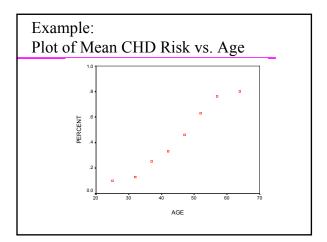
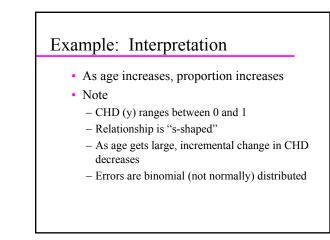

Why do we use Logistic Regression?

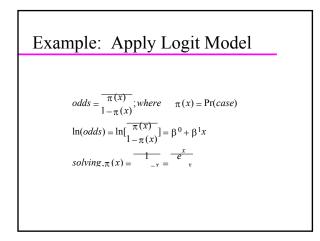
- Binary dependent variable
- Several independent variables
 - too many to stratify
 - want to assess role of suspected cause and confounding factors including EM
- Provide simple, interpretable result (inference)

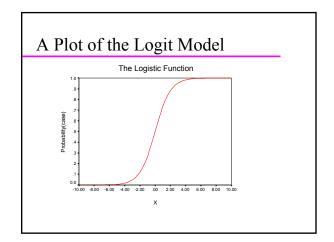
Example: Interpretation

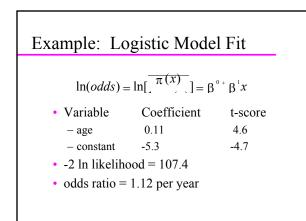
- Plot of binary values
 - Hard to summarize
 - Appears that 0's are younger than 1's $% \left(1-\frac{1}{2}\right) =0$
 - Large variability at all ages
 - Overall relationship unclear

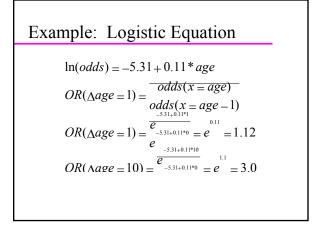

Example: Interpretation of Linear Regression


- Probability of CHD increases with subject's age
 - Probability is less than 0 for those under 25
 - Probability is greater than 1 for those over 70
- Substantive interpretation problematic if probability is less than 0 or greater than 1


Example: Grouped Data


• Plot means for 5 or 10 year age groups


Age	CHD			D
Group	Ν	Absent	Present	Proportion
20-29	10	9	1	0.10
30-34	15	13	2	0.13
35-39	12	9	3	0.25
40-44	15	10	5	0.33
45-49	13	7	6	0.46
50-54	8	3	5	0.63
55-59	17	4	13	0.76
60-69	10	2	8	0.80
Total	100	57	43	0.43



Logistic Model Limitations

- Model is linear (i.e., loglinear)
- · Odds ratio is constant
- Linear change in x results in multiplicative change in y (effect)
- size of effect is determined by coefficient
- Intercept is usually ignored (nuisance)
 intercept is log odds of disease if x=0

Hypothesis Testing--Overview

- · Goal: Assess the role of chance
- Strategy
 - Can we reject the null hypothesis (i.e., hypothesis of no association)?
 - If so, what is the most likely alternative?
- Errors
 - false positive (or alpha or Type I)
 - false negative (or beta or Type II)

Hypothesis Testing--Errors--1

- False Positive
 - say it is true when it is false
 - reject null hypothesis
 - typically use 1 in 20 (0.05) as guideline
 - typically consider two-tailed distribution

Hypothesis Testing--Errors--2

- False Negative
 - say it is false when it is true
 - accept null hypothesis
 - typically use 1 in 20 (0.05) as guideline
 - typically consider two-tailed distribution
 - Pr(Type II error)=1-Power
 - » power is the ability to detect an effect given that it is present in the data

Limitations of Hypothesis Testing

- Arbitrary cutpoint (e.g., 0.05) - is 0.049 really different than 0.051?
- No measure of effect

 p-values do not correspond to ORs or RRs
- No measure of sample size - the number of subjects can have a large effect
- Transformation of continuous result into a dichotomous result

Alternative to Hypothesis Testing

- Confidence Intervals
- Definition
 - » all parameter values within range are compatible with the data under the standard interpretation of statistical significance testing
 - » contains true value x% of the time
- Properties
 - » combine effect size and sample size
 - » measure of precision of estimate
 - » can be used to assess null hypothesis

Multiple Comparisons

- Traditional p-value 0.05 (1 in 20)
- If there is not effects and:
 - If we conduct 100 studies, 5 statistically significant
 - If we conduct 100 tests, 5 statistically significant
 - We usually report mainly the positive test results— FALSE POSITIVES
- Options
 - Must we report all tests (incl. all cutpoints)?
 - Should we report each test in a separate publication?
 - Should we adjust p-values for all tests?
 - Should we calculate a joint distribution for all parameters?

Review of Linear Regression

- The Data
 - one dependent variable (Y)
 - several independent variables (X's)
 - error distribution is normal
- The Model
 - What is the unit change in Y for each unit change in any of the X's?