Privacy and Fault-Tolerance
in Distributed Optimization

Nitin Vaidya
University of lllinois at Urbana-Champaign

Acknowledgements

argmin Z fi(x)

Applications

B f(x) = cost for robot i J1(x)
to go to location x > eX
XJ

® Minimize total cost
of rendezvous

®.
" V2
argman Z fi(x) f>(x)

l

Applications

)
CEEEE «TEEs
oEHuiE EEEES
NECY 2 6B N=E
LBV R R
BRI ¢

EafINE AalisNi
FREGGE dwEad
ESEEN HEERS
« SRS RELSE
DENESE Ul

f3(x) fix)

Learning

Minimize cost

z [

Outline

argmin Z fi(x)

l

Distributed Privacy Fault-tolerance
Optimization

Distributed Optimization

Server

T\

f1 f2

f1

Client-Server Architecture

Server

f2

\

f3

S
SEEEE - YRS
sEHuil EEEED
MOE Y B N
N WS R
PRE7 ¢ =l

NG o [AT
FEPAGE aREEE
ESEER AEERS
« SRS RESE
DEAES UEaEh

J3(%) Jax)

Client-Server Architecture

B Server maintains estimate x;

m Client i knows f;(x) Tk

Server

/N

f1 f2 f3

Client-Server Architecture

B Server maintains estimate x;

m Client i knows f;(x) "
Server
In iteration k+1 Vfi(xk) \
m Client:
’ f1 f2 IE

® Download x,, from server
® Upload gradient Vf;(x;)

Client-Server Architecture

B Server maintains estimate x;

m Client i knows f;(x) =
erver

In iteration k+1 Vfi(xg) \

m Client fi f, f,

® Download x;, from server
® Upload gradient Vf;(x;)

m Server

Xp+1 € Xk —“kz Vfi(xx)
i

m Stochastic

® Asynchronous

Variations

12

Peer-to-Peer Architecture

A
SEEEE « TEES
¢=Eeik SEBEE
NAGEY 2 B B
o W RS
PR ¢ A

NG o ISR LR
HEPEaE aREaE
FSEEn EOERE
«ERN: RESE
LENES WEuEh

f:(x) fix)

Peer-to-Peer Architecture

® Each agent maintains local estimate x
®m Consensus step with neighbors
® Apply own gradient to own estimate

Xer1 < X — apVfi ()

Outline

argmin Z fi(x)

l

Distributed Privacy Fault-tolerance
Optimization

Server

v fi (i) / \

1 f2 f3

Server

v fi (i) / \

f1 f2 f3

Server observes gradients =» privacy compromised

Server

Vfi(xk) / \

f1 f2 f3

Server observes gradients =» privacy compromised

Achieve privacy and yet collaboratively optimize

Related Work

m Cryptographic methods (homomorphic encryption)
® Function transformation

m Differential privacy

19

Differential Privacy

Server

Vfi(xx) + Sk/ \

f1 f2 f3

20

Differential Privacy

Server

Vfi(x) + Sk/ \

f1 f2 f3

Trade-off privacy with accuracy

21

Proposed Approach

® Motivated by secret sharing

m Exploit diversity ... Multiple servers / neighbors

22

Proposed Approach

Server 1 Server 2

a4

Privacy if subset of servers adversarial

23

Proposed Approach

Privacy if subset of neighbors adversarial

24

Proposed Approach

m Structured noise that

“cancels” over servers/neighbors

25

Intuition

x! 7

Server 1 Server 2

a4

26

Intuition

x! 7

Server 1 Server 2

\N\>< 7/

f11f12 f21f22 f31f32

Each client
simulates
multiple clients

27

Intuition

x! x?

Server 1 Server 2

\ N>/

fufiz farfez frifse
fi11(x) + f12(x) = f1(x)

fij(x) not necessarily convex

28

Algorithm

B Each server maintains an estimate
In each iteration

m Client
® Download estimates from corresponding server
® Upload gradient of f;

®m Each server updates estimate using received gradients

Algorithm

B Each server maintains an estimate
In each iteration

m Client
® Download estimates from corresponding server
® Upload gradient of f;

®m Each server updates estimate using received gradients

m Servers periodically exchange estimates to perform a
consensus step

Claim

m Under suitable assumptions, servers eventually reach
consensus in

argmin Z fi(x)

l

31

Privacy

fi1t fa1+f31 fa1+ f22+/32

Server 1 Server 2

\ </

f11f12 f21f22 f31f32

32

Privacy

fi1t fa1+f31 fa1+ f22+/32

Server 1 Server 2

\ </

f11f12 f21f22 f31f32

m Server 1 may learn fi1, f21, f31, fa1+ faz2+/32
m Not sufficient to learn f;

33

fir(x) + f12 (%) = f1 (%)

®m function splitting not necessarily practical

m Structured randomization as an alternative

34

Structured Randomization

m Multiplicative or additive noise in gradients

m Noise cancels over servers

35

Multiplicative Noise

x! X?

Server 1 Server 2

a4

36

Multiplicative Noise

x! X?

Server 1 Server 2

f1 f2 f3

37

Multiplicative Noise

x! x?
Server 1 Server 2
\ -
aVfi(x') \ PVAGD)
~
f1 f2 f3

a+f=1

38

Multiplicative Noise

x! X?
Server 1 Server 2
\ P
avVfi(x') N BVAE)
~
fi f> f3

Suffices for this invariant to hold

a+p=1

over a larger number of iterations

Multiplicative Noise

x! X?
Server 1 Server 2
\ P
avVfi(x') N BVAE)
—
fi f> f3

Noise from client i/ to server j

a+p=1

not zero-mean

Claim

m Under suitable assumptions, servers eventually reach
consensus in

argmin Z fi(x)

l

41

Peer-to-Peer Architecture

Reminder ...

m Each agent maintains local estimate x
®m Consensus step with neighbors
® Apply own gradient to own estimate

Xer1 < X — apVfi ()

2

Proposed Approach

m Each agent shares noisy estimate with neighbors

® Scheme 1 — Noise cancels over neighbors
® Scheme 2 — Noise cancels network-wide

P

Proposed Approach

m Each agent shares noisy estimate with neighbors

® Scheme 1 — Noise cancels over neighbors
® Scheme 2 — Noise cancels network-wide

X+ €
— & +&=0 (over iterations)

P

X+ &,

Peer-to-Peer Architecture

m Poster today

Shripad Gade

Outline

argmin Z fi(x)

l

Distributed Privacy Fault-tolerance
Optimization

Fault-Tolerance

B Some agents may be faulty

® Need to produce “correct” output despite the faults

48

Byzantine Fault Model

® No constraint on misbehavior of a faulty agent
® May send bogus messages

®m Faulty agents can collude

49

Peer-to-Peer Architecture

f1(®)

m f:(x) = cost for robot i
to go to location x

m Faulty agent may choose
arbitrary cost function

Peer-to-Peer Architecture

51

Client-Server Architecture

Server

\

f2 f3

Fault-Tolerant Optimization

® The original problem is not meaningful

argmin Z fi(x)

53

Fault-Tolerant Optimization

® The original problem is not meaningful
argmain g fi(z)
l

m Optimize cost over only non-faulty agents

Fault-Tolerant Optimization

® The original problem is not meaningful
argmin g fi(z)
l

m Optimize cost over only non-faulty agents

Impossible!

Fault-Tolerant Optimization

m Optimize weighted cost over only non-faulty agents

argmin Z fi(x) a;

i good

m With a as closeto 1/good as possible

Fault-Tolerant Optimization

m Optimize weighted cost over only non-faulty agents

argmin Z fi(x) a;

i good

With t Byzantine faulty agents:
t weights may be 0

Fault-Tolerant Optimization

m Optimize weighted cost over only non-faulty agents

argmin Z fi(x) a;

i good

t Byzantine agents, n total agents
At least n-2t weights guaranteed to be > 1/2(n-t)

Centralized Algorithm
m Of the n agents, any t may be faulty

® How to filter cost functions of faulty agents?

Centralized Algorithm: Scalar argument x

Define a virtual function G(x) whose gradient is
obtained as follows

60

Centralized Algorithm: Scalar argument x

Define a virtual function G(x) whose gradient is
obtained as follows

At a given x

m Sort the gradients of the n local cost functions

61

Centralized Algorithm: Scalar argument x

Define a virtual function G(x) whose gradient is
obtained as follows

At a given x

m Sort the gradients of the n local cost functions
m Discard smallest t and largest t gradients

62

Centralized Algorithm: Scalar argument x

Define a virtual function G(x) whose gradient is
obtained as follows

At a given x

m Sort the gradients of the n local cost functions
m Discard smallest t and largest t gradients
® Mean of remaining gradients = Gradient of G at x

63

Centralized Algorithm: Scalar argument x

Define a virtual function G(x) whose gradient is
obtained as follows

At a given x
m Sort the gradients of the n local cost functions
m Discard smallest t and largest t gradients

® Mean of remaining gradients = Gradient of G at x

Virtual function G(x) is convex

Centralized Algorithm: Scalar argument x

Define a virtual function G(x) whose gradient is
obtained as follows

At a given x
m Sort the gradients of the n local cost functions
m Discard smallest t and largest t gradients

® Mean of remaining gradients = Gradient of G at x

Virtual function G(x) is convex = Can optimize easily

Peer-to-Peer Fault-Tolerant Optimization

m Gradient filtering similar to centralized algorithm

... require “rich enough” connectivity
... correlation between functions helps

m Vector case harder

... redundancy between functions helps

66

Summary

argmin Z fi(x)

l

Distributed Privacy Fault-tolerance
Optimization

Thanks!

disc.ece.illinois.edu

69

70

Distributed Peer-to-Peer Optimization

® Each agent maintains local estimate x
In each iteration
m Compute weighted average with neighbors’ estimates

Distributed Peer-to-Peer Optimization

® Each agent maintains local estimate x

In each iteration

m Compute weighted average with neighbors’ estimates
m Apply own gradient to own estimate

Xiep1 < X — apVfi ()

Distributed Peer-to-Peer Optimization

® Each agent maintains local estimate x

In each iteration

m Compute weighted average with neighbors’ estimates
m Apply own gradient to own estimate

Xiee1 < X — apVfi ()

B Local estimates converge to argman E i (:E)

l

RSS - Locally Balanced
Perturbations
® Add to zero (locally per node)

® Bounded (< A)

Algorithm

= Node j selects d’ij such that };; d{;i = 0 and |d,{cl| <A
= Share w)' = x)} + d" with node i
m Consensus and (Stochastic) Gradient Descent

74

RSS — Network Balanced
Perturbations
® Add to zero (over network)

B Bounded (< A)

Algorithm

® Node j computes perturbation d{{

- sends s 1o i

- add received s and subtract sent s/ = d{(= Y rcvd — Y sent
® Obfuscate state w{{ = xL + d{(shared with neighbors
m Consensus and (Stochastic) Gradient Descent

75

Convergence

Let)/ZjT = ZTO(k X{(/ZTO(k and Ok = 1/\/E

. log(T A%log(T
f(®1) —f(x*)sc?(O\g/;))+0(f/gT())

® Asymptotic convergence of iterates to optimum
m Privacy-Convergence Trade-off

m Stochastic gradient updates work too

76

Function Sharing

m |etf;(x) be bounded degree polynomials

Algorithm

® Node j shares s'(x) with node i
= Node j obfuscates using p;(x) = Ys¥(x) — ¥s'(x)

m Use f;(x) = f;(x) + p;(x) and use distributed gradient
descent

77

Function Sharing - Convergence

B Function Sharing iterates converge to correct
optimum (3f;(%) = f(x))

® Privacy:

If vertex connectivity of graph > f then no group of f
nodes can estimate true functions f; (or any good
subset)

® p;(x) is also similar to fj(x) then it can hide f;(x) well

78

