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Biological Networks

• Physical Interaction network
– Edge ⇔ Two proteins physically interact (e.g. docking) 

• Metabolic networks of enzymes
– Edge ⇔ Two enzymes catalyzing successive reactions

• Gene regulatory networks

• Large graphs with sparse connections
– 1,000~10,000 nodes
– 10,000 – 100,000  edges
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Physical Interaction Network
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Metabolic Network
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Statistical Inference of Networks

• Infer the network by data about proteins
– Gene expressions, Phylogenetic profiles etc

• Propose a Kernel-based inference method
– 1. Supervised Inference

• Learning from data and training network

– 2. Weighted combination of multiple data
• Identify unnecessary data that do not contribute for 

network inference
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Unsupervised     Supervised Inference

• Unsupervised network inference
– Bayesian network  (Friedman et al., 2000)
– Infer every edge from scratch (no known edges)

• Supervised network inference
– A part of the network is known (training network)
– Infer the rest of the network from data and training net
– Kernel CCA (Yamanishi et al., ISMB, 2004)
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Supervised Network Inference

Training network Extra nodes
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Single Data      Multiple Data

• Multiple data for inferring networks
– Gene expression profiles
– Subcellular locations
– Phylogenetic profiles

• Identify relevant data for inference
• Weighted integration of multiple data !

– Feature selection to data selection

• Kernel CCA: No mechanism for data selection
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Inferring a Network from Multiple Data

Functional Category

Gene Expression

Phylogenetic Profile

Subcell. Localization

3D Structure

Metabolic Network

Physical Interaction

Gene Interaction

Gene Regulatory Net
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Outline 

• Network Inference from a kernel matrix
– Unsupervised,   Single Data
– Thresholding: Nearest neighbor connection 

• Incorporating the training network
– Supervised,   Single Data
– Kernel Matrix Completion (Tsuda et al., 2003)

• Weighted integration of multiple data
– Supervised,  Multiple Data
– Weights determined by the EM algorithm 
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Unsupervised, Single Data

• Convert the data to a kernel matrix
– Similarity among proteins
– Gene expression: Pearson correlation
– Phylogenetic profile: Tree kernel (Vert 2002)
– 3D structure: Graph kernel (Borgwardt et al., 2005)
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Construct the network by thresholding

• Establish an edge where the kernel value is more 
than threshold

t=0.1 t=0.2 t=0.4
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• Data about all proteins

Supervised, Single Data

• Known Training Network
(Only for first n nodes)      

Kernel Matrix 
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Incomplete kernel matrix from training network

• Convert the training graph to a kernel matrix
• Synchronizing the representation
• Diffusion kernel (Kondor and Lafferty, 2002)

– Measure closeness of nodes by random walking

*Thresholding approximately recover the original network
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Computation of Diffusion Kernel

• A: Adjacency matrix, 
• D: Diagonal matrix of Degrees
• L = D-A: Graph Laplacian Matrix
• Diffusion kernel matrix

– ：Diffusion paramater

• Characterizes closeness among nodes 
• Often used with SVM (Lanckriet et al, PSB 2004)
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Adjacency Matrix and Degree Matrix
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Graph Laplacian Matrix L
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Actual Values of Diffusion Kernels
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Kernel Matrix Completion

• P: Kernel matrix of the data
• Q: Incomplete kernel matrix

• Missing values estimated by minimizing the KL divergence

• Closed from solution Q*
• Threshold Q* to obtain the network
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• Multiple data about all 
proteins

• Known Training Network

Supervised, Multiple Data

Diffusion Kernel 
Matrix Kernel Matrices
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Overview of Our Approach

Adjacency Matrix

Kernel Matrices

Weighted
Combination

P(b)
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completion

threshold

Result
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Notations
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Objective Function

• KL divergence
l2
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EM Algorithm 

• Repeat the following two steps
1. E-step: minimize                            w.r.t. Qvh,Qhh

2. M-step: minimize                           w.r.t. b

• E-step: Same as the single kernel case

• M-step: Cannot be solved in closed form
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EM Algorithm for Extended Matrices

• Extended Kernel Matrices

where

• The solution of the following problem is also optimal in the 
original problem
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Solutions of the steps

• E-step

• M-step
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Edge prediction experiments

Network ・Metabolic Network （KEGG）

・Protein interaction network （von Mering, 2002）

Data ・exp: gene expression 
・y2h: Interaction net by yeast2hybrid
・loc: subcellular location
・phy: phylogenetic profile 
・rnd1,…,rnd4: random noise

Methods ・Q: Proposed method
・P: Simple combination of kernel matrices
・cca: kernel CCA (without noises)

Evaluation ROC score of edge prediction accuracy 
(10-fold cross validation)
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Metabolic network

• Made from LIGAND Database (KEGG)
(Vert and Kanehisa, NIPS, 2003)

• Connect enzymes of two successive reactions
• 769 nodes, 3702 edges
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Interaction network

• Middle Confidence
• Interactions validated by multiple experiments 

– High-throughput yeast two hybrid
– Correlated mRNA expression
– Genetic interaction 
– Tandem affinity purification, 
– High-throughput mass-spectrometric protein complex 

identification
• 984nodes, 2438 edges

(Von Mering et al., Nature, 2002)
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Dataset Details

Metabolic Net http://www.genome.jp/kegg/

Interaction Von Mering et al., Nature, 417 399--403 , 2002

Expression Spellman et al., MBC, 9, 3273—3297, 1998
Eisen et al., PNAS, 95, 14863—8, 1998

Y2H Ito et al., PNAS, 98, 4569—74, 2001
Uetz et al., Nature, 10, 601—3, 2000

Subcellular location Huh et al. Nature, 425, 686-91, 2003

Phylogenetic profile http://www.genome.jp/kegg/
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Metabolic Network
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Physical Interaction Network
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Introduce More Random Matrices
(Metabolic network)

Sensitivity at 
95% specificity
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Summary of Experiments 

• Simple combination (P) ＜ Completed matrix（Q)
– Training network is essential

• Selection did not improve accuracy 

• Accuracy comparable to kernel CCA

• Automatic selection of datasets
• 4 noise kernel matrices removed
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Conclusion

• Supervised Inference of Network
– Part of network known
– Selection from multiple data
– Formulation as kernel completion problem
– Validation experiments on metabolic and interaction networks

• Future work
– Biological interpretation of selection results
– Applications to non-bio data

T. Kato, K. Tsuda, and K. Asai.  Selective integration of 
multiple biological data for supervised network 
inference.  Bioinformatics, 21(10):2488--2495, 2005. 
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Experiments
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DataData

- The functional catalogue provided by the MIPS Comprehensive Yeast Genome
Database (CYGD-mips.gsf.de/proj/yeast). 

- In a total of 6355 yeast proteins, however, Only 3588 have class labels.

1. metabolism
2. energy
3. cell cycle and DNA processing
4. transcription
5. protein synthesis
6. protein fate
7. cellular transportation and transportation mechanism
8. cell rescue, defense and virulence
9. interaction with cell environment
10. cell fate
11. control of cell organization
12. transport facilitation
13. others
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DataData

Network created from Pfam domain structure. A protein is represented by a 4950-
dimensional binary vector, in which each bit represents the presence or absence 
of one Pfam domain. An edge is created if the inner product between two vectors 
exceeds 0.06. The edge weight corresponds to the inner product.

Co-participation in a protein complex (determined by tandem affinity purification, 
TAP). An edge is created if there is a bait-prey relationship between two proteins.

Protein-protein interactions (MIPS physical interactions)

Genetic interactions (MIPS genetic interactions)

Network created from the cell cycle gene expression measurements [Spellman 
et al., 1998]. An edge is created if the Pearson coefficient of two profiles 
exceeds 0.8. The edge weight is set to 1. This is identical with the network used 
in [Deng et al., 2003]
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DesignDesign

Laplacian of  Combined Graph with Fixed (equal) Weights

Laplacian of Individual Graph 

The Performance Comparison Between …

kL

optL

fixL

MRF

SDP/SVM

Laplacian of  Combined Graph with Optimized Weights

Markov Random Field, proposed by Deng et al [2003]

Semi-definite Programming based Support Vector 
Machines, proposed by Lanckriet et al [2004]
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Results : Results : ROC score with Weights ROC score with Weights –– ClasswiseClasswise, , Lfix vs. Lopt

The optimization of weights did not always lead to better ROC scores (except 
for the classes 10, 11, 13). However, the advantage of Lopt is that the 

redundant networks are automatically identified.
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Obtained Weight Parameters

Metabolism

Energy

Cell Cycle

Transcription

Protein Synthesis

Protein Fate

Transportation

Cell Rescue

Interaction with Environment

Cell fate

Cell Organization

Transport Facilitation

Others

Pfam Network Protein Complex Protein Interaction
Genetic Interaction Gene Expression
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Results : Results : ROC scores of Lopt, Lfix , MRF, and SDP/SVM

White: MRF
Green: SDP/SVM
Blue: Lfix
Black: Lopt

For most classes, the proposed method achieves high scores, 
which are similarto the SDP/SVM methods. 
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Results : Results : Computational TimeComputational Time

Average Computation Time

Combining Graphs with Fixed Weights : 1.41 seconds* (std. 0.013)
Combining Graphs with Optimized Weights :

SDP/SVM :

49.3 seconds* (std. 14.8)
Nearly linearly proportional to the number 

of non-zero entries of sparse matrices

* measured in a standard 2.2Ghz PC with 1GByte memory

Approx. 60 min (G. Lanckriet, personal communication)

O(n3)+ O((m+n)2n2.5)
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Conclusion

• Extended Label Propagation for Multiple 
Networks

• Good Prediction Accuracy in Yeast Protein 
Function Experiments

• Fast and Scalable
• Redundant / Irrelevant Networks Excluded

• Biological Implications?? 
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