(0).

● Theorem [O., 2015]: If each node of an undirected connected graph 

uses the AM method, then each xi(t) converges to the average of the 

initial values. Furthermore, S(t)≤ɛS(0) after  O(n log (n/ɛ)) updates.



The Accelerated Metropolis Protocol - II 
yi(t+1) = Σj aij xj(t) 

xi(t+1) = yi(t+1) + (1-(9n)-1) (yi(t+1) - yi(t))

● The idea that iterative methods for linear systems can benefit from extrapolation 

is very old (~1950s). Used in consensus by [Cao, Spielman, Yeh 2006], [Johansson, 

Johansson 2008], [Kokiopoulou, Frossard, 2009],  [Oreshkin, Coates, Rabbat 2010], 

[Chen, Tron, Terzis, Vidal 2011], [Liu, Anderson, Cao, Morse 2013], ...

● As written, requires knowledge of the number of nodes by each node. 
This can be relaxed: each node only needs to know an upper bound 
correct within a constant factor. 



Proof idea
● The natural update x(t+1) = A x(t) with stochastic A corresponds 

to asking about the speed at which a Markov chain converges to a 

stationary distribution.

● Main insight 1: Metropolis chain mixes well because it decreases the 

centrality of high-degree vertices. 

● In particular: whereas the ordinary random walk takes O(n3) to mix, 

the Metropolis walk takes O(n2)
● Main insight 2: can think of Markov chain mixing as gradient descent, 

and use Nesterov acceleration to take square root of running time.

● This argument can give O(diameter) convergence (up to log factors) 

on geometric random graphs or 2D grids. 



This presentation
1. Major concerns in multi-agent control (3 slides)

2. Three problems (4 slides) 

a) Distributed learning

b) Localization from distance measurements

c) Distributed optimization & distributed regression

3. A common theme: consensus protocols (10 slides)

a) Introduction

b) Main result

c) Intuition

4. Revisiting the three problems from part 2 (15 slides)

5. Conclusion (2 slides)



Back to Decentralized Optimization
● There are n agents. Agent i knows the convex function fi(x).

● Agents want to cooperate to compute a minimizer of 

F(x) = (1/n) ∑i  fi (x) 

This contains the consensus problem as a special case. 

● In the centralized setup, assuming each fi(x) has 

subgradient bounded by L, the subgradient method on the 

function F(x) results in F(xa(t))-F(x*) = O (1/√t)
This means that the time until the objective is within epsilon 

of the optimal value is O(1/ϵ2)



Previous work
● [Nedic, Ozdaglar 2009] proposed that node i maintain the variable 

xi(t) which is updated as 

             xi(t+1) = ∑j aij(t) xj(t) -  ɑ gi (t)

where gi (t) is the subgradient of fi (x) at xi(t) and  [aij(t)] is any 

of the consensus matrices above. 

● [Nedic, Ozdaglar, 2009] showed that each averaged xi(t)  

converges to a small neighborhood of the same minimizer of F(•)



Intuition 
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3

4

•x1
*

•x2
*

•x3
*

•x4
*



Linear Time Decentralized Optimization - I
     There is a natural algorithm inspired by the AM Method:

yi(t+1) = Σj aij xj(t) - a gi(t)

zi(t+1) = yi(t) - a gi(t)

xi(t+1) = yi(t+1) + (1-1/(9n)) (yi(t+1) - zi(t+1))
...where gi(t) is the subgradient of fi at xi(t), L is an upper bound

    on the norm of gi(t), ɑ=1/(L√n√T),  and aij are half-Metropolis

    weights. 

         Main idea: this interleaves gradient descent with an averaging 

         scheme.  

                                         



Linear Time Decentralized Optimization - II
● Theorem [O., 2015]: on any undirected connected graph, we 

have that all xi(t) approach the same minimizer of F and   

F(xa(t))-F(x*) < ϵ after  O(n/ϵ2) iterations.

● Initial paper [Nedic, Ozdaglar 2009]  had a bound of 

O(n2n/ϵ2) to get within ϵ
● Later improved by [Ram, Nedic, Veeravalli 2011]  to 

O(n4/ϵ2) time to get within ϵ
● In simulations, the linear convergence time still holds on 

time-varying graphs.



What have we accomplished?
We have proposed an algorithm that:

● Every agent stores three numbers. 

● Always works in linear time on fixed graphs (this is optimal). 

● Automatically robust to failing nodes.

● Simulations show it is robust to link failures.

● Simulations show it works in linear time on time-varying 

graphs.



Distributed (non)Bayesian Learning
● There is a finite set of hypotheses ϴ. 

● At time t, agent i receives i.i.d. measurements si(t), lying in 

some finite set, having a distribution qi. 

● Under hypothesis θ, the measurements si(t) have 

distribution Pi(.|θ). 

● Nodes want to cooperate and identify the state of the world 

which best explains the observations. 

● Call that state of the world θ*.

● Formally: θ*= arg minθ ∑i DKL(qi, Pi(.|θ))



•θ2

•θ1

•θ3 •θ4

•θ5

•θ6

Agent 2

Agent 3

Agent 1

•θ2

•θ1

・θ3 •θ4

•θ5

•θ6

Agent 2

Agent 3

Agent 1

Here  θ2
 is θ* and is the true state 

of the world

Here  θ2
  could be θ* although it is 

not the best in terms of the 
observations of any individual 
agent



Distributed Bayesian Learning
● Agent i maintains a stochastic vector over ϴ, which we will denote 

bi(t, θ), initialized to be uniform. Stack these up into bi(t)

● For a nonnegative vector x, define N(x) to be x/||x||1. 

● Bayes rule may be written as 

bi, temp(t+1) =   bi(t) .* P(si(t)|θ))

bi(t+1)       =   N(b i, temp(t+1))
where.* is elementwise multiplication of vectors. 



•θ2•θ1

・θ3 •θ4

•θ5

•θ6Ω3

Ω1

Ω2

The Independent Bayes Update
Let Ωi be the set of hypotheses best for agent i. Well-known: if agents 

use above rule (i.e., ignore each other) then all bi(t, θ) concentrate on 
Ωi

 as t -> +∞.



Distributed (non)Bayesian Learning - II
● First attempt at an algorithm:

  bi, temp(t+1) =   bi(t) .* P(si(t)|θ)).* Пj ∊ N(i,t) bj(t)a_{ij}

  bi(t+1)       =   N(bi, temp(t+1))
● Essentially proposed by [Alanyali, Saligrama, Savas, Aeron 2004]. Each node 

performs a weighted Bayes update treating the beliefs of neighbors 

as observations and ignoring dependencies. 

● Theorem [Nedic, O., Uribe 2015], [Shahrampour, Rakhlin, Jadbabaie 2015], [Lalitha, 

Sarwate, Javidi 2015]: if [aij] is any of the stochastic consensus matrices 

from before, and the graph is undirected and connected, then 

almost surely all bi(t, θ) geometrically approach 1(θ*) (i.e., 

indicator of θ*)



Distributed (non)Bayesian Learning - III
● The update

   bi, temp(t+1) =   bi(t) .* P(si(t)|θ)).* Пj ∊ N(i,t) bj(t)a_{ij}

  bi(t+1)       =   N(bi, temp(t+1))
        is very similar to a consensus update after the nonlinear change

        of variables yi(t) = log bi(t). 
● Similar idea to distributed optimization: each node ``pulls’’ in

favor of the explanations that favor its data and these pulls are 

reconciled through a consensus scheme.



Distributed (non)Bayesian Learning - IV
● Well if that is the case, then how about:

bi, temp(t+1) =   bi(t) .* Pi(si(t)|θ)).*Пj ∊ N(i) bj(t)(1+σ)a_{ij}

vi, temp(t+1) =   Пj ∊ N(i) bj(t-1) .* Pj(sj(t)|θ))

     bi(t+1)       =   N(bi, temp(t+1) ./ vi, temp(t+1) )

 where aij are the lazy Metropolis weights and σ = 1-(18n)-1.

● Intuition: each node pulls in favor its own beliefs, and these pulls 

are reconciled now using the AM method. 



Distributed (non)Bayesian Learning - V
Theorem [Nedic, O., Uribe 2015]: Suppose that under θ* all events occur

with probability at least pmin. 

Then, for all θ ≠θ* and all t, we have with probability 1- ρ the bound

          bi(t, θ) ≤ e-(a/2)t+c

 ...holds for all t ≥ N(ρ) where

a =  (1/n) minθ≠θ* [ ∑j DKL (qj || Pj(sj(t)|θ)) - DKL (qj|| Pj(sj(t)|θ*)) ]
c = O(n (log n) (log (1/pmin)) 
N(ρ) =  O([log (1/pmin) log (1/ρ)] / a2)



Learning for Target Localization
● Fixed target position.

● 15 sensors 

performing random 

motion. 

● Gaussian noise

● Time-varying graph, 

often disconnected. 

● Learning is very 

quick. 



Learning for Target Tracking
● Target performs 

random motion. 

● 10 sensors 

performing random 

motion. 

● Gaussian noise

● Time-varying graph, 

often disconnected. 



Following a target
● Target performs 

random motion. 

● 10 sensors:

-- attracted to 

estimates of target 

position

--repulsed from each 

other

● Gaussian noise



Following a faster target: failure
● Target performs random 

motion. 

● 10 sensors:

-- attracted to estimates 

of target position

--repulsed from each 

other

● Much faster target than 

before



Following a faster target: success
● Target performs random 

motion. 

● 12 sensors:

8 are:

-- attracted to estimates of 

target position

--repulsed from each other

-- 4 perform random motions



Tracking with incorrect measurements
● Both target and sensors 

perform random motion. 

● Red sensors have random 

bias in addition to noise. 

Blue sensors are just noisy.

● Time-varying graph.

● Now takes longer for 

estimates to resolve. 



Conclusion

● One (very simple) result: a consensus protocol with 

convergence time O(n log (n/ɛ)). 
● This talk: linear-time algorithms for distributed optimization 

and distributed learning. 

● Main take-away: every multi-agent problem that can be 

solved by coupling local objectives via consensus terms can be 

linearly scalable in network size with this method.


