
Convergence Rates in
Decentralized Optimization

Alex Olshevsky
Department of Electrical and Computer Engineering

Boston University

Distributed and Multi-agent Control

● Strong need for protocols to coordinate multiple agents.

● Such protocols need to be distributed in the sense of involving only

local interactions among agents.
Image credit: CubeSat, TCLabs, Kmel Robotics

Challenges
● Decentralized methods.

● Unreliable links.

● Node failures.

● Too much data.

● Too much local information.

● Malicious nodes.

● Fast & scalable performance.

● Interaction of cyber &

physical components.
Image credit: UW Center for Demography

Problems of Interest

● Formation control

● Target Localization

● Cooperative Estimation

● Distributed Learning

● Leader-following

● Coverage control

● Load balancing

● Clock synchronization in sensor

networks

● Resource allocation

● Dynamics in social networks

● Distributed Optimization

This presentation
1. Major concerns in multi-agent control (3 slides)

2. Three problems (4 slides)

a) Distributed learning

b) Localization from distance measurements

c) Distributed optimization

3. A common theme: average consensus protocols (10 slides)

a) Introduction

b) Main result

c) Intuition

4. Revisiting the three problems from part 2 (21 slides)

5. Conclusion (1 slide)

Distributed learning
● There is a true state of the world θ* that belongs to a finite

set of hypotheses ϴ.

● At time t, agent i receives i.i.d. random variables si(t) , lying

in some finite set. These measurements have distributions

Pi(.|θ), which are known to node i.
● Want to cooperate and identify the true state of the world.

Can only interact with neighbors in some graph(s).

● A variation: no true state of the world, some hypotheses just

explain things better than others.

● Will focus on source localization as a particular example.

Distributed learning -- example

Each agent (imprecisely) measures distance to source; these give rise to

beliefs, which need to be fused in order to decide a hypotheses on the

location of the source.

Decentralized optimization
● There are n agents. Only agent i knows the convex function fi(x).

● Agents want to cooperate to compute a minimizer of

F(x) = (1/n) ∑i fi (x)

● As always, agents can only interact with neighbors in an

undirected graph -- or a time-varying sequence of graphs.

● Too expensive to share all the functions with everyone.

● But: everyone can compute their own function values and

(sub)gradients.

Distributed regression -- an example
● Users with feature vectors ai are shown an ad.

● yi is a binary variable measuring whether they ``liked it.’’

● One usually looks for vectors z corresponding to predictors sign(z’ai + b)
● Some relaxations considered in the literature:

 ∑i 1 - yi(z’ai + b) + λ ||z||1
 ∑i max(0,1 - yi(z’ai + b)) + λ ||z||1
 ∑i log (1 + e-y_i(z’a_i + b)) + λ ||z||1

 Want to find z & b that minimize the above.

● If the k’th cluster has data (yi, ai, i in Sk), then setting

fk(z,b) = ∑i ∈Sk 1 - yi(z’ai + b) + λ’ ||z||1

 recovers the problem of finding a minimizer of ∑kfk

This presentation
1. Major concerns in multi-agent control (3 slides)

2. Three problems (4 slides)

a) Distributed learning

b) Localization from distance measurements

c) Distributed optimization & distributed regression

3. Average consensus protocols (10 slides)

a) Introduction

b) Main result

c) Intuition

4. Revisiting the three problems from part 2 (15 slides)

5. Conclusion (2 slides)

The Consensus Problem - I

● There are n agents, which we will label 1, …, n
● Agent i begins with a real number xi (0) stored in memory

● Goal is to compute the average

(1/n) ∑i xi (0)

● Nodes are limited to interacting with neighbors in an

undirected graph or a sequence of undirected graphs.

The Consensus Problem - II
● Protocols need to be fully distributed, based only on local information

and interaction between neighbors. Some kind of connectivity

assumption will be needed.

● Want protocols inherently robust to failing links, failing or malicious
nodes, don’t suffer from a ``data curse’’ by storing everything.

● Want to avoid protocols based on flooding or leader election.
● Preview: this seems like a toy problem, but plays a key role in all

the problems previously described.

Consensus Algorithms: Gossip
Nodes break up into a matching

...and update as

xi(t+1), xj(t+1) = ½ (xi(t) + xj(t))
First studied by [Cybenko, 1989] in the context of load balancing
(processors want to equalize work along a network).

Consensus Algorithms: Equal-neighbor

xi(t+1) = xi(t) + c ∑j in N(i,t) xj(t)-xi(t)

● Here N(i,t) is the set of neighbors of node i at time t.

● Works if c is small enough (on a fixed graph, c should be

smaller than the inverse of the largest degree)

● First proposed by [Mehyar, Spanos, Pongsajapan, Low,

Murray, 2007].

Consensus Algorithms: Metropolis

xi(t+1) = xi(t) + ∑j ∊ N(i,t) wij(t) (xj(t)-xi(t))

● First proposed in this context by [Xiao, Boyd, 2004].

● Here wij(t) are the Metropolis weights

wij(t) = min(1+di(t), 1 + dj(t))-1

where di(t) is the degree of node i at time t.

● Avoids the hassle of choosing the constant c before.

Consensus Algorithms: others
● All of the above protocols are linear:

x(t+1) = A(t) x(t)
where A(t)=[aij(t)] is a stochastic matrix. Note that A(t) is

always compatible with the graph is the sense of aij(t)=0
whenever there is no edge between i and j.

● Can design nonlinear protocols [Chapman and Mesbahi, 2012],
[Krause 2000],[Hui and Haddad, 2008], [Srivastava, Moehlis, Bullo, 2011],
many others….

● Most prominent is the so-called push-sum protocol [Dobra,

Kempe, Gehrke 2003]which takes the ratio of two linear updates.

Our Focus: Designing Good Protocols
● Our goal: simple and robust protocols that work

quickly...even in the worst case.

● What does ``worst-case’’ mean?

● Look at time until the measure of disagreement

S(t) = maxi xi(t) - mini xi(t) is shrunk by a factor of ɛ.
Call this T(n,ɛ).

● We can take worst-case over either all fixed connected

graphs or all time-varying graph sequence (satisfying some

long-term connectivity conditions).

Previous Work and Our Result

Authors Bound for T(n,ɛ) Worst-case over

[Tsitsiklis, Bertsekas, Athans,
1986] O(nn log (1/ɛ)) Time-varying directed graphs

[Jadbabaie, Lin, Morse, 2003] O(nn log (1/ɛ)) Time-varying directed graphs

[O.,Tsitsiklis, 2009] O(n3 log (n/ɛ)) Time-varying undirected graphs

[Nedic, O., Ozdaglar, Tsitsiklis,
2011] O(n2 log (n/ɛ)) Time-varying undirected graphs

[O., 2015] , this presentation O(n log (n/ɛ)) Fixed undirected graphs

The Accelerated Metropolis Protocol - I
yi(t+1) = Σj aij xj(t)

xi(t+1) = yi(t+1) + (1-(9n)-1) (yi(t+1) - yi(t))

● Here aij is half of the Metropolis weight whenever i,j are neighbors. A(t)=[aij] is

a stochastic matrix.

● Must be initialized as x(0)=y(0).

● Theorem [O., 2015]: If each node of an undirected connected graph

uses the AM method, then each xi(t) converges to the average of the

initial values. Furthermore, S(t)≤ɛS(0) after O(n log (n/ɛ)) updates.

The Accelerated Metropolis Protocol - II
yi(t+1) = Σj aij xj(t)

xi(t+1) = yi(t+1) + (1-(9n)-1) (yi(t+1) - yi(t))

● The idea that iterative methods for linear systems can benefit from extrapolation

is very old (~1950s). Used in consensus by [Cao, Spielman, Yeh 2006], [Johansson,

Johansson 2008], [Kokiopoulou, Frossard, 2009], [Oreshkin, Coates, Rabbat 2010],

[Chen, Tron, Terzis, Vidal 2011], [Liu, Anderson, Cao, Morse 2013], ...

● As written, requires knowledge of the number of nodes by each node.
This can be relaxed: each node only needs to know an upper bound
correct within a constant factor.

Proof idea
● The natural update x(t+1) = A x(t) with stochastic A corresponds

to asking about the speed at which a Markov chain converges to a

stationary distribution.

● Main insight 1: Metropolis chain mixes well because it decreases the

centrality of high-degree vertices.

● In particular: whereas the ordinary random walk takes O(n3) to mix,

the Metropolis walk takes O(n2)
● Main insight 2: can think of Markov chain mixing as gradient descent,

and use Nesterov acceleration to take square root of running time.

● This argument can give O(diameter) convergence (up to log factors)

on geometric random graphs or 2D grids.

This presentation
1. Major concerns in multi-agent control (3 slides)

2. Three problems (4 slides)

a) Distributed learning

b) Localization from distance measurements

c) Distributed optimization & distributed regression

3. A common theme: consensus protocols (10 slides)

a) Introduction

b) Main result

c) Intuition

4. Revisiting the three problems from part 2 (15 slides)

5. Conclusion (2 slides)

Back to Decentralized Optimization
● There are n agents. Agent i knows the convex function fi(x).

● Agents want to cooperate to compute a minimizer of

F(x) = (1/n) ∑i fi (x)

This contains the consensus problem as a special case.

● In the centralized setup, assuming each fi(x) has

subgradient bounded by L, the subgradient method on the

function F(x) results in F(xa(t))-F(x*) = O (1/√t)
This means that the time until the objective is within epsilon

of the optimal value is O(1/ϵ2)

Previous work
● [Nedic, Ozdaglar 2009] proposed that node i maintain the variable

xi(t) which is updated as

 xi(t+1) = ∑j aij(t) xj(t) - ɑ gi (t)

where gi (t) is the subgradient of fi (x) at xi(t) and [aij(t)] is any

of the consensus matrices above.

● [Nedic, Ozdaglar, 2009] showed that each averaged xi(t)

converges to a small neighborhood of the same minimizer of F(•)

Intuition

1 2

3

4

•x1
*

•x2
*

•x3
*

•x4
*

Linear Time Decentralized Optimization - I
 There is a natural algorithm inspired by the AM Method:

yi(t+1) = Σj aij xj(t) - a gi(t)

zi(t+1) = yi(t) - a gi(t)

xi(t+1) = yi(t+1) + (1-1/(9n)) (yi(t+1) - zi(t+1))
...where gi(t) is the subgradient of fi at xi(t), L is an upper bound

 on the norm of gi(t), ɑ=1/(L√n√T), and aij are half-Metropolis

 weights.

 Main idea: this interleaves gradient descent with an averaging

 scheme.

Linear Time Decentralized Optimization - II
● Theorem [O., 2015]: on any undirected connected graph, we

have that all xi(t) approach the same minimizer of F and

F(xa(t))-F(x*) < ϵ after O(n/ϵ2) iterations.

● Initial paper [Nedic, Ozdaglar 2009] had a bound of

O(n2n/ϵ2) to get within ϵ
● Later improved by [Ram, Nedic, Veeravalli 2011] to

O(n4/ϵ2) time to get within ϵ
● In simulations, the linear convergence time still holds on

time-varying graphs.

What have we accomplished?
We have proposed an algorithm that:

● Every agent stores three numbers.

● Always works in linear time on fixed graphs (this is optimal).

● Automatically robust to failing nodes.

● Simulations show it is robust to link failures.

● Simulations show it works in linear time on time-varying

graphs.

Distributed (non)Bayesian Learning
● There is a finite set of hypotheses ϴ.

● At time t, agent i receives i.i.d. measurements si(t), lying in

some finite set, having a distribution qi.

● Under hypothesis θ, the measurements si(t) have

distribution Pi(.|θ).

● Nodes want to cooperate and identify the state of the world

which best explains the observations.

● Call that state of the world θ*.

● Formally: θ*= arg minθ ∑i DKL(qi, Pi(.|θ))

•θ2

•θ1

•θ3 •θ4

•θ5

•θ6

Agent 2

Agent 3

Agent 1

•θ2

•θ1

・θ3 •θ4

•θ5

•θ6

Agent 2

Agent 3

Agent 1

Here θ2
 is θ* and is the true state

of the world

Here θ2
 could be θ* although it is

not the best in terms of the
observations of any individual
agent

Distributed Bayesian Learning
● Agent i maintains a stochastic vector over ϴ, which we will denote

bi(t, θ), initialized to be uniform. Stack these up into bi(t)

● For a nonnegative vector x, define N(x) to be x/||x||1.

● Bayes rule may be written as

bi, temp(t+1) = bi(t) .* P(si(t)|θ))

bi(t+1) = N(b i, temp(t+1))
where.* is elementwise multiplication of vectors.

•θ2•θ1

・θ3 •θ4

•θ5

•θ6Ω3

Ω1

Ω2

The Independent Bayes Update
Let Ωi be the set of hypotheses best for agent i. Well-known: if agents

use above rule (i.e., ignore each other) then all bi(t, θ) concentrate on
Ωi

 as t -> +∞.

Distributed (non)Bayesian Learning - II
● First attempt at an algorithm:

 bi, temp(t+1) = bi(t) .* P(si(t)|θ)).* Пj ∊ N(i,t) bj(t)a_{ij}

 bi(t+1) = N(bi, temp(t+1))
● Essentially proposed by [Alanyali, Saligrama, Savas, Aeron 2004]. Each node

performs a weighted Bayes update treating the beliefs of neighbors

as observations and ignoring dependencies.

● Theorem [Nedic, O., Uribe 2015], [Shahrampour, Rakhlin, Jadbabaie 2015], [Lalitha,

Sarwate, Javidi 2015]: if [aij] is any of the stochastic consensus matrices

from before, and the graph is undirected and connected, then

almost surely all bi(t, θ) geometrically approach 1(θ*) (i.e.,

indicator of θ*)

Distributed (non)Bayesian Learning - III
● The update

 bi, temp(t+1) = bi(t) .* P(si(t)|θ)).* Пj ∊ N(i,t) bj(t)a_{ij}

 bi(t+1) = N(bi, temp(t+1))
 is very similar to a consensus update after the nonlinear change

 of variables yi(t) = log bi(t).
● Similar idea to distributed optimization: each node ``pulls’’ in

favor of the explanations that favor its data and these pulls are

reconciled through a consensus scheme.

Distributed (non)Bayesian Learning - IV
● Well if that is the case, then how about:

bi, temp(t+1) = bi(t) .* Pi(si(t)|θ)).*Пj ∊ N(i) bj(t)(1+σ)a_{ij}

vi, temp(t+1) = Пj ∊ N(i) bj(t-1) .* Pj(sj(t)|θ))

 bi(t+1) = N(bi, temp(t+1) ./ vi, temp(t+1))

 where aij are the lazy Metropolis weights and σ = 1-(18n)-1.

● Intuition: each node pulls in favor its own beliefs, and these pulls

are reconciled now using the AM method.

Distributed (non)Bayesian Learning - V
Theorem [Nedic, O., Uribe 2015]: Suppose that under θ* all events occur

with probability at least pmin.

Then, for all θ ≠θ* and all t, we have with probability 1- ρ the bound

 bi(t, θ) ≤ e-(a/2)t+c

 ...holds for all t ≥ N(ρ) where

a = (1/n) minθ≠θ* [∑j DKL (qj || Pj(sj(t)|θ)) - DKL (qj|| Pj(sj(t)|θ*))]
c = O(n (log n) (log (1/pmin))
N(ρ) = O([log (1/pmin) log (1/ρ)] / a2)

Learning for Target Localization
● Fixed target position.

● 15 sensors

performing random

motion.

● Gaussian noise

● Time-varying graph,

often disconnected.

● Learning is very

quick.

Learning for Target Tracking
● Target performs

random motion.

● 10 sensors

performing random

motion.

● Gaussian noise

● Time-varying graph,

often disconnected.

Following a target
● Target performs

random motion.

● 10 sensors:

-- attracted to

estimates of target

position

--repulsed from each

other

● Gaussian noise

Following a faster target: failure
● Target performs random

motion.

● 10 sensors:

-- attracted to estimates

of target position

--repulsed from each

other

● Much faster target than

before

Following a faster target: success
● Target performs random

motion.

● 12 sensors:

8 are:

-- attracted to estimates of

target position

--repulsed from each other

-- 4 perform random motions

Tracking with incorrect measurements
● Both target and sensors

perform random motion.

● Red sensors have random

bias in addition to noise.

Blue sensors are just noisy.

● Time-varying graph.

● Now takes longer for

estimates to resolve.

Conclusion

● One (very simple) result: a consensus protocol with

convergence time O(n log (n/ɛ)).
● This talk: linear-time algorithms for distributed optimization

and distributed learning.

● Main take-away: every multi-agent problem that can be

solved by coupling local objectives via consensus terms can be

linearly scalable in network size with this method.

