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Problem Formulation

min
x∈Rp

f (x) =
n∑

i=1

fi (x)

Applications: Sensor Networks, Robotic Teams, Machine Learning.

Parameter estimation in
sensor networks.
Communication

Multi-agent cooperative
control and coordination.
Battery

Large scale computation.
Computation
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Algorithm Evaluation

Typical numerical results (measured in iterations or time or
communication rounds).
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Evaluation framework should reflect features of different applications.
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Problem Formulation

min
x∈Rp

f (x) =
n∑

i=1

fi (x)

Applications: Sensor Networks, Robotic Teams, Machine Learning.

Distributed Setting: Consensus Optimization problem

min
xi∈Rp

f (x) =
n∑

i=1

fi (xi )

s.t. xi = xj , ∀i , j ∈ Ni

each node i has a local copy of the parameter vector xi

@ optimality consensus is achieved among all the nodes in the network
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Consensus Optimization Problem

min
xi∈Rp

f (x) =
n∑

i=1

fi (xi )

s.t. xi = xj , ∀i , j ∈ Ni

x is a concatenation of all local xi ’s

W is a doubly-stochastic matrix that defines the connections in the
network

x =


x1

x2

...
xn

 ∈ Rnp, W =


w11 w12 · · · w1n

w21 w22 · · · w2n

...
. . .

...
wn1 wn2 · · · wnn

 ∈ Rn×n, Z = W⊗ Ip ∈ Rnp×np
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Literature Review

1 Sublinearly Converging Methods

DGD [Tsitsiklis and Bertsekas, 1989; Nedić and Ozdaglar, 2009; Sundhar Ram et.

al., 2010; Tsianos and Rabbat, 2012; Yuan et. al., 2015; Zeng and Yin, 2016] ...

2 Linearly and Superlinearly Converging Methods

EXTRA [Shi et. al., 2015], DIGing [Nedić et. al., 2017], NEXT [Lorenzo and

Scutari, 2015], Aug-DGM [Xu et. al., 2015], NN-EXTRA [Mokhtari et. al., 2016],

[Qu and Li, 2017], DQN [Eisen et. al., 2017], NN [Mokhtari et. al., 2014, 2015]...

3 Communication Efficient Methods

[Chen and Ozdaglar, 2012], [Shamir et. al., 2014], [Chow et. al., 2016], [Lan et.

al., 2017], [Tsianos et. al., 2012], [Zhang and Lin, 2015], ...

4 Asynchronous Methods

[Tsitsiklis and Bertsekas, 1989], [Tsitsiklis et. al., 1986], [Sundhar Ram et. al.,

2009], [Wei and Ozdaglar, 2013], [Mansoori and Wei, 2017], [Zhang and Kwok,

2014], [Wu et. al., 2017], ...
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Goal of the Project

Develop an algorithmic framework that is independent of the method
used to balance computation and communication in distributed
optimization

Prove convergence for methods that use the framework

Show that the framework can be applied to a many consensus
optimization problems (with different communication and
computation costs)

Illustrate empirically that methods that utilize the framework
outperform their base algorithms for specific applications
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This talk

First stage of the project

Multiple consensus in DGD (theoretically and in practice)

Design a flexible first-order algorithm that decouples the two
operations

Investigate the method theoretically and empirically

By-product: variants of DGD with exact convergence

Not in this talk (ongoing work)

Multiple gradients

Extend framework to different algorithms (e.g., EXTRA, NN) or
asynchronous methods
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Distributed Gradient Descent (DGD)

DGD [Tsitsiklis and Bertsekas, 1989; Nedić and Ozdaglar, 2009; Sundhar Ram

et. al., 2010; Tsianos and Rabbat, 2012; Yuan et. al., 2015; Zeng and Yin, 2016]

xi ,k+1 =
∑

j∈Ni∪i
wijxj ,k − α∇fi (xi ,k), ∀i = 1, ..., n

xk+1 = Zxk − α∇f(xk)
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∑

j∈Ni∪i
wijxj ,k − α∇fi (xi ,k), ∀i = 1, ..., n
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Diminishing α: Sub-linear convergence to the solution

Constant α: Linear convergence to a neighborhood O(α)
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DGD – Questions

DGD

xk+1 = Zxk − α∇f(xk)

Is it necessary to do one consensus step and one optimization
(gradient) step?

If not, what is the interpretation of methods that do more
consensus/optimization steps?

What convergence guarantees can be proven for such methods?

How do these variants perform in practice?

DGDt

xk+1 = Ztxk − α∇f(xk), Zt = Wt ⊗ Ip
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DGD – Assumptions & Definitions

Assumptions

1 Each component function fi is µi > 0 strongly convex and has Li > 0
Lipschitz continuous gradients

2 The mixing matrix W is symmetric and doubly stochastic with β < 1
(β is the second largest eigenvalue)

Definitions

x̄k =
1

n

n∑
i=1

xi,k , ∇f (xk) =
n∑

i=1

∇fi (xi,k), ∇f (x̄k) =
n∑

i=1

∇fi (x̄k)
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DGD – Theory – Bounded distance to minimum

Theorem (Bounded distance to minimum) [Yuan et. al., 2015]

Suppose Assumptions 1 & 2 hold, and let the step length satisfy

α ≤ min

{
1 + λn(W)

Lf
,

1

µf + Lf

}
where µf is the strong convexity parameter of f and Lf is the Lipschitz constant of the gradient
of f . Then, for all k = 0, 1, ...

‖x̄k+1 − x?‖2 ≤ c2
1‖x̄k − x?‖2 +

c2
3

(1− β)2

c2
1 = 1− αc2 + αδ − α2δc2, c2 =

µf Lf

µf + Lf
,

c2
3 = α3(α+ δ−1)L2D2, D =

√√√√2L(
n∑

i=1

fi (0)− f ?),

where x? = arg minx f (x) and δ > 0.
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DGDt – Theory – Bounded distance to minimum

Theorem (Bounded distance to minimum) [ASB, RB, NSK and EW, 2017]

Suppose Assumptions 1 & 2 hold, and let the step length satisfy

α ≤ min

{
1 + λn(Wt)

Lf
,

1

µf + Lf

}
where µf is the strong convexity parameter of f and Lf is the Lipschitz constant of the gradient
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DGD – Theory – Comments

Can show similar error neighborhood for ‖xi ,k − x∗‖.
Theoretical results are similar to DGD in nature (constant α)

Linear convergence to a neighborhood of the solution
Improved neighborhood

O
(

1

(1− β)2

)
v.s. O

(
1

(1− βt)2

)
But, cannot kill the neighborhood with increased communication
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weights in W)

1 2

3 4

1 2 3 4

W =


1/2 1/4 1/4 0
1/4 1/2 0 1/4
1/4 0 1/2 1/4

0 1/4 1/4 1/2

 ,

W =


2/3 1/3 0 0
1/3 1/3 1/3 0
0 1/3 1/3 1/3

0 0 1/3 2/3

 ,
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DGD(t) – Numerical Results

Problem: Quadratic

f (x) =
1

2

n∑
i=1

xTAix + bTi x

each node i = {1, ..., n} has local data Ai ∈ Rni×p and bi ∈ Rni

Parameters: n = 10, p = 10, ni = 10, κ = 102

Methods: DGD (1,1), DGD (1,2), DGD (1,5), DGD (1,10)

Graph: 4-cyclic graph, wii = 1
5 , wij =

{
1
5 if j ∈ Ni

0 otherwise
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Operators

DGD

xk+1 = Zxk − α∇f(xk)

Methods

DGD: (T − I +W)[xk ] = Zxk − α∇f(xk)

WT: W[T [xk ]] = Zxk − αZ∇f(xk)

A special case of the algorithm appeared as CTA (Combined then Adapt)
and ATC in [Sayed, 13] for quadratic problems

1 What can be proven about T [W[x]] and W[T [x]] variants of DGD?
2 How do these methods perform in practice?
3 Advantages and limitations of the methods?
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Operators

TW

yk = Zxk
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TW – Methods, Assumptions & Definitions

Methods

TWt : t (predetermined) consensus steps for every gradient step

TW+: increasing number of consensus steps

Assumptions

1 Assumptions 1 & 2, same as before

Definitions

x̄k =
1

n

n∑
i=1

xi ,k , ∇f (yk) =
n∑

i=1

∇fi (yi ,k), ∇f (x̄k) =
n∑

i=1

∇fi (x̄k)
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TWt – Theory – Bounded distance to minimum

Theorem (Bounded distance to minimum) [ASB, RB, NSK and EW, 2017]

Suppose Assumptions 1 & 2 hold, and let the step length satisfy

α ≤ min

{
1 + λn(Wt)

Lf
,

1

µf + Lf

}
where µf is the strong convexity parameter of f and Lf is the Lipschitz constant of the gradient
of f . Then, for all k = 0, 1, ...

‖xi,k − x?‖ ≤ cki ‖x
?‖+

c3√
1− c2

1

βt + βtαD

where x? = arg minx f (x) and δ > 0.
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TW+ Theory (increasing Consensus)

Can we increase the number of consensus steps and converge to the
solution?

Increase t(k) accordingly so that we kill the error term

O(βt(k))

Similar idea appeared in [Chen and Ozdaglar, 2012] for nonsmooth
problems

Resulting in TW t(k) algorithm with exact convergence: As long as we
keep increasing the number of consensus
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TW+ – Theory – Bounded distance to minimum

Theorem (Bounded distance to minimum)[ASB, RB, NSK and EW, 2017]

Suppose Assumptions 1 & 2 hold, t(k) = k and let the step length satisfy

α ≤ min

{
1

Lf
,

1

µf̄ + Lf̄

}
where µf is the strong convexity parameter of f and Lf is the Lipschitz constant of the gradient
of f . Then, for all k = 0, 1, ...

‖xi,k − x?‖ ≤ Cρk ,

where x? = arg minx f (x) and some constants C , ρ.

When t(k) = k to reach an ε−accurate solution, we need O(log( 1
ε )) number of

gradient evaluation and O((log( 1
ε ))2) rounds of communication.
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Numerical Experiments

Methods: DGD, TW (1,1,-), TW (10,1,-), TW (1,10,-), TW (1,1,k),
TW (1,1,500), TW (1,1,1000)

Problem: Quadratic

f (x) =
1

2

n∑
i=1

xTAix + bTi x

each node i = {1, ..., n} has local data Ai ∈ Rni×p and bi ∈ Rni

Parameters: n = 10, p = 10, ni = 10, κ = L
µ = 104

Graph: 4-cyclic graph
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Numerical Experiments – Quadratic Problems
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Experiments – Quadratic Problems – Different Costs
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Numerical Experiments – Logistic Regression

Problem: Logistic Regression - Binary Classification (Mushroom
Dataset)

f (x) =
1

n · ni

n∑
i=1

ni∑
j=1

log(1 + e−(bi )j (x
T (Ai )j·))

where A ∈ Rn·ni×p and b ∈ {−1, 1}n·ni , and each node i = 1, ..., n
has a portion of A and b, Ai ∈ Rni×p and bi ∈ Rni

Parameters: n = 10, p = 114, ni = 812, κ = 104

Graph: 4-cyclic graph
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Final Remarks

Most distributed optimization algorithms do one communication and
one computation per iteration

Showed the effect (theoretically and empirically) of doing multiple
consensus in DGD

Proposed a variant of DGD, TW, that decouples the two operations
(consensus and computation) and converges to the solution by
performing multiple consensus steps

Important to balance communication and computation in order to get
best performance in terms of cost — right balance depends on the
application (e.g., cost of communication and cost of computation)
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Proposed a variant of DGD, TW, that decouples the two operations
(consensus and computation) and converges to the solution by
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DGD: xk+1 = Zxk − α∇f (xk)

TW: xk+1 = Zxk − α∇f (Zxk)
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Future Work

Apply framework to other algorithms (exact, second-order,
asynchronous, ...)

Construct framework to do multiple gradient steps

Adapt number of gradient and communication steps in algorithmic
way

Other considerations: memory access, partial blocks, quantization
effects, dynamic environment
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DGD – Theory – Bounded gradients

Lemma (Bounded gradients) [Yuan et. al., 2015]

Suppose Assumption 1 holds, and let the step size satisfy

α ≤ 1 + λn(W)

L

where λn(W) is the smallest eigenvalue of W and L = maxi Li . Then, starting from
xi,0 = 0 (i = 1, 2, ..., n), the sequence xi,k generated by DGD converges. In addition, we
also have

‖∇f(xk)‖ ≤ D =

√√√√2L(
1

n

n∑
i=1

fi (0)− f ?i ) (1)

for all k = 1, 2, ..., where f ?i = fi (x
?
i ) and x?i = arg minx fi (x).
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DGDt – Theory – Bounded gradients

Lemma (Bounded gradients) [ASB, RB, NSK and EW, 2017]

Suppose Assumption 1 holds, and let the step size satisfy

α ≤ 1 + λn(Wt)

L

where λn(Wt) is the smallest eigenvalue of Wt and L = maxi Li . Then, starting from
xi,0 = 0 (i = 1, 2, ..., n), the sequence xi,k generated by DGD converges. In addition, we
also have

‖∇f(xk)‖ ≤ D =
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DGD – Theory – Bounded deviation from mean

Lemma (Bounded deviation from mean) [Yuan et. al., 2015]

If (1) and Assumption 2 hold, then the total deviation from the mean is bounded,
namely,

‖xi,k − x̄k‖ ≤
αD

1− β

for all k and i . Moreover, if in addition Assumption 1 holds, then

‖∇fi (xi,k)−∇fi (x̄k)‖ ≤ αDLi

1− β

‖∇f (xk)−∇f (x̄k)‖ ≤ αDL

1− β

for all k and i .
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TWt – Theory – Bounded deviation from mean

Lemma (Bounded deviation from mean) [ASB, RB, NSK and EW, 2017]

If Assumption 2 holds, then the total deviation from the mean is bounded, namely,

‖yi,k − x̄k‖ ≤
βtαDk(k + 1)

2

for all k and i . Moreover, if in addition Assumption 1 holds, then

‖∇fi (yi,k)−∇fi (x̄k)‖ ≤ βtαDLik(k + 1)

2

‖∇f (yk)−∇f (x̄k)‖ ≤ βtαDLk(k + 1)

2

for all k and i .
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DGDt Numerical Results
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Experiments – Quadratic Problems
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Quadratic. n = 10, d = 10, ni = 10, κ = 104.
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Experiments – Logistic Regression
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Logistic Regression - mushroom. n = 10, d = 114, ni = 812.
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