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Distributed Optimization

Distributed (or Decentralized)

Divide problem into smaller sub-problems (nodes)

Each node solves only its assigned sub-problem  (more manageable) 

Only local communications between nodes  (no supervisor, more privacy)

Iterative procedure until convergence 

Distributed ≈ Parallel
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Why Distributed?

Centralized computation suffers from:

Poor Scalability (curse of dimensionality)

Requires supervising unit

Large communication costs

Significant Delays  

Vulnerable to Changes

Security/Privacy Issues

Question to answer in Distributed methods:

Convergence to centralized solution 

(optimality, speed)?



Primal Decomposition

Dual Decomposition (Ordinary Lagrangians)
[Everett, 1963]

Augmented Lagrangians
Alternating Directions Method of Multipliers  (ADMM) [Glowinski et al., 1970], [Eckstein and Bertsekas, 1989]
Diagonal Quadratic Approximation  (DQA) [Mulvey and Ruszczyński, 1995]

Newton’s Methods
Accelerated Dual Descent (ADD) [Zargham et al., 2011]
Distributed Newton Method [Wei et al., 2011]

Random Projections
[Lee and Nedic, 2013]

Coordinate Descent 
[Mukherjee et al. , 2013], [Liu et al., 2015], [Richtarik and Takac, 2015]

Nesterov-like methods
[Nesterov, 2014], [Jakovetic et al., 2014]

Continuous-time methods
[Mateos and Cortes, 2014], [Kia et al., Arxiv], [Richert and Cortes, Arxiv]

Distributed Optimization Methods
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Wireless Communication Networks

AP4

AP5

R2

R1

R3

Queue Balance Constraints

Channel Reliabilities

• J source nodes, K access points (APs)

• Tij: the fraction of time node i selects node j as 

its destination 

• ri: the rate of information generated at node i

• Rij: the rate of information correctly transmitted 
from node i to node j



Optimal Wireless Networking

AP4

AP5

R2

R1

R3

Find the routes T that maximize a utility of the rates generated at the sources, while 

respecting the queue constraints at the radio terminals.



Mathematical Formulation

Optimal network flow:

Network cost function

Assume a 

static network

Rate constraint

Time slot share

Linear:

Logarithmic:

Min-Rate:

Rate constraint:



Dual Decomposition

Lagrangian:

Local Lagrangian:

so that
Involves only primal 

variables                  

and for a given   .

Therefore, to find the variables that maximize the global Lagrangian, it 

suffices to find the arguments that maximize the local Lagrangians.



Primal-Dual Method

Dual Iteration:

Primal Iteration:
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Network Flow Optimization

25 nodes / 2 sinks



Accelerated Network Optimization

Augmented Lagrangian:

Non-separable !!
Regularization term

Ordinary Lagrangian

Ordinary Lagrangian methods are attractive because of their simplicity, however, they 

converge slow. Thus, we opt for regularized methods.



In Matrix Form

Local variables:

Primal problem:

Augmented Lagrangian:



Method of Multipliers (Hestenes, Powell 1969):

Step 0: Set k=1 and define initial Lagrange multipliers        

Step 1: For fixed Lagrange multipliers      , determine        as the solution of

such that

Step 2: If the constraints                                          are satisfied, then stop (optimal solution 

found). Otherwise, set:

increase k by one and return to Step 1.

Method of Multipliers
Augmented Lagrangian:

Centralized



Step 0: Set k=1 and define initial Lagrange multipliers        and initial primal variables

Step 1: For fixed Lagrange multipliers      , determine         for every i as the solution of

such that

Step 2: Set for every i :

Step 3: If the constraints                                               are satisfied and                           , 

then stop (optimal solution found). Otherwise, set:

Increase k by one and return to Step 1.

An Accelerated Distributed AL Method

Local Augmented 

Lagrangian:



Convergence

Assume that:

1) The functions              are convex and the sets            are convex and compact.

2) The Lagrange function has a saddle point                  so that:

Theorem:

1) If                            then the sequence

is strictly decreasing.

2) The ADAL method stops at an optimal solution of the problem or generates a sequence of           

converging to an optimal solution of it. Moreover, any sequence           generated by  

the ADAL algorithm has an accumulation point and any such point is an optimal solution.

Residual:



Rate of Convergence

Theorem: Let                                           and denote by                                       the ergodic 

average of the primal variable sequence generated by ADAL at iteration k. Then,

(a)

where

(b)



ADAL ADMM

DQA

Numerical Experiments

0 100 200 300 400 500
−2

−1.5

−1

−0.5

0

0.5

1

Iterations

L
o

g
 o

f 
M

a
x
im

u
m

 C
o

n
s
tr

a
in

t 
V

io
la

ti
o

n

Dual Decomposition

Promising for real-time implementation
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Network Optimization under Noise

Noise corruption/Inexact solution of the local optimization steps due to:  

i) An exact expression for the objective function is not available (only approximations)

ii) The objective function is updated online via measurements

iii) Local optimization calculations need to terminate at inexact/approximate solutions to save 

time/resources.

Noise corrupted message exchanges between nodes due to: 

i) Inter-node communications suffering from disturbances and/or delays

ii) Nodes can only exchange quantized information.

The noise is modeled as sequences of random variables that are added to the various steps of 

the iterative algorithm. The convergence of the distributed algorithm is now proved in a 

stochastic sense  (with probability 1).



Deterministic vs Noisy Network Optimization

Where the noise corruption terms appear compared to the deterministic case

Step 1:

Noise in the objective function

Noise in the communicated dual variables

Noise in the communicated primal variables

Step 2: (Trivial local computation = no noise)

Step 3:

Noise in the communicated primal 

Variables for the dual updates



Step 0: Set k=1 and define initial Lagrange multipliers        and initial primal variables

Step 1: For fixed Lagrange multipliers      , determine         for every i as the solution of

such that

Step 2: Set for every i :

Step 3: If the constraints                                              are satisfied and                             , 

then stop (optimal solution found). Otherwise, set:

Increase k by one and return to Step 1.

The Stochastic ADAL Algorithm

Noise terms



Convergence

Theorem: The sequence

generated by SADAL converges almost surely to zero. Moreover, the residuals

and the terms                             converge to zero  almost surely. This further implies that the 

SADAL method generates sequences of primal            and dual variables         that converge to 

their respective optimal sets almost surely.

Assumptions (Additional to those of ADAL)

i. Decreasing stepsize (square summable, but not summable)

ii. The noise terms have zero mean, bounded variance, and decrease appropriately as 

iterations grow



Numerical Experiments

Objective function convergence Constraint violation convergence

Oscillatory behavior due to 

the presence of noise 
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Distributed State Estimation

• Every state can be observed by multiple robots at each time

• Every robot can observe multiple states at each time

Control a decentralized robotic sensor network to estimate large collections of 

hidden states with user-specified worst case error.



Observation Model

Stationary hidden vectors:

Noisy observations form sensors located at                                       given by:

with

Instantaneous observations:

Filtered data at time t:

where                           is the state estimate and                                               is the filtered 

information matrix



Minimizing Worst-Case Error

• S(t) defines an ellipsoid, related to confidence regions

• Worst case error is the length of the semi-principal axis of the ellipsoid, given by the largest 

eigenvalue of S-1(t), equivalently, the smallest eigenvalue of S(t)

• Uncertainty thresholds

where                                  and 

instead of



Define local copies         of of the state

Define the state variables

Problem Reformulation

Distributed Optimization with LMI Constraints

Define by                       the linearization of the constraints around

Define local objective functions

Challenges:

• The global parameters             are unknown to the sensors.

• Agreement on the local state variables

Consensus



Distributed Estimation and Control

Information 

Consensus 

Filter 

(ICF)

Random 

Approximate 

Projections 

(RAP)

Distributed 

Optimization with 

Inexact Data

ICF + RAP

REPEAT



Random Projections
Divide the complicated problem into simpler ones

X1

X2

X3X4

X1

X2

X3X4

X1

X2

X3X4

X1

X2

X3X4

X1

X2

X3X4

X1

X2

X3X4



Approximate Projections

Exact projection on LMI constraints is computationally expensive.

Constraint sets

orthogonal matrix of eigenvectors

diagonal matrix of eigenvalues

element-wise maximum operator

Define

Define approximate projection onto             by

Polyak step size

Projection onto the positive Semidefinite Cone



The RAP Algorithm

where                                                                  if

Consensus

Minimization

Polyak step size

Approximate projection

from ICF

square summable, 

non-summable

row stochastic



Assumptions

• Information: The information function Q cannot be infinite or change infinitely quickly. 

Relatively few critical points

• Optimization: Convexity, metric regularity

• RAP: Constraints selected with nonzero probability

• Network: Can have link failures. Require only B-connectivity.



Preliminary Results

For a.e. bounded sequence zs,k, the following two sequences are absolutely summable:

Constraint Violation Gradient Errors

Constraint Violation Errors



Main Results

Theorem: Let all assumptions be satisfied. Then,



Simulation Experiments

Minimization of worst-case estimation uncertainty



Simulation Experiments

Minimization of the trace of the estimation uncertainty
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