

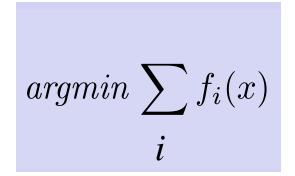
Privacy and Fault-Tolerance in Distributed Optimization

Nitin Vaidya University of Illinois at Urbana-Champaign

Acknowledgements

Shripad Gade

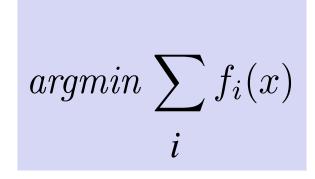
Lili Su

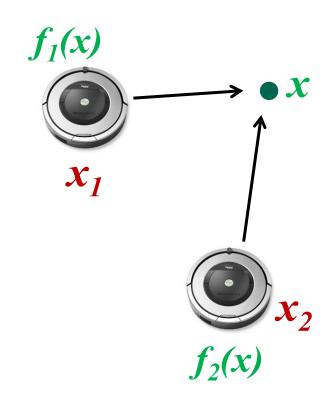


Applications

■ $f_i(x) = \text{cost for robot } i$ to go to location x

 Minimize total cost of rendezvous





Applications

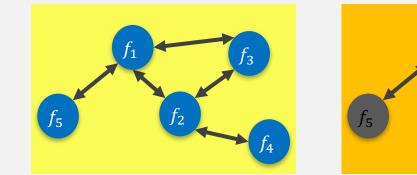


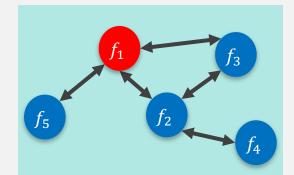
Learning

$\begin{array}{c} \text{Minimize cost} \\ \sum_{i} f_i(x) \\ i \end{array}$

Outline

$$argmin \sum_{i} f_i(x)$$





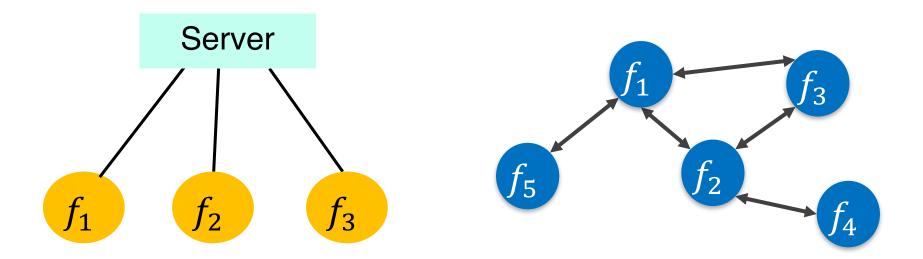
Distributed Optimization Privacy

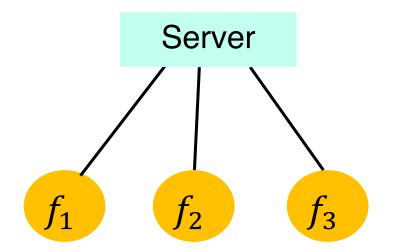
2

f4

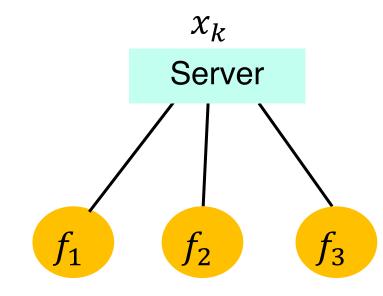
Fault-tolerance

Distributed Optimization





- Server maintains estimate x_k
- Client *i* knows $f_i(x)$

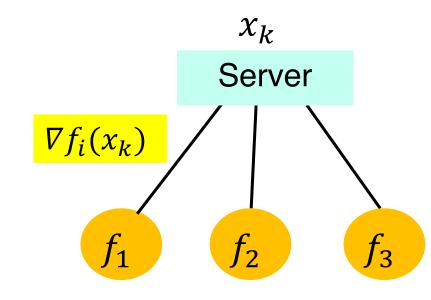


Server maintains estimate x_k
Client *i* knows f_i(x)

In iteration k+1

Client *i*

- Download x_k from server
- Upload gradient $\nabla f_i(x_k)$



- Server maintains estimate x_k
- Client *i* knows $f_i(x)$

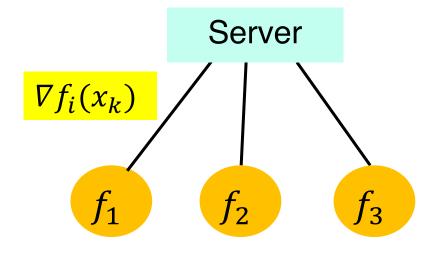
In iteration k+1

Client *i*

- Download x_k from server
- Upload gradient $\nabla f_i(x_k)$

Server

$$x_{k+1} \leftarrow x_k - \alpha_k \sum_i \nabla f_i(x_k)$$



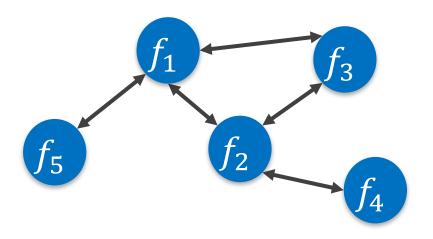
Variations

Stochastic

. . .

Asynchronous

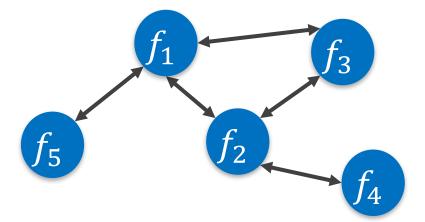
Peer-to-Peer Architecture



Peer-to-Peer Architecture

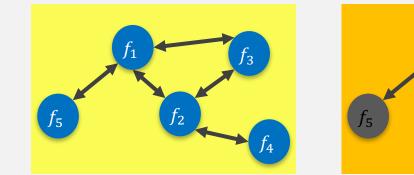
- Each agent maintains local estimate x
- Consensus step with neighbors
- Apply own gradient to own estimate

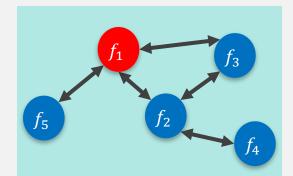
$$x_{k+1} \leftarrow x_k - \alpha_k \nabla f_i(x_k)$$



Outline

$$argmin \sum_{i} f_i(x)$$



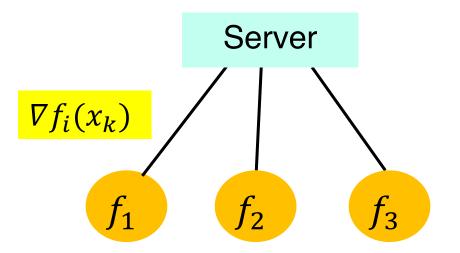


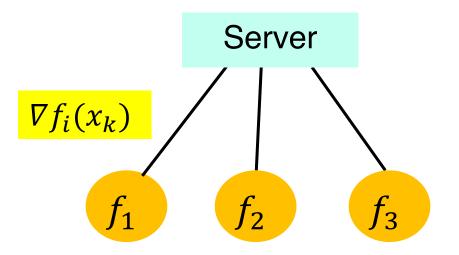
Distributed Optimization Privacy

2

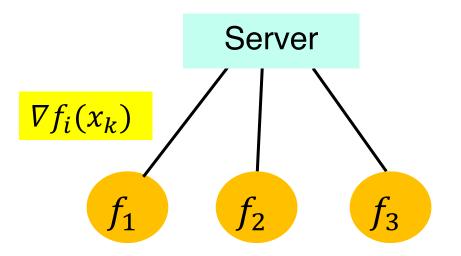
†4

Fault-tolerance





Server observes gradients → privacy compromised



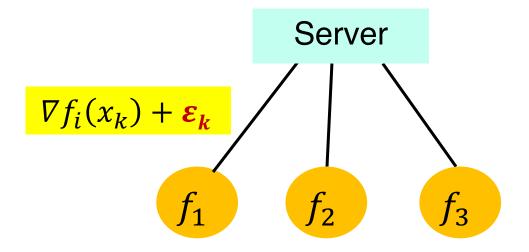
Server observes gradients → privacy compromised

Achieve privacy and yet collaboratively optimize

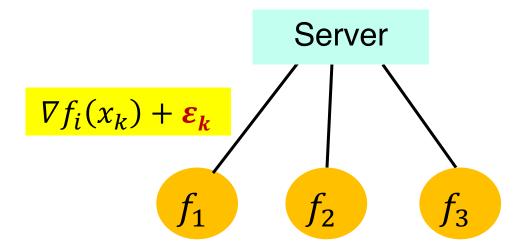
Related Work

- Cryptographic methods (homomorphic encryption)
- Function transformation
- Differential privacy

Differential Privacy



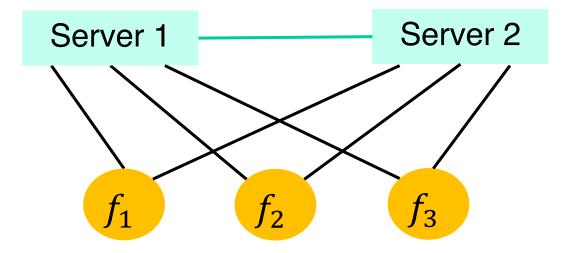
Differential Privacy



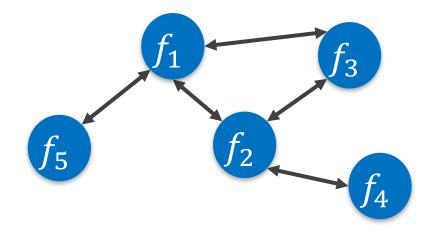
Trade-off privacy with accuracy

Motivated by secret sharing

Exploit diversity ... Multiple servers / neighbors



Privacy if subset of servers adversarial

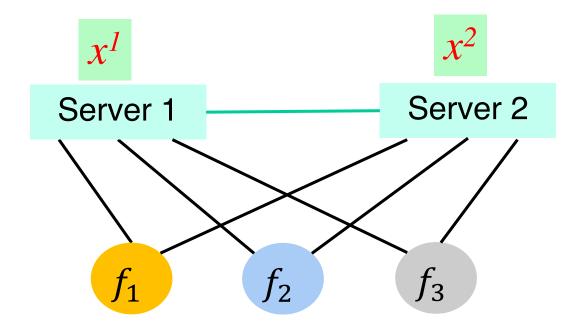


Privacy if subset of neighbors adversarial

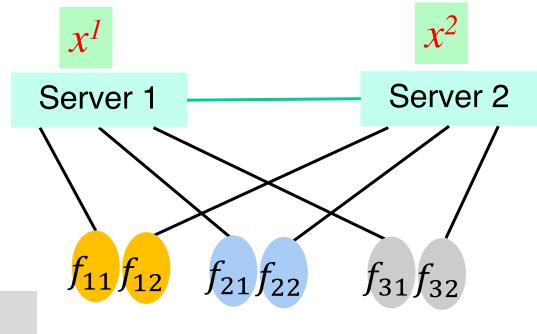
Structured noise that

"cancels" over servers/neighbors

Intuition

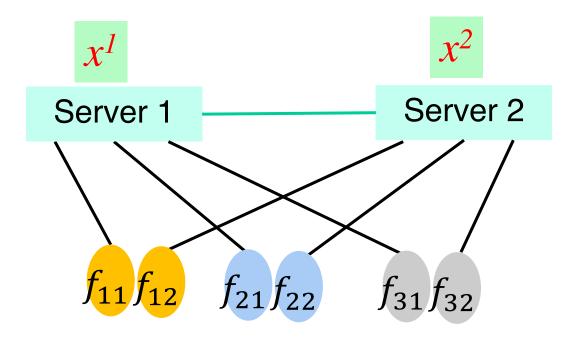


Intuition



Each client simulates multiple clients

Intuition



 $f_{11}(x) + f_{12}(x) = f_1(x)$

 $f_{ij}(x)$ not necessarily convex

Algorithm

Each server maintains an estimate

In each iteration

- Client i
 - Download estimates from corresponding server
 - Upload gradient of f_i

Each server updates estimate using received gradients

Algorithm

Each server maintains an estimate

In each iteration

- Client i
 - Download estimates from corresponding server
 - Upload gradient of f_i

Each server updates estimate using received gradients

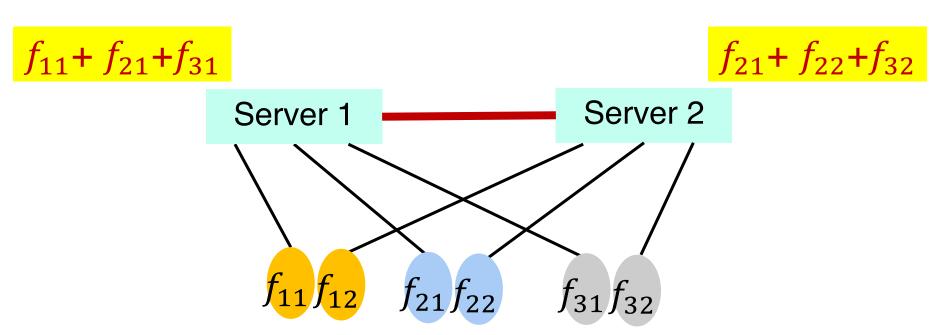
Servers periodically exchange estimates to perform a consensus step

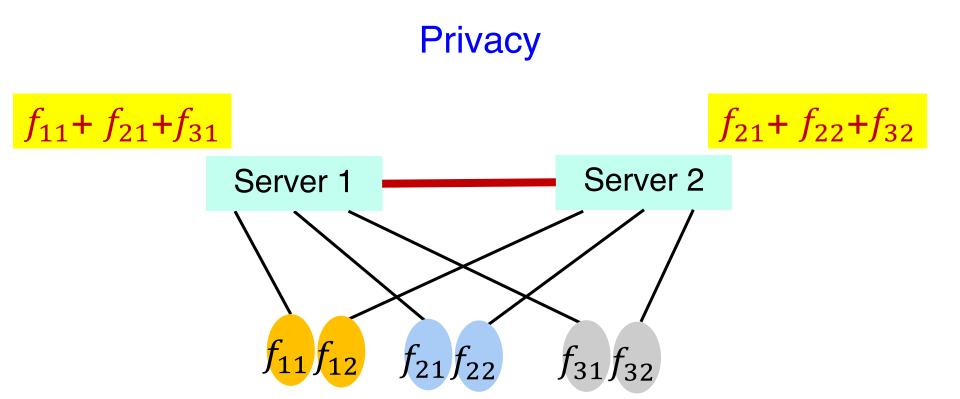
Claim

Under suitable assumptions, servers eventually reach consensus in

$$argmin \sum_{i} f_i(x)$$

Privacy





Server 1 may learn *f*₁₁, *f*₂₁, *f*₃₁, *f*₂₁+ *f*₂₂+*f*₃₂
 Not sufficient to learn *f_i*

 $f_{11}(x) + f_{12}(x) = f_1(x)$

Function splitting not necessarily practical

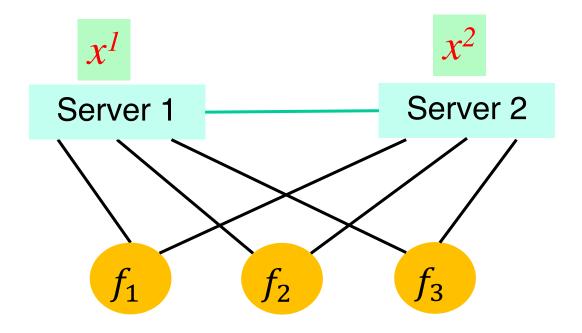
Structured randomization as an alternative

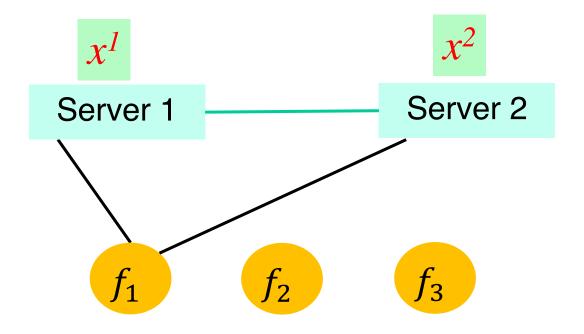
Structured Randomization

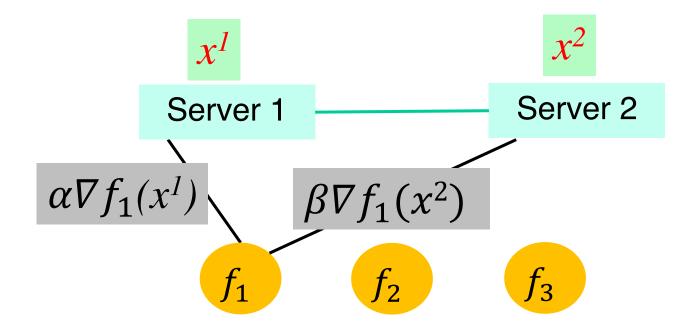
Multiplicative or additive noise in gradients

Noise cancels over servers

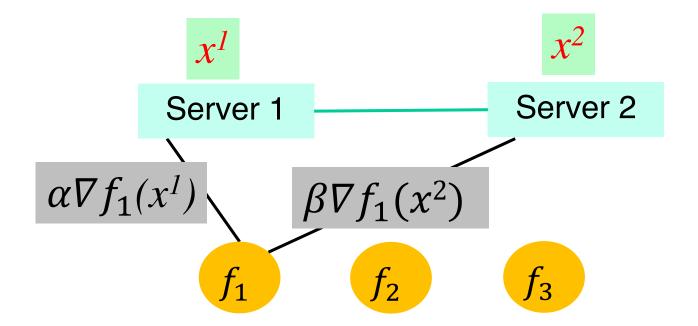
Multiplicative Noise





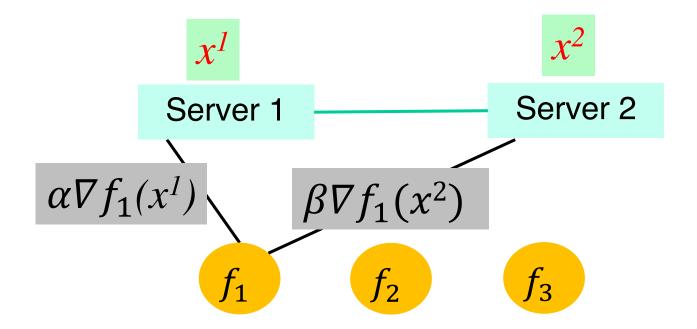


 $\alpha + \beta = 1$



 $\alpha + \beta = 1$

Suffices for this invariant to hold over a larger number of iterations



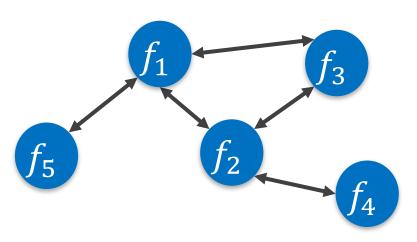
 $\alpha + \beta = 1$ Noise from client *i* to server *j* not zero-mean

Claim

Under suitable assumptions, servers eventually reach consensus in

$$argmin \sum_{i} f_i(x)$$

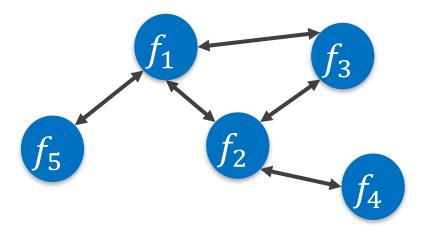
Peer-to-Peer Architecture



Reminder ...

- Each agent maintains local estimate x
- Consensus step with neighbors
- Apply own gradient to own estimate

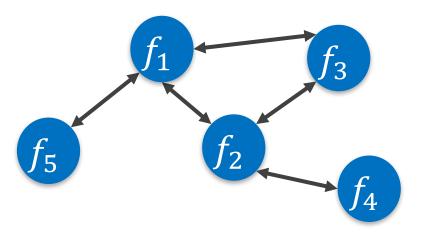
$$x_{k+1} \leftarrow x_k - \alpha_k \nabla f_i(x_k)$$



Proposed Approach

Each agent shares noisy estimate with neighbors

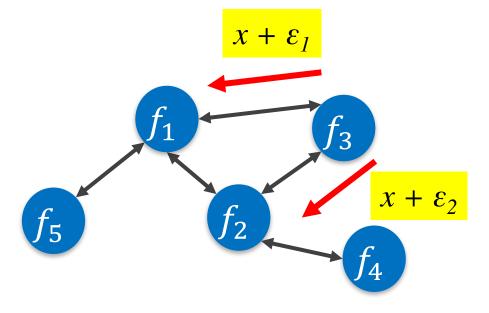
- Scheme 1 Noise cancels over neighbors
- Scheme 2 Noise cancels network-wide



Proposed Approach

Each agent shares noisy estimate with neighbors

- Scheme 1 Noise cancels over neighbors
- Scheme 2 Noise cancels network-wide



 $\varepsilon_1 + \varepsilon_2 = 0$ (over iterations)

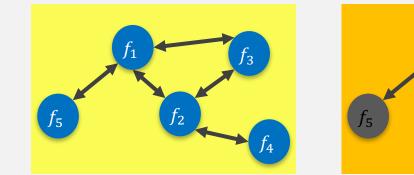
Peer-to-Peer Architecture

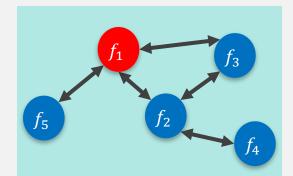
Poster today

Shripad Gade

Outline

$$argmin \sum_{i} f_i(x)$$





Distributed Optimization Privacy

2

†4

Fault-tolerance

Fault-Tolerance

- Some agents may be faulty
- Need to produce "correct" output despite the faults

Byzantine Fault Model

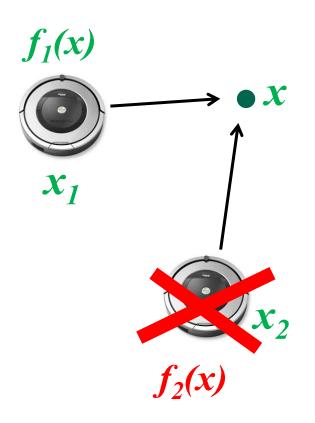
No constraint on misbehavior of a faulty agent

- May send bogus messages
- Faulty agents can collude

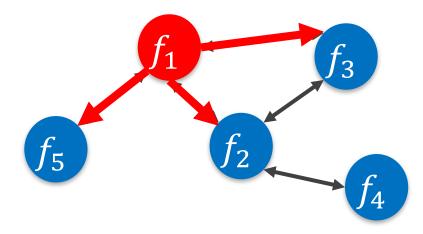
Peer-to-Peer Architecture

■ $f_i(x) = \text{cost for robot } i$ to go to location x

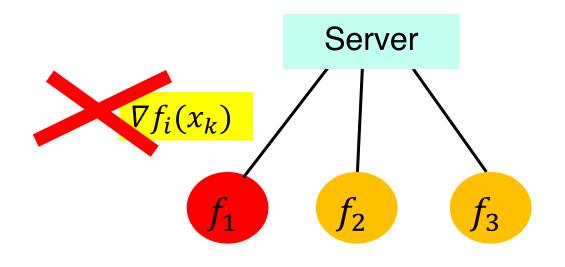
Faulty agent may choose arbitrary cost function



Peer-to-Peer Architecture



Client-Server Architecture



The original problem is not meaningful

$$\underset{i}{argmin} \sum_{i} f_i(x)$$

The original problem is not meaningful

$$\underset{i}{argmin} \sum_{i} f_i(x)$$

Optimize cost over only non-faulty agents

$$argmin \sum_{i \ good} f_i(x)$$

The original problem is not meaningful

$$\underset{i}{argmin} \sum_{i} f_i(x)$$

Optimize cost over only non-faulty agents

Impossible!

Optimize weighted cost over only non-faulty agents

$$\mathop{argmin}\limits_{i \; good} {f_i(x)} \, {\pmb lpha_i}$$

• With α_i as close to 1/good as possible

Optimize weighted cost over only non-faulty agents

$$\mathop{argmin}\limits_{i \; good} {f_i(x)} \, {\pmb lpha_i}$$

With t Byzantine faulty agents: t weights may be 0

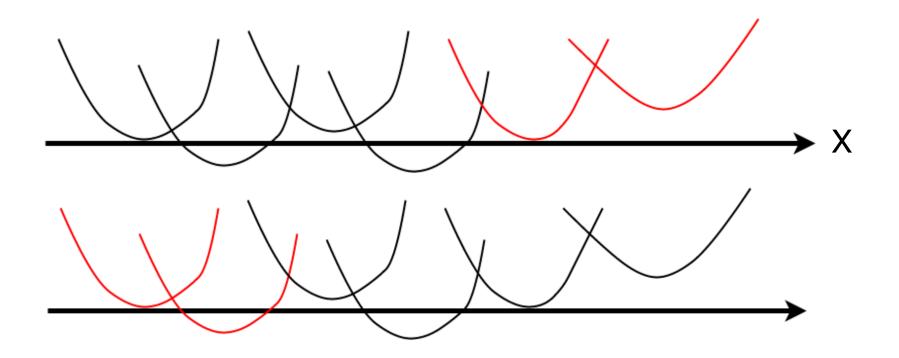
Optimize weighted cost over only non-faulty agents

$$\mathop{argmin}\limits_{i \; good} {f_i(x)} \, {\pmb lpha_i}$$

t Byzantine agents, n total agents At least n-2t weights guaranteed to be > 1/2(n-t)

Centralized Algorithm

- Of the n agents, any t may be faulty
- How to filter cost functions of faulty agents?



Define a virtual function G(x) whose gradient is obtained as follows

Define a virtual function G(x) whose gradient is obtained as follows

At a given x

Sort the gradients of the n local cost functions

Define a virtual function G(x) whose gradient is obtained as follows

At a given x

Sort the gradients of the n local cost functions
Discard smallest t and largest t gradients

Define a virtual function G(x) whose gradient is obtained as follows

At a given x

- Sort the gradients of the n local cost functions
- Discard smallest t and largest t gradients
- Mean of remaining gradients = Gradient of G at x

Define a virtual function G(x) whose gradient is obtained as follows

At a given x

- Sort the gradients of the n local cost functions
- Discard smallest t and largest t gradients
- Mean of remaining gradients = Gradient of G at x

Virtual function G(x) is convex

Define a virtual function G(x) whose gradient is obtained as follows

At a given x

- Sort the gradients of the n local cost functions
- Discard smallest t and largest t gradients
- Mean of remaining gradients = Gradient of G at x

Virtual function G(x) is convex \rightarrow Can optimize easily

Peer-to-Peer Fault-Tolerant Optimization

Gradient filtering similar to centralized algorithm

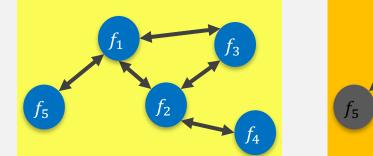
... require "rich enough" connectivity ... correlation between functions helps

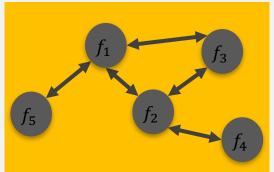
Vector case harder

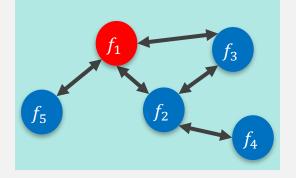
... redundancy between functions helps

Summary

argmin $\sum f_i(x)$ i







Distributed Optimization Privacy

Fault-tolerance

Thanks!

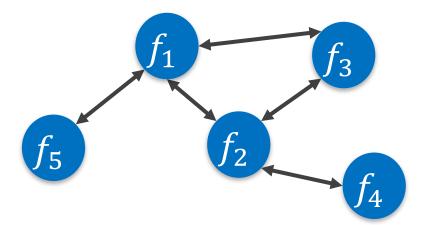
disc.ece.illinois.edu

Distributed Peer-to-Peer Optimization

Each agent maintains local estimate *x*

In each iteration

Compute weighted average with neighbors' estimates



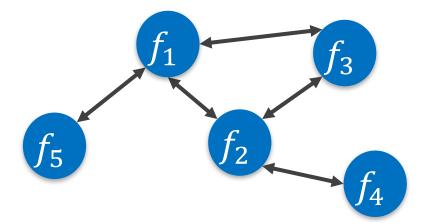
Distributed Peer-to-Peer Optimization

Each agent maintains local estimate *x*

In each iteration

- Compute weighted average with neighbors' estimates
- Apply own gradient to own estimate

$$x_{k+1} \leftarrow x_k - \alpha_k \nabla f_i(x_k)$$



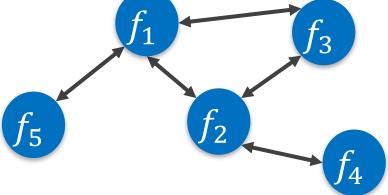
Distributed Peer-to-Peer Optimization

Each agent maintains local estimate *x*

In each iteration

- Compute weighted average with neighbors' estimates
- Apply own gradient to own estimate

$$x_{k+1} \leftarrow x_k - \alpha_k \nabla f_i(x_k)$$
cal estimates converge to $argmin \sum_i f_i(x)$



RSS – Locally Balanced

Perturbations

- Add to zero (locally per node)
- Bounded ($\leq \Delta$)

Algorithm

Node j selects d^{j,i}_k such that ∑_i d^{j,i}_k = 0 and |d^{j,i}_k| ≤ Δ
 Share w^{j,i}_k = x^j_k + d^{j,i}_k with node i
 Consensus and (Stochastic) Gradient Descent

RSS – Network Balanced

Perturbations

- Add to zero (over network)
- Bounded ($\leq \Delta$)

Algorithm

- Node j computes perturbation d^j_k
 - sends $\boldsymbol{s}^{\boldsymbol{j},\boldsymbol{i}}$ to \boldsymbol{i}
 - add received $s^{i,j}$ and subtract sent $s^{j,i} \Rightarrow d_k^j = \sum rcvd \ \sum sent$
 - Obfuscate state $w_k^j = x_k^j + d_k^j$ shared with neighbors

Consensus and (Stochastic) Gradient Descent

Convergence

Let
$$\hat{\mathbf{x}}^{j}_{T} = \sum^{T} \alpha_{k} x_{k}^{j} / \sum^{T} \alpha_{k}$$
 and $\alpha_{k} = 1/\sqrt{k}$
$$f(\hat{\mathbf{x}}^{j}_{T}) - f(x^{*}) \leq \mathcal{O}\left(\frac{\log(T)}{\sqrt{T}}\right) + \mathcal{O}\left(\frac{\Delta^{2}\log(T)}{\sqrt{T}}\right)$$

- Asymptotic convergence of iterates to optimum
 Privacy-Convergence Trade-off
- Stochastic gradient updates work too

Function Sharing

Let f_i(x) be bounded degree polynomials

Algorithm

- Node j shares $s^{j,i}(x)$ with node i
- Node j obfuscates using $p_j(x) = \sum s^{i,j}(x) \sum s^{j,i}(x)$
- Use $\hat{f}_j(x) = f_j(x) + p_j(x)$ and use distributed gradient descent

Function Sharing - Convergence

Function Sharing iterates converge to correct optimum ($\sum \hat{f}_i(x) = f(x)$)

Privacy:

If vertex connectivity of graph \geq f then no group of f nodes can estimate true functions f_i (or any good subset)

• $p_j(x)$ is also similar to $f_j(x)$ then it can hide $f_i(x)$ well