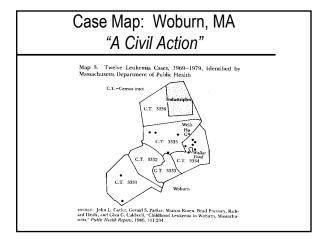


Types of surveillance

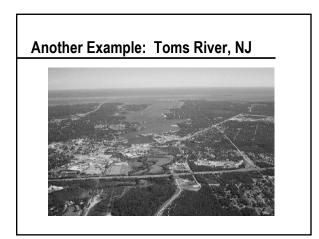
- Active
 - Relies on periodic solicitation of data » Expensive; rarely done
- Passive
 - Relies on reporting by healthcare provider
 » e.g., births, deaths, cancer registries
- Sentinel
 - Relies on reporting of unusual diseases
 » E.g., polio, mesothelioma

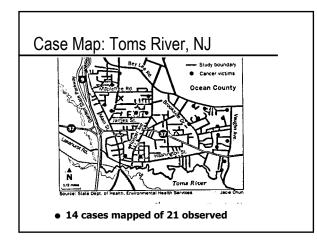
A Typical Cluster Report

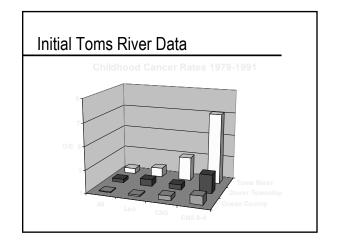

- A few to several dozen reported cases
- Cases aggregated, e.g., in space, time...
- No known exposures
- No population at risk delineation
- Limited demographic information
- No residence history information
- No surveillance data available

Cases DO Cluster!

- Common demographics (age, race, genetic) – genetic examples emerging (breast cancer)
- Common interpersonal contact (biological) - several validated examples (Legionella, HIV)
- Common exposures (chemical) - workplace: several examples (VC, DBCP)
 - pharmaceuticals: few examples (DES, thalidomide)\
 - environment: controversial
- Common behavior (e.g., smoking, drinking)


Some Reported Clusters


- Childhood Leukemia (several dozen studies since the 1950s)
- Minimata Disease (1950s)
 Thalidomide and phocomelia
- (1960s)
 DES and vaginal cancer (1971)
- Des and vaginal cancer (1971
 Lymphoma (1970s)
- BSME and lung cancer (1973)
- Vinyl chloride monomer and
- liver cancer (1974)
- Legionnaires Disease and pneumonia (1976)
- DBCP and male infertility (1977)
- (1977)Kepone and neurotoxicity,
- Kepone and neurotox infertility (1978)
- HIV/AIDS (1981)
- Leukemia on Meadow St., CT (emfs--1980s)
- Leukemia near Seascale Nuclear Facility (1980s)
- Cancer in NY Giants football players (1987)



Example: Childhood Leukemia in Woburn, Ma.

- State Study (Kotelchuck and Parker 1979)
 » Overall cancer mortality (1969-1979) higher in Woburn than six adjacent communities and whole state
- State Study (Parker and Rosen 1981)
- » 12 childhood cancers observed, 5.3 expected, p=0.008
 State/Federal Study (Cutler et al. 1986)
 - » "This investigation confirmed an increase in incidence...Six of the persons with leukemia were located close to each other in one census tract, 7.5 times the expected number."
 - "There were no significant differences between the leukemia victims and persons in the control group"
- Harvard study positive (1984)—controversial
 - » 12 childhood leukemia cases where 5.3 expected
- New cases found after wells closed » MADPH study finds <u>prenatal water exposure</u> a risk (1996)

Toms River, NJ

- Letter from NJDOH to USEPA/ATSDR August 31, 1995
 - ...moderately elevated SIR for all cancers
 - Brain and CNS cancer was more than three times higher than expected for children under 20.
 - For Toms River children under five, brain and CNS cancer incidence was significantly elevated and over seven times higher than expected.
 - Because of the small number of cases included in this analysis, it is not possible to conduct studies to determine possible causes at the municipality or even county level.

Toms River Chronology

- Fall 1995
- Childhood cancer excess by nurse at CHOP to USEPA
 February 1996
- Network TV coverage of possible cluster
- March 1996 - NJDHSS reports childhood cancer excess, 1977-1995
 - Governor and Health Commissioner at Toms River Town
 Mtg
- July 1997
- State and Federal scientists begin \$10 million study
 December 2001
- 69 families settle with Ciba-Geigy, Union Carbide, United Water \$13.2 million
- State/Federal draft report associates <u>prenatal exposure</u> contaminated water and air from Ciba-Geigy with leukemia cases
- No single risk factor responsible

Scientists' Anti-Cluster Views

- "The reality is that they're an absolute, total, and complete waste of taxpayer dollars"
 Alan Bender, Chief of the Section of Chronic Disease and Environmental Epidemiology, Minnesota Department of Health
- "With few exceptions, there is little scientific or public health reason to investigate individual clusters at all"

 Ken Rothman, author of Modern Epidemiology and founding editor of the journal Epidemiology

• BUT

Etiology: Searching under the lamp post problem
 Community Concerns

Why study clusters?

- Public concern—A Local Disease Excess
 - Clarify of misconceptions—Allay unfounded concerns
 - Initiate study when concerns are well founded
- Encourage Remediation—Disease Prevention
 Determine if situation is a sentinel of a larger problem
 - Identify unknown exposure situations
- Facilitate Scientific Discovery--Etiology
 - Identify new exposure-disease link
 - Identify new carcinogens

Statistical Significance

- False Positives
 - consider every neighborhood and every cancer
 - adjust for multiple comparisons
- False Negatives
 - small sample size
 - methods have low power
 - persistence and a priori hypotheses

New Approach: Surveillance

- Frequent evaluation of a large database
 - evaluate locally
 - look for changes in space, time, space-time
 assess persistence of pattern over time
- Combine data with other information
 confounders, behaviors
- Requires new methods » Kulldorff (1995)
 - » Rogerson (1997)

Why Surveillance?

- Addresses both WHEN and WHERE
- Responsive to community concerns
 - monitor status of variations
 can respond meaningfully to inquiries
- Can prioritize situations based on data
- Can investigation most usual occurrences
 - highest rates, most persistent, known

exposure

What Can DIMACS Offer?

- Methods for <u>SMALL</u> data sets
- Methods for repeated or *post hoc* looks at: - The same data set
 - » Texas sharpshooter vs. sentinel surveillance
 Routinely updated time series
 » Clusters, bioterriorism,...
- Methods to integrate other types of data
- Birth outcomes, genetics, risk factor information
 Methods for non-coincident boundaries
- Data collected for different purposes (exposure, disease)