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Outline

@ Q: Can we separte the WHAT from the HOW in (current) network
routing protocols?

@ A :“Algebraic path problems” from operations research may help...

@ ... but the notion of “global optimality” is too limited.

» “Local optimality” for algebraic path problems is a new concept, and
it may have widespread applicability beyond routing — operations
research, combinatorics, ...

» Thank you BGP.

@ Using these abstractions to build tools.
@ Routing vs. forwarding still needs work....
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Shortest paths example, sp = (N*°, min, +)

The adjacency matrix
1 2 3 4 5
2 5 4 1 oo 2 1 6 oo
/J\ 2 2 oo 5 oo 4
\T/ 4 6 o 4 oo o
6 \é 5 o0 4 3 o0 o
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Shortest paths example, continued

The routing matrix
/CK 1 2 3 4 5
2 5 4 1 0 21 5 4
/ 212 0 3 7 4
%1_@«3% A*=3|1 30 4 3
4157 4 0 7
6 4 514 4 370
Matrix A* solves this global
\QID optimality problem:
Bold arrows indicate the A*(i, j)= min w(p),
peP(i, J)

shortest-path tree rooted at 1.
where P(i, j) is the set of all paths
from i to j.

gg22 ( Computer Laboratory University of Ca Algebraic Path Finding 23-05-2012 4/37



Widest paths example, (N>, max, min)

The routing matrix
2 3
4

Matrix A* solves this global
optimality problem:

1 4 5
2 5 4 1 | o© 464
A\ 2| 4 oo 5 4 4
Af=3| 4 5 © 4 4

1 1 3 3 5
Y O 4| 6 4 4 o 4
6\4 5|1 4 4 4 4 ~

Bold arrows indicate the A(i, j) = X w(p),
widest-path tree rooted at 1. ’

where w(p) is now the minimal
edge weight in p.
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Fun example, (212 % ¢ U, N)

We want a Matrix A* to solve this
global optimality problem:
a abce c wrs
ta) {abc} te) A )= |J wip),
(K 69-0— -0
where w(p) is now the intersection
{ab} {b} of all edge weights in p.

®

For x € {a, b, c}, interpret x € A*(i, j) to mean that there is at least
one path from j to j with x in every arc weight along the path. J
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Fun example, (212 % ¢ U, N)

The matrix A*

1 2 3 4 5
{abc} {abc} {abc} {ab} {bc}
{abc} {abc} {abc} {ab} {bc}
{abc} {abc} {abc} {ab} {bc}
{ab} {ab} {ab} {abc} {b}
{bc} {bc} {bc} {b} {abc}

1
2
3
4
5
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A few Semirings (S, @, ®, 0, 1)

A few examples

S ® ® 0 1 possible applications
sp NU{ococ} min + oo 0 minimum-weight routing
bw NU{oo} max min 0 oo greatest-capacity routing
rel [0,1] max x 0 1 most-reliable routing
use {0, 1} max min 0 1 usable-paths
links 2w u N {} W shared link attributes
paths 21 N U W {} shared path attributes

Historically, a focus on global optimality

A(i, )= P wip)

pl«\»_/

where w(p) is an ®-product of arc weights.
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Recommended Reading

Path Problems in
Networks
Michel Gondran
Michel Minoux
John Baras
George Theodorakopoulos

Graphs, Dioids
and Semirings

New Models and Algorithms Jon Wi, Sric B

@ Springer
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Assumptions
Semiring Axioms

ADD.ASSOCIATIVE : a&(bdc) = (aeb)a@c
ADD.COMMUTATIVE : abdb = boa
ADD.LEFT.ID : Opa = a
MULT.ASSOCIATIVE : a®(b®c) = (a®b)®c
MULT.LEFT.ID : 1®a = a
MULT.RIGHT.ID : a1 Z
MULT.LEFT.ANN : O®a = 0
MULT.RIGHT.ANN : a0 0

L.DISTRIBUTIVE : a® (b c)

(aeb)® (a®c)
R.DISTRIBUTIVE : (a®b)®c = (

arc)d (bxc)

Distributivity in sp = (N°°, min, +):

L.DISTRIBUTIVE : a + (bminc) = (a + b) min(a + ¢),
R.DISTRIBUTIVE : (amin b) + ¢ = (a + ¢) min(b + ¢).
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Additional assumptions
Some subset of these axioms are typically assumed.

ADD.IDEMPOTENT : aba = a
ADD.SELECTIVE : adb € {a b}
ADD.LEFT.ANN 1¢0a = 1
ADD.RIGHT.ANN apl = 1

RIGHT.ABSORBTION : a®(a®b) = a

LEFT.ABSORBTION : a®(b®a) = a

With idempotency, & induces natural (partial) orders

a;b = a=aaob
a<,b = b=agb

If 1 is a @-annihilator (Semiring is bounded)
1 < 0

0 < 1
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Many variations on basic structures....

weight summarization
weight
computation algebraic ordered

algebraic (S, ) (S.5,9)

functional (S,®,FCS—S) (S,S,FCS—Y9)

... and many variations on the basic algorithms (Dijkstra’s,
Bellman-Ford, ...).
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Let’s model LISP!

-== 3 ==p{ 0 a
/ T 1 [ oo oo
2 5 4 2 2 3 o
i M = 3| x
1 3 4 oo 1
‘ 5 2 3
6 4 3 Mapping matrix
\é} 1 ==»10> di
1[5 6
237
R = 3|55
routing = path finding + mapping 419 1
R=A*M 512 3

Routing/Forwarding matrix
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More Interesting Example : Hot-Potato Idiom

o d
/ ~(03) = . 0.3) «

2 5 4 (02 M= j z (0‘?01)

1_»@_3_\»@) 51 (0,2) (0,3)
: Mapping matrix

6 4 (0, 3) o e

A4 1[(2,3) (4,3)

\@ ©0.1) o 2| (0.9) (4.9)

R = 3]|(3,2) (33)

41 (7,2) (0,1)

| 5[ (0.2) (0.3)

|:| A*(i, )>M(qg, d) | Routing/Forwarding matrix
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Working out the algebraic details

@ A model of Internet routing using semi-modules. John N. Billings
and Timothy G. Griffin. ReIMiCS11/AKA6, November 2009.
@ Application to route redistribution and administrative distance.

» On the interaction of multiple routing algorithms. M. Abdul Alim,
Timothy G. Griffin. ACM CoNEXT 2011, December 2011.
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Semiring limitations — some realistic metrics are not
distributive!

Two ways of forming “lexicographic” combination of shortest paths sp
and bandwidth bw.

Widest shortest paths
@ metric values of form (d, b)
@ dinsp
@ binbw
@ consider d first, break ties with b
@ is distributive (some details ignored ...)

Shortest Widest paths
@ metric values of form (b, d)
@ dinsp
@ binbw
@ consider b first, break ties with d
9922 ( Computer Laboratory University of Ca Algebraic Path Finding 23-05-2012  16/37



Left-Local Optimality

Say that L is a left locally-optimal solution when

L=(AxL)al

That is, for i # j we have

L(i, j) = EP A, 9) @ L(q, J)
geV

@ L(/, j) is the best possible value given the values L(q, j), for all
out-neighbors g of source i.

@ Rows L(/, _) represents out-trees from / (think Bellman-Ford).

@ Columns L(_, /) represents in-trees to .
@ Works well with hop-by-hop forwarding from i.
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Right-Local Optimality
Say that R is a right locally-optimal solution when

R=RxA)al

That is, for i # j we have

R(i, j) = @R, 9) @ A(q, j)
geV

@ R(/, j) is the best possible value given the values R(q, j), for all
in-neighbors q of destination ;.

@ Rows L(/, _) represents out-trees from / (think Dijkstra).

@ Columns L(_, /) represents in-trees to .
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With and Without Distributivity

With distributivity

For (bounded) semirings, the three optimality problems are essentially
the same — locally optimal solutions are globally optimal solutions.

A"=L=R

Without distributivity
It may be that A*, L, and R exists but are all distinct.

Health warning : matrix multiplication over structures lacking
distributivity is not associative!
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Example

(5,1)\

(5,1) | (10,5)

(5:4)

— (5,1) @ (51) —(5

(10,1)

(bandwidth, distance) with lexicographic order (bandwidth first).
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Global optima

1 2 3 4 5
1 [ (00,0) (5,1) (0,00) (0,00) (0,00)
2 | (0,00) (00,0) (0,00) (0,00) (0,00)
A*=3| (52) (53) (o 0) (51) (52) |,
4 | (10,6) (5,2) (5.2) (o0,0) (10,1)
5 | (10,5) (5.4) (5.1) (5,2) (o0,0)
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Left local optima

1 2 3 4 5
1 [ (00,0) (5,1) (0,00) (0,00) (0,00)
2 | (0,00) (00,0) (0,00) (0,00) (0,00)
L=3]| (5,7) (53 (o0,0) (5,1) (5,2) [,
4 | (10,6) (5,2) (5,2) (00,0) (10,1)
5,1

[6,]

(10,5) (5,4) (5,1) (52) (0,0)

Entries marked in bold indicate those values which are not globally
optimal.
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Right local optima

1 2 3 4 5
1 [ (00,0) (5,1) (0,00) (0,00) (0,00)
2 | (0,00) (00,0) (0,00) (0,00) (0,00)
R=3| (5,2) (5,3) (o0, 0) (5,1) (5,2) |,
4 | (10,6) (5,6) (5,2) (o0,0) (10,1)
5 | (10,5) (5,5) (5,1) (5,2) (00,0)
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Left-locally optimal paths to node 2
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Right-locally optimal paths to node 2

352 é) 4 2

\

5-2
4—3—>2—d3><—5—>2
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Bellman-Ford can compute left-local solutions
(Unmodified) Bellman-Ford iterations

ANl — |
Al — (Ao AN o,

Bellman-ford iterations must be modified to ensure only cycle-free
paths are inspected.

e (S, @, 0) is a commutative, idempotent, and selective monoid,
@ (S, ®, 1) is a monoid,

@ 0 is the annihilator for ®,

@ 1 is the annihilator for @,

@ Left strictly inflationarity, L.S.INF:Va,b:a# 0 — a<a®b
@ Herea<b=a=aoh.

v

Convergence to a unique left-local solution is guaranteed. Currently no
polynomial bound is known on the number of iterations required.
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MTNS observation : Dijkstra’s algorithm computes
local optimal!

Input : adjacency matrix A and source vertex /i € V,
Output : thei-throw of R, R(i, _).

begin
S« {i}
R(i, /)« 1
foreach g € V- {i} : R(/, q) < A(i, q)
while S # V
begin
find g € V — Ssuch that R(/, g) is <% -minimal
S+ Su{q}
foreachjc V- S
R(/, ) + R(i, j) & (R(i, q) ® A(q, /))
end
end
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The goal

Given adjacency matrix A and source vertex i € V, Dijkstra’s algorithm
will compute R(/, _) such that

vj e V:R(i, j) =1(i.j) ® @R, q) @ Aq, ))-
qeV

Main invariant

Vk:1<k<|V|= Vje S:Rli, ) =1(i,/)® P Rk(i, 9)®A(q, J)
qESk

v

Routing in Equilibrium. JoA£o LuAs Sobrinho and Timothy G. Griffin.
The 19th International Symposium on Mathematical Theory of
Networks and Systems (MTNS 2010).
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Minimal subset of semiring axioms needed right-local

Dijkstra
Béiring Axioms
ADD.ASSOCIATIVE : a®(b@c) = (a®b)@c
ADD.COMMUTATIVE : asb = boa
ADD.LEFT.ID : Oda = a
WO INSBOEKIIVE - grylbrwe) 2 (B b)IE e
MULT.LEFT.ID : 1i®a = a
MULHLRIGWY B - d8M 4 4
MUVHLLEHTIANM 0/ila 4 ©
WO RVGHAL KRG 440 4 0
UDSHRBUTINE - ami(bmie) 2 (8rb) (e e)
RIDISTHBUTIVE - (aavb)we 2 (am0)mbiKe)
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Additional axioms needed right-local Dijkstra

ADD.SELECTIVE : a®b € {a b}

ADD.LEFT.ANN 1¢0a = 1

ADD.RIGHT.ANN apl = 1
RIGHT.ABSORBTION : a®(a®b) = a
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Need left-local optima?

L=(AsLl) el <« LT=LTd AN al
where ®T is matrix multiplication defined with as
a®"b=b®a

and we assume left-inflationarity holds, L.INF:Va,b: a< b® a.
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Tools? Metarouting Project

@ Language of combinators for algebraic structures + library of
verified algorithms.

@ Vilius Naudzitnas implemented prototype in Coq

@ Allows users to instantiate generic algorithms with custom built
algebras

@ No theorem proving required of users — correctness check of
instantiation is done by “type checking”
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Our approach to defining a language of combinators

Starting with an initial set of properties P ...
@ Define a language £ of combinators,
@ a well-formedness condition WF(E), for E € L,
@ and a set of properties P, with Py C P

so that properties are decidable for well-formed expressions:
Vae P:VE € L:WF(E) = (Q([E]) v —Q([E]))

(The logic is constructive!)

Difficulty: increase expressive power while preserving
decidability ...
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Example: A bottleneck semiring’

The idea ...
@ arc weights from a partial order <
@ path weight w(p) = set of edges in p with maximal weight.
° w(p) <w(q) < Vxew(p),dyecw(q),x<y

... in Coq (so far abstract syntax only)
Definition sl := sProduct sNatMin sNatMin
Definition s2 :=

sFMinSetsUnion (pRightNaturalOrder sl)
Definition bottleneck :=

bFMinSets (oRightNaturalOrder s2)

Originally defined in Bottleneck shortest paths on a partially ordered
scale., Monnot, J. and Spanjaard, O., 40R: A Quarterly Journal of Operations
Research, 2003
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The language design methodology

For every combinator C and every property P
find wip ¢ and Sp ¢ such that

wip c(8) = (P(C(3)) < Bp.c(8))

... which is then turned into two “bottom-up rules” ...

wipc(@) A Bpc(d) = P(C(8))
wip c(8) A —Bp.c(8d) = —P(C(8)),
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Current development snapshot

(positive)
name signature properties constructors
Sets (S) 3 9
Semigroups (S,®) 14 17
Preorders (S, <) 4 5
Bisemigroups (S, 8,R®) 22 20
Order semigroups (S, <,) 17 6
Transforms (S,L,1>) 2 8
Order transforms (S,L,<,>) 3 2
Semigroup transforms (S, L, ®,>) 4 10
where> €L — S — S.
This represents over 1700 bottom-up rules ... J
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One open problem

Relationship of Routing and Forwarding
@ simple: routing = path finding + mapping
@ reality: routing = path finding + mapping + forwarding
@ The data plane uses paths in many different ways

exact match
best match
tunnels

@ We don’t understand relationship
eBGP should be done with tunnels
are 2547 VPNs broken ?
subnetting
overlay/underlay
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