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Introduction and Motivation

Problem Formulation

n

min £(x) = 3 f(x)

i=1

@ Applications: Sensor Networks, Robotic Teams, Machine Learning.

CoHE-UB-BE=96- ¢« |

a* oo

Parameter estimation in
sensor networks.
Communication

Multi-agent cooperative
control and coordination.

Large scale computation.
Battery

Computation
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Introduction and Motivation

Algorithm Evaluation

e Typical numerical results (measured in iterations or time or
communication rounds).

—— Existing A
——Existing B
—— Our method

=|F-F*|/F*

Error

L
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Number of iterations
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Algorithm Evaluation

e Typical numerical results (measured in iterations or time or
communication rounds).

—— Existing A
——Existing B
—— Our method

=|F-F*|/F*

Error

L
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Number of iterations

@ Evaluation framework should reflect features of different applications.
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Introduction and Motivation

Problem Formulation

f( fi(x

Applications: Sensor Networks, Robotic Teams, Machine Learning.

@ Distributed Setting: Consensus Optimization problem

min f(x Zf Xi)
x;ERP

st X = Xxj, VI,J enN;

each node i has a local copy of the parameter vector x;

@ optimality consensus is achieved among all the nodes in the network
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Introduction and Motivation

Consensus Optimization Problem

in f(x) = fi(xi
min £(x) Z; ()

st. x;=xj, Vi,jeN,
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Introduction and Motivation

Consensus Optimization Problem

x;€ERP

min f(x) = > fi(x)
i=1
s.t. Zx=x

@ X is a concatenation of all local x;'s

@ W is a doubly-stochastic matrix that defines the connections in the

network
X1 wip Wi2 -+ Wip
X2 n, W21 W22 o W2n nxn npXxn,
x=|.|€eR™ W=| . ) | ER™T Z=W®I, e R
Xn Whn1 Whn2 ot Whn
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Introduction and Motivation

Literature Review

© Sublinearly Converging Methods
@ DGD ([Tsitsiklis and Bertsekas, 1989; Nedi¢ and Ozdaglar, 2009; Sundhar Ram et.
al., 2010; Tsianos and Rabbat, 2012; Yuan et. al., 2015; Zeng and Yin, 2016] ...
@ Linearly and Superlinearly Converging Methods

@ EXTRA [Shi et. al., 2015], DIGing [Nedi¢ et. al., 2017], NEXT [Lorenzo and
Scutari, 2015], Aug-DGM [Xu et. al., 2015], NN-EXTRA [Mokhtari et. al., 2016],
[Qu and Li, 2017], DQN [Eisen et. al., 2017], NN [Mokhtari et. al., 2014, 2015]...

© Communication Efficient Methods

@ [Chen and Ozdaglar, 2012], [Shamir et. al., 2014], [Chow et. al., 2016], [Lan et.
al., 2017], [Tsianos et. al., 2012], [Zhang and Lin, 2015], ...

© Asynchronous Methods

o [Tsitsiklis and Bertsekas, 1989], [Tsitsiklis et. al., 1986], [Sundhar Ram et. al.,
2009], [Wei and Ozdaglar, 2013], [Mansoori and Wei, 2017], [Zhang and Kwok,
2014], [Wu et. al., 2017], ...
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Introduction and Motivation

Goal of the Project

@ Develop an algorithmic framework that is independent of the method
used to balance computation and communication in distributed
optimization
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Introduction and Motivation

Goal of the Project

@ Develop an algorithmic framework that is independent of the method
used to balance computation and communication in distributed
optimization

@ Prove convergence for methods that use the framework

@ Show that the framework can be applied to a many consensus
optimization problems (with different communication and
computation costs)

@ lllustrate empirically that methods that utilize the framework
outperform their base algorithms for specific applications
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Introduction and Motivation

This talk

First stage of the project

Multiple consensus in DGD (theoretically and in practice)

Design a flexible first-order algorithm that decouples the two
operations

Investigate the method theoretically and empirically

By-product: variants of DGD with exact convergence
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Introduction and Motivation

This talk

o First stage of the project
e Multiple consensus in DGD (theoretically and in practice)

@ Design a flexible first-order algorithm that decouples the two
operations

@ Investigate the method theoretically and empirically

@ By-product: variants of DGD with exact convergence

Not in this talk (ongoing work)

o Multiple gradients

e Extend framework to different algorithms (e.g., EXTRA, NN) or
asynchronous methods
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Distributed Gradient Descent Variant

Overview

@ Distributed Gradient Descent Variant
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Distributed Gradient Descent Variant

Distributed Gradient Descent (DGD)

DGD ([Tsitsiklis and Bertsekas, 1989; Nedi¢ and Ozdaglar, 2009; Sundhar Ram
et. al., 2010; Tsianos and Rabbat, 2012; Yuan et. al., 2015; Zeng and Yin, 2016]

Xik+1 = E WijXj k — OéVf,‘(X,',k), Vi = 1, ey n
JEN;UI
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Distributed Gradient Descent (DGD)

DGD ([Tsitsiklis and Bertsekas, 1989; Nedi¢ and Ozdaglar, 2009; Sundhar Ram
et. al., 2010; Tsianos and Rabbat, 2012; Yuan et. al., 2015; Zeng and Yin, 2016]

Xik+1 = E WijXj k — OéVf,‘(X,',k), Vi = 1, ey n
JEN;UI

Xk4+1 = ZXk - OéVf(Xk)

X1 Vfi(x1,k)
X2 Vh(x2,k)

x=| | erR™ Vix)= , ER™, Z=WI, € R"*™
Xn V fo(Xn,k)
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Distributed Gradient Descent Variant

Distributed Gradient Descent (DGD)

DGD ([Tsitsiklis and Bertsekas, 1989; Nedi¢ and Ozdaglar, 2009; Sundhar Ram
et. al., 2010; Tsianos and Rabbat, 2012; Yuan et. al., 2015; Zeng and Yin, 2016]

Xik+1 = E WijXj k — OéVf,‘(X,',k), Vi = 1, ey n
JEN;UI

Xk4+1 = ZXk - OéVf(Xk)

@ Diminishing a: Sub-linear convergence to the solution

e Constant «: Linear convergence to a neighborhood O(«)
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Distributed Gradient Descent Variant

DGD — Questions
DGD

Xk+1 = Zxx — aVE(x)
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Distributed Gradient Descent Variant

DGD — Questions
DGD

Xk+1 = Zxx — aVE(x)

@ Is it necessary to do one consensus step and one optimization
(gradient) step?

o If not, what is the interpretation of methods that do more
consensus/optimization steps?

@ What convergence guarantees can be proven for such methods?

@ How do these variants perform in practice?

DGD!
Xki1 = Z'x, — aVE(xk), Z'=W'® I
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Distributed Gradient Descent Variant

DGD — Assumptions & Definitions

Assumptions

@ Each component function f; is ;> 0 strongly convex and has L; > 0
Lipschitz continuous gradients

@ The mixing matrix W is symmetric and doubly stochastic with 5 < 1
(5 is the second largest eigenvalue)

Definitions

Zx,k, V(%) ZVf(x,k VF(x Zw
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Distributed Gradient Descent Variant

DGD — Theory — Bounded distance to minimum

Theorem (Bounded distance to minimum) [Yuan et. al., 2015]

Suppose Assumptions 1 & 2 hold, and let the step length satisfy

agmin{l-i—)\"(w) ! }

L¢ "+ Ly

where pr is the strong convexity parameter of f and Ly is the Lipschitz constant of the gradient
of f. Then, for all Kk =0,1, ...

2

G
%41 = x| < Gl = x* P+ —5
(1-8)?

L
C12:1—O¢CQ+015—O¢25C2, o= (27 ,
pr + Le

2 =a¥(a+6Y)L2D?, D=

where x* = argminy f(x) and § > 0.
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Distributed Gradient Descent Variant

DGD — Theory — Bounded distance to minimum

Theorem (Bounded distance to minimum) [Yuan et. al., 201

Suppose Assumptions 1 & 2 hold, and let the step length satisfy

1 w 1
a < min{ + An( ), }
L¢ pf + Lf

where pf is the strong convexity parameter of f and Ly is the Lipschitz constant of the gradient

of f. Then, for all k =0,1, ... 2

c:
%1 = x* |2 < Gl — <P+ —=
(1-8y

L
c12 =1—ac+ad — a2§C2, o= ﬁ,
pf + Lf

2 =a¥(a+6"Y)L2%D?%, D=

2U(S" #(0) - ),
i=1

where x* = arg miny f(x) and § > 0.
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Distributed Gradient Descent Variant

DGD - Theory — Bounded distance to minimum

Theorem (Bounded distance to minimum) [ASB, RB, NSK and EW, 2017]

Suppose Assumptions 1 & 2 hold, and let the step length satisfy

t
()zgmin{l—"_>\'7(w)7 ! }
L¢ wr + Lf

2

where i is the strong convexity parameter of f and L¢ is the Lipschitz constant of the gradient
of f. Then, for all k =0,1,...
Senq — 5|12 < 2% — 5|12 + 3
l1%k+1 7 < eillxk I 1=y

L
C%=17CMC2+C!57042(§C2, o= iy ,
pf + Lf

2> H(0) - £4),
i=1

2 =al(a+6"H12D? D=

where x* = arg miny f(x) and § > 0.
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Distributed Gradient Descent Variant

DGD — Theory — Comments

@ Can show similar error neighborhood for |x; x — x*||.
@ Theoretical results are similar to DGD in nature (constant «)

e Linear convergence to a neighborhood of the solution
e Improved neighborhood

o(a=m) > o(a=m)

e But, cannot kill the neighborhood with increased communication
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Distributed Gradient Descent Variant

DGD — Theory — Comments

Can show similar error neighborhood for ||x; x — x*||.

Theoretical results are similar to DGD in nature (constant «)

e Linear convergence to a neighborhood of the solution
e Improved neighborhood

o(a=m) > o(a=m)

e But, cannot kill the neighborhood with increased communication

Drawback: requires extra communication

Effectively, DGD* is DGD with a different underlying graph (different
weights in W)
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1/a 0 1/2 1/af

1/2  1/a  1/a 0
W= 1/a  1/2 0 1/a
0 1/4 1/4 1/2
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Distributed Gradient Descent Variant

DGD — Theory — Comments

e Effectively, DGD' is DGD with a different underlying graph (different
weights in W)

1/4 0 12 1/4]°
1/8 1/4 1/4 3/8

12 14 1/ 0 38 14 14 3
w= ¥4 12 0 14 w2 |4 38 s 1l
0 1/ 1/a  1)2
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Distributed Gradient Descent Variant

DGD — Theory — Comments

e Effectively, DGD' is DGD with a different underlying graph (different
weights in W)

1/2 1/4 1/4 1/4 1/4 1/4

12 1/4a  1/a 0 1/4  1/4a  1/4a 1/4
W= 1/4 162 0 1/4 i w0 ~ 1/4  1/4a 1/4a 1/4
0 1/4 1/4 1/2 1/4 1/4 1/4 1/4

<
I

1/9 2/9 1/3 1/3

2/3 173 0 0 5/ 1/3 1/ 0
s 13 13 w2 |3 s 2 1
0 /9 1/3 5/9
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Distributed Gradient Descent Variant

DGD — Theory — Comments

e Effectively, DGD' is DGD with a different underlying graph (different
weights in W)

1/ 0 1/2 1/a 1/4 1/a 1/a 1/a

12 1/a  1/a 0 1/a 1/ 1/a 1/4
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Distributed Gradient Descent Variant

DGD() — Numerical Results

@ Problem: Quadratic

1 n
f(x) = 5 Z xTAix 4+ b x
i=1

each node i = {1,..., n} has local data A; € R"*P and b; € R"
e Parameters: n =10, p =10, n; = 10, x = 102
e Methods: DGD (1,1), DGD (1,2), , DGD (1,10)
T if jEN,

o Graph: 4-cyclic graph, w;; = %, wjj = {0 otherwise
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Distributed Gradient Descent Variant

DGD() — Numerical Results

@ Problem: Quadratic

1 n
f(x) = 5 Z xT Aix 4+ bl x
i=1

each node i = {1, ..., n} has local data A; € R"*P and b; € R"
e Parameters: n =10, p = 10, n; = 10, x = 10
e Methods: DGD (1,1), DGD (1,2), , DGD (1,10)
if jeN;
0 otherwise

ol

@ Graph: 4-cyclic graph, w;; = %, wjj = {
Show the effect of multiple consensus steps per gradient step
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Distributed Gradient Descent Variant

DGD() — Numerical Results

Error

Relative Error
I
Relative

Quadratic. n = 10, p = 10, n; = 10, = 10°.

Cost = #Communications X 1 + # Computations X 1
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Communication Computation Decoupled DGD Variants

Overview

© Communication Computation Decoupled DGD Variants
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Communication Computation Decoupled DGD Variants

Operators
DGD
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Communication Computation Decoupled DGD Variants

Operators
DGD

Xp4+1 = ZXk — OéVf(Xk)

Operators
e WIx] = Zx
o T[x] =x— aVf(x)

Methods

o DGD: (T — I + W)[xk] = Zx — aVf(x)

o TW: T[W[Xk]] = ZXk — OéVf(ZXk)

o WT: W[T[x«]] = Zxx — aZVF(xk)
A special case of the algorithm appeared as CTA (Combined then Adapt)
and ATC in [Sayed, 13] for quadratic problems
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Communication Computation Decoupled DGD Variants

Operators

Yi = Zxk
X1 = Y — aVE(y,)

Methods
o DGD: (T — I + W)[xk] = Zx — aVf(x)
o TW: TIW[xk]] = Zxkx — aV(Zxy)
o WT: W[T[x«]] = Zxx — aZVF(xk)
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Communication Computation Decoupled DGD Variants

TW — Methods, Assumptions & Definitions

Methods
e TW!: t (predetermined) consensus steps for every gradient step

@ TW™: increasing number of consensus steps

Assumptions
@ Assumptions 1 & 2, same as before
Definitions

n n

1 n
X, — — ik f = f; i , f— — f;'_
=2 VR = 3 V). Vi) =3 VA

i=1 i=1
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Communication Computation Decoupled DGD Variants

TW - Theory — Bounded distance to minimum

Theorem (Bounded distance to minimum) [ASB, RB, NSK and EW, 2017]

Suppose Assumptions 1 & 2 hold, and let the step length satisfy

1+ Aa(WH) 1 }

agmin{ s
L¢ Hf+ Lf

where p¢ is the strong convexity parameter of f and Ly is the Lipschitz constant of the gradient
of f. Then, for all k =0,1, ...

a3
lIxi k= x*1l < cfllx*Il + 2/6" +B‘aD

\/1—ci

where x* = argminy f(x) and § > 0.
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Communication Computation Decoupled DGD Variants

TW  Theory (increasing Consensus)

@ Can we increase the number of consensus steps and converge to the
solution?
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Communication Computation Decoupled DGD Variants

TW  Theory (increasing Consensus)

@ Can we increase the number of consensus steps and converge to the
solution?

Increase t(k) accordingly so that we kill the error term

o(5'")

Similar idea appeared in [Chen and Ozdaglar, 2012] for nonsmooth
problems

Resulting in TW'(K) algorithm with exact convergence: As long as we
keep increasing the number of consensus
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Communication Computation Decoupled DGD Variants

TW — Theory — Bounded distance to minimum

Theorem (Bounded distance to minimum)[ASB, RB, NSK and EW, 2017]

Suppose Assumptions 1 & 2 hold, t(k) = k and let the step length satisfy

a<mng —, ——
L¢ ,u?JrL?

where p is the strong convexity parameter of f and Ly is the Lipschitz constant of the gradient
of f. Then, for all k =0,1, ...

llxi,x — x*|| < CpF,

where x* = arg miny f(x) and some constants C, p.

When t(k) = k to reach an e—accurate solution, we need O(log(%)) number of
gradient evaluation and O((log(2))?) rounds of communication.
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Communication Computation Decoupled DGD Variants

Numerical Experiments

o Methods: DGD, TW (1,1,-), , TW (1,10,-), TW (1,1,k),
TW (1,1,500), TW (1,1,1000)
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Communication Computation Decoupled DGD Variants

Numerical Experiments

o Methods: DGD, TW (1,1,-), , TW (1,10,-), TW (1,1,k),
TW (1,1,500), TW (1,1,1000)

@ Problem: Quadratic
1 ¢ T T
f(x) = 2;x Aix + b x

each node i = {1, ..., n} has local data A; € R"*P and b; € R"
Parameters: n =10, p =10, n; = 10, kK = ﬁ = 10*

Graph: 4-cyclic graph
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Numerical Experiments — Quadratic Problems
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Experiments — Quadratic Problems — Different Costs

Quadratic. n = 10, p = 10, n; = 10, x = 10*.

Center: ¢, =1, cc = 1;
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Experiments — Quadratic Problems — Different Costs

Quadratic. n = 10, p = 10, n; = 10, x = 10*.
Left: ¢ =10, cc = 1;
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Communication Computation Decoupled DGD Variants

Experiments — Quadratic Problems — Different Costs

Quadratic. n = 10, p = 10, n; = 10, x = 10*.
Left: ¢ =10, cc = 1;
Center: ¢, =1, cc = 1;
Right: ¢; =1, ¢ = 10.

Cost = #tCommunications X cc + # Computations X cg
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Communication Computation Decoupled DGD Variants

Numerical Experiments — Logistic Regression

e Problem: Logistic Regression - Binary Classification (Mushroom
Dataset)

)= — ST log(1 + e (BT

n-n;
Ii=1 j=1

where A € R™"*P and b € {—1,1}™", and each node i =1,...,n
has a portion of A and b, A; € R"*P and b; € R"

o Parameters: n =10, p = 114, n; = 812, k = 10*

@ Graph: 4-cyclic graph
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Communication Computation Decoupled DGD Variants

Numerical Experiments — Logistic Regression
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Overview

@ Conclusions & Future Work
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Final Remarks

@ Most distributed optimization algorithms do one communication and
one computation per iteration

@ Showed the effect (theoretically and empirically) of doing multiple
consensus in DGD

@ Proposed a variant of DGD, TW, that decouples the two operations
(consensus and computation) and converges to the solution by
performing multiple consensus steps

DGD: xx41 = Zxx — aVf(xk)
TW: xx11 = Zxx — aVF(Zxk)
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Conclusions & Future Work

Final Remarks

@ Most distributed optimization algorithms do one communication and
one computation per iteration

@ Showed the effect (theoretically and empirically) of doing multiple
consensus in DGD

@ Proposed a variant of DGD, TW, that decouples the two operations
(consensus and computation) and converges to the solution by
performing multiple consensus steps

@ Important to balance communication and computation in order to get
best performance in terms of cost — right balance depends on the
application (e.g., cost of communication and cost of computation)
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Conclusions & Future Work

Future Work

e Apply framework to other algorithms (exact, second-order,
asynchronous, ...)

@ Construct framework to do multiple gradient steps

@ Adapt number of gradient and communication steps in algorithmic
way

@ Other considerations: memory access, partial blocks, quantization
effects, dynamic environment
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Backup Slides
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Conclusions & Future Work

DGD — Theory — Bounded gradients

Lemma (Bounded gradients) [Yuan et. al., 2015]
Suppose Assumption 1 holds, and let the step size satisfy
o< 14 )\L,,(W)

where \,(W) is the smallest eigenvalue of W and L = max; L;. Then, starting from
xio =0 (i =1,2,...,n), the sequence x; «x generated by DGD converges. In addition, we
also have

IVf(xe)|| < D = J 2L(% 2_fi0) —£7) (1)

for all k =1,2, ..., where f* = fi(x{") and x;" = arg miny fi(x).
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DGD - Theory — Bounded gradients

Lemma (Bounded gradients) [ASB, RB, NSK and EW, 2017]

Suppose Assumption 1 holds, and let the step size satisfy
t
o< 14+ Xa(WF)
- L
where \,(W?®) is the smallest eigenvalue of W' and L = max; L;. Then, starting from

xi0 =0 (i =1,2,...,n), the sequence x; x generated by DGD converges. In addition, we
also have

I9%0x)ll < D = &L(i >0 - £) &)

for all k =1,2,..., where ¥ = fi(x{") and x;" = arg miny fi(x).
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Conclusions & Future Work

DGD — Theory — Bounded deviation from mean

Lemma (Bounded deviation from mean) [Yuan et. al., 2015]

If (1) and Assumption 2 hold, then the total deviation from the mean is bounded,
namely,

[Ixik — k|| < %
for all k and i. Moreover, if in addition Assumption 1 holds, then
DL;
IV (k) — VAR < T
1-8
DL
I9F0e) = VA < 75

for all k and i.
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DGD - Theory — Bounded deviation from mean

Lemma (Bounded deviation from mean) [ASB, RB, NSK and EW, 2017]

If (1) and Assumption 2 hold, then the total deviation from the mean is bounded,

namely,
- aD
lIxie — || < T—pr

for all k and i. Moreover, if in addition Assumption 1 holds, then

. aDL;
IVfi(xix) = V) < 7= B

IVF(x) - VRO < 15

for all k and i.
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Conclusions & Future Work

TW — Theory — Bounded deviation from mean

Lemma (Bounded deviation from mean) [ASB, RB, NSK and EW, 2017]

If Assumption 2 holds, then the total deviation from the mean is bounded, namely,

- ‘aDk(k +1
Iy — e < ZOPHIED)

for all k and i. Moreover, if in addition Assumption 1 holds, then

‘aDLik(k +1
V() = ViiGe)| < ZoPEAEED

I9#(3) - V()| < Lok D)

for all k and i.
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DGD! Numerical Results

Number of Communications x cost

Quadratic. n =10, p = 10, n; = 10, xk = 10%.
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— Quadratic Problems
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nts — Logistic Regression

Relative
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Logistic Regression - mushroom. n = 10, d = 114, n; = 812.
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