Algebraic Path Finding

Timothy G. Griffin

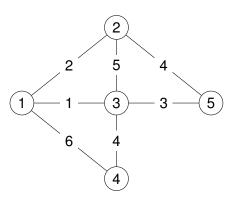
Computer Laboratory University of Cambridge, UK timothy.griffin@cl.cam.ac.uk

DIMACS Working Group on Abstractions for Network Services, Architecture, and Implementation 23 May, 2012

Outline

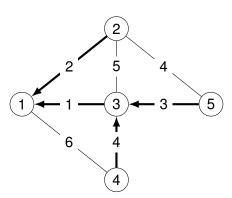
- Q: Can we separte the WHAT from the HOW in (current) network routing protocols?
- A: "Algebraic path problems" from operations research may help...
- ... but the notion of "global optimality" is too limited.
 - "Local optimality" for algebraic path problems is a new concept, and it may have widespread applicability beyond routing — operations research, combinatorics, ...
 - Thank you BGP.
- Using these abstractions to build tools.
- Routing vs. forwarding still needs work....

Shortest paths example, $sp = (\mathbb{N}^{\infty}, \min, +)$



The adjacency matrix

Shortest paths example, continued



Bold arrows indicate the shortest-path tree rooted at 1.

The routing matrix

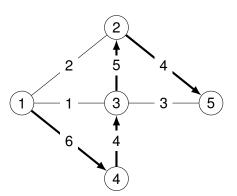
$$\mathbf{A}^* = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 2 & 1 & 5 & 4 \\ 2 & 0 & 3 & 7 & 4 \\ 1 & 3 & 0 & 4 & 3 \\ 5 & 7 & 4 & 0 & 7 \\ 5 & 4 & 4 & 3 & 7 & 0 \end{bmatrix}$$

Matrix **A*** solves this global optimality problem:

$$\mathbf{A}^*(i, j) = \min_{\boldsymbol{p} \in P(i, j)} w(\boldsymbol{p}),$$

where P(i, j) is the set of all paths from i to j.

Widest paths example, (\mathbb{N}^{∞} , max, min)



Bold arrows indicate the widest-path tree rooted at 1.

The routing matrix

1 2 3 4 5

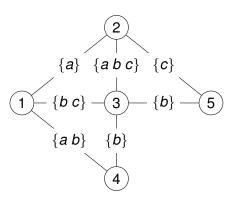
1 $\begin{bmatrix} \infty & 4 & 4 & 6 & 4 \\ 4 & \infty & 5 & 4 & 4 \\ 4 & 5 & \infty & 4 & 4 \\ 4 & 4 & 4 & 4 & 4 \end{bmatrix}$ **A*** = 3 4 5 $\begin{bmatrix} 4 & 5 & 0 & 4 & 4 \\ 4 & 4 & 4 & 4 & 4 \end{bmatrix}$

Matrix **A*** solves this global optimality problem:

$$\mathbf{A}^*(i, j) = \max_{p \in P(i, j)} w(p),$$

where w(p) is now the minimal edge weight in p.

Fun example, $(2^{\{a, b, c\}}, \cup, \cap)$



We want a Matrix **A*** to solve this global optimality problem:

$$\mathbf{A}^*(i, j) = \bigcup_{p \in P(i, j)} w(p),$$

where w(p) is now the intersection of all edge weights in p.

For $x \in \{a, b, c\}$, interpret $x \in \mathbf{A}^*(i, j)$ to mean that there is at least one path from i to j with x in every arc weight along the path.

Fun example, $(2^{\{a, b, c\}}, \cup, \cap)$

The matrix A*

A few Semirings $(S, \oplus, \otimes, \overline{0}, \overline{1})$

A few examples

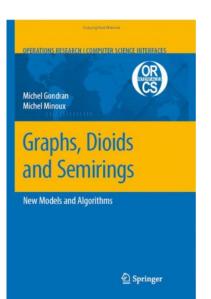
	S	\oplus	\otimes	$\overline{0}$	1	possible applications	
sp	$\mathbb{N} \cup \{\infty\}$	min	+	∞	0	minimum-weight routing	
bw	$\mathbb{N} \cup \{\infty\}$	max	min	0	∞	greatest-capacity routing	
rel	[0, 1]	max	×	0	1	most-reliable routing	
use	$\{0, 1\}$	max	min	0	1	usable-paths	
links	2^W	\cup	\cap	{}	W	shared link attributes	
paths	2^W	\cap	U	W	{}	shared path attributes	

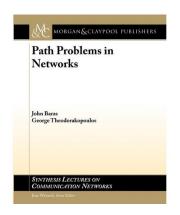
Historically, a focus on global optimality

$$\mathbf{A}^*(i, j) = \bigoplus_{p: i \sim j} w(p)$$

where w(p) is an \otimes -product of arc weights.

Recommended Reading





Assumptions

Semiring Axioms

```
ADD. ASSOCIATIVE: a \oplus (b \oplus c) = (a \oplus b) \oplus c
```

ADD.COMMUTATIVE :
$$\underline{a} \oplus b = b \oplus a$$

ADD.LEFT.ID :
$$0 \oplus a = a$$

MULT. ASSOCIATIVE :
$$a \otimes (b \otimes c) = (a \otimes b) \otimes c$$

MULT.LEFT.ID :
$$\overline{1} \otimes a = a$$

MULT.RIGHT.ID : $a \otimes \overline{1} = a$

MULT.LEFT.ANN :
$$\overline{0} \otimes a = \overline{0}$$

MULT.RIGHT.ANN :
$$a \otimes \overline{0} = \overline{0}$$

L.DISTRIBUTIVE :
$$a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$$

R.DISTRIBUTIVE :
$$(a \oplus b) \otimes c = (a \otimes c) \oplus (b \otimes c)$$

Distributivity in $sp = (\mathbb{N}^{\infty}, \min, +)$:

L.DISTRIBUTIVE :
$$a + (b \min c) = (a + b) \min (a + c)$$
,

R.DISTRIBUTIVE :
$$(a \min b) + c = (a + c) \min (b + c)$$
.

Additional assumptions

Some subset of these axioms are typically assumed.

ADD.IDEMPOTENT : $a \oplus a = a$

ADD.SELECTIVE : $a \oplus b \in \{a, b\}$

ADD.LEFT.ANN : $\overline{1} \oplus a = \overline{1}$

ADD.RIGHT.ANN : $a \oplus \overline{1} = \overline{1}$

RIGHT.ABSORBTION : $a \oplus (a \otimes b) = a$ LEFT.ABSORBTION : $a \oplus (b \otimes a) = a$

With idempotency, \oplus induces natural (partial) orders

$$a \leq_l b \equiv a = a \oplus b$$

 $a \leq_r b \equiv b = a \oplus b$

If $\overline{1}$ is a \oplus -annihilator (Semiring is *bounded*)

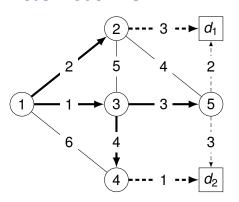
$$\begin{array}{ccc} \overline{1} & \leq_I & \overline{0} \\ \overline{0} & \leq_r & \overline{1} \end{array}$$

Many variations on basic structures....

eielet	weight summarization					
weight computation algebraic		ordered				
algebraic	$(\mathcal{S},\oplus,\otimes)$	$(\mathcal{S},\lesssim,\otimes)$				
functional	$(S,\oplus,F\subseteq S o S)$	$(S,\lesssim, F\subseteq S ightarrow S)$				

... and many variations on the basic algorithms (Dijkstra's, Bellman-Ford, ...).

Let's model LISP!



routing = path finding + mapping
$$\mathbf{R} = \mathbf{A}^* \mathbf{M}$$

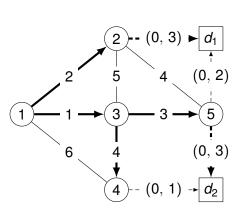
$$\mathbf{M} = \begin{array}{c} d_1 & d_2 \\ 1 & \infty & \infty \\ 2 & 3 & \infty \\ \infty & \infty \\ 4 & \infty & 1 \\ 5 & 2 & 3 \end{array}$$

Mapping matrix

$$\mathbf{R} = \begin{bmatrix} d_1 & d_2 \\ 1 & 5 & 6 \\ 2 & 3 & 7 \\ 5 & 5 \\ 4 & 9 & 1 \\ 5 & 2 & 3 \end{bmatrix}$$

Routing/Forwarding matrix

More Interesting Example: Hot-Potato Idiom



$$\mathbf{R} = \mathbf{A}^* \rhd \mathbf{M}$$

$$\mathbf{R}(\mathsf{i}, \, \mathsf{d}) = \prod_{q} \mathbf{A}^*(\mathsf{i}, \, q) \rhd \mathbf{M}(q, \, d)$$

$$\mathbf{M} = \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array} \begin{pmatrix} \infty & \infty \\ (0,3) & \infty \\ \infty & \infty \\ \infty & (0,1) \\ (0,2) & (0,3) \end{array}$$

Mapping matrix

$$\mathbf{R} = \begin{bmatrix} d_1 & d_2 \\ 1 & (2,3) & (4,3) \\ 2 & (0,3) & (4,3) \\ 3 & (3,2) & (3,3) \\ 4 & (7,2) & (0,1) \\ 5 & (0,2) & (0,3) \end{bmatrix}$$

Routing/Forwarding matrix

Working out the algebraic details

- A model of Internet routing using semi-modules. John N. Billings and Timothy G. Griffin. RelMiCS11/AKA6, November 2009.
- Application to route redistribution and administrative distance.
 - ➤ On the interaction of multiple routing algorithms. M. Abdul Alim, Timothy G. Griffin. ACM CoNEXT 2011, December 2011.

Semiring limitations — some realistic metrics are not distributive!

Two ways of forming "lexicographic" combination of shortest paths sp and bandwidth bw.

Widest shortest paths

- metric values of form (d, b)
- d in sp
- b in bw
- consider d first, break ties with b
- is distributive (some details ignored ...)

Shortest Widest paths

- metric values of form (b, d)
- d in sp
- b in bw
- consider b first, break ties with d

Left-Local Optimality

Say that **L** is a left locally-optimal solution when

$$L = (A \otimes L) \oplus I.$$

That is, for $i \neq j$ we have

$$\mathbf{L}(i, j) = \bigoplus_{q \in V} \mathbf{A}(i, q) \otimes \mathbf{L}(q, j)$$

- L(i, j) is the best possible value given the values L(q, j), for all out-neighbors q of source i.
- Rows L(i, _) represents out-trees from i (think Bellman-Ford).
- Columns L(_, i) represents in-trees to i.
- Works well with hop-by-hop forwarding from i.

Right-Local Optimality

Say that **R** is a right locally-optimal solution when

$$\mathbf{R} = (\mathbf{R} \otimes \mathbf{A}) \oplus \mathbf{I}.$$

That is, for $i \neq j$ we have

$$\mathbf{R}(i, j) = \bigoplus_{q \in V} \mathbf{R}(i, q) \otimes \mathbf{A}(q, j)$$

- $\mathbf{R}(i, j)$ is the best possible value given the values $\mathbf{R}(q, j)$, for all in-neighbors q of destination j.
- Rows L(i, _) represents out-trees from i (think Dijkstra).
- Columns L(_, i) represents in-trees to i.

With and Without Distributivity

With distributivity

For (bounded) semirings, the three optimality problems are essentially the same — locally optimal solutions are globally optimal solutions.

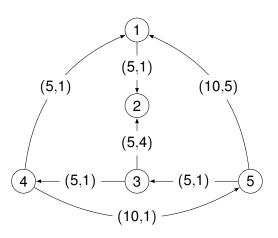
$$\mathbf{A}^* = \mathbf{L} = \mathbf{R}$$

Without distributivity

It may be that A*, L, and R exists but are all distinct.

Health warning: matrix multiplication over structures lacking distributivity is not associative!

Example



(bandwidth, distance) with lexicographic order (bandwidth first).

Global optima

Left local optima

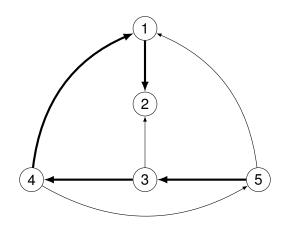
$$\mathbf{L} = \frac{1}{3} \begin{bmatrix} (\infty,0) & (5,1) & (0,\infty) & (0,\infty) & (0,\infty) \\ (0,\infty) & (\infty,0) & (0,\infty) & (0,\infty) & (0,\infty) \\ (\mathbf{5},\mathbf{7}) & (5,3) & (\infty,0) & (5,1) & (5,2) \\ (10,6) & (5,2) & (5,2) & (\infty,0) & (10,1) \\ 5 & (10,5) & (5,4) & (5,1) & (5,2) & (\infty,0) \end{bmatrix},$$

Entries marked in **bold** indicate those values which are not globally optimal.

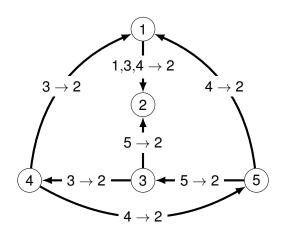
Right local optima

$$\mathbf{R} = \begin{matrix} 1 & 2 & 3 & 4 & 5 \\ 1 & (\infty,0) & (5,1) & (0,\infty) & (0,\infty) & (0,\infty) \\ 2 & (0,\infty) & (\infty,0) & (0,\infty) & (0,\infty) & (0,\infty) \\ (5,2) & (5,3) & (\infty,0) & (5,1) & (5,2) \\ 4 & (10,6) & (\textbf{5},\textbf{6}) & (5,2) & (\infty,0) & (10,1) \\ 5 & (10,5) & (\textbf{5},\textbf{5}) & (5,1) & (5,2) & (\infty,0) \end{matrix} \right],$$

Left-locally optimal paths to node 2



Right-locally optimal paths to node 2



Bellman-Ford can compute left-local solutions

(Unmodified) Bellman-Ford iterations

$$\mathbf{A}^{[0]} = \mathbf{I}$$

 $\mathbf{A}^{[k+1]} = (\mathbf{A} \otimes \mathbf{A}^k) \oplus \mathbf{I},$

Bellman-ford iterations must be modified to ensure only cycle-free paths are inspected.

- $(S, \oplus, \overline{0})$ is a commutative, idempotent, and selective monoid,
- $(S, \otimes, \overline{1})$ is a monoid,
- $\overline{0}$ is the annihilator for \otimes ,
- $\overline{1}$ is the annihilator for \oplus ,
- Left strictly inflationarity, L.S.INF : $\forall a, b : a \neq \overline{0} \implies a < a \otimes b$
- Here $a \le b \equiv a = a \oplus b$.

Convergence to a unique left-local solution is guaranteed. Currently no polynomial bound is known on the number of iterations required.

MTNS observation : Dijkstra's algorithm computes local optima!

```
Input : adjacency matrix A and source vertex i \in V, Output : the i-th row of R, \mathbf{R}(i, \_).
```

```
begin
    S \leftarrow \{i\}
    \mathbf{R}(i, i) \leftarrow \overline{1}
    for each q \in V - \{i\} : \mathbf{R}(i, q) \leftarrow \mathbf{A}(i, q)
    while S \neq V
        begin
             find q \in V - S such that \mathbf{R}(i, q) is \leq_{\oplus}^{L} -minimal
             S \leftarrow S \cup \{q\}
             for each j \in V - S
                 \mathbf{R}(i, j) \leftarrow \mathbf{R}(i, j) \oplus (\mathbf{R}(i, q) \otimes \mathbf{A}(q, j))
        end
end
```

The goal

Given adjacency matrix **A** and source vertex $i \in V$, Dijkstra's algorithm will compute $\mathbf{R}(i, _)$ such that

$$\forall j \in V : \mathbf{R}(i, j) = \mathbf{I}(i, j) \oplus \bigoplus_{q \in V} \mathbf{R}(i, q) \otimes \mathbf{A}(q, j).$$

Main invariant

$$\forall k: 1 \leq k \leq |V| \Longrightarrow \forall j \in S_k: \mathbf{R}_k(i, j) = \mathbf{I}(i, j) \oplus \bigoplus_{q \in S_k} \mathbf{R}_k(i, q) \otimes \mathbf{A}(q, j)$$

Routing in Equilibrium. João LuÃs Sobrinho and Timothy G. Griffin. The 19th International Symposium on Mathematical Theory of Networks and Systems (MTNS 2010).

Minimal subset of semiring axioms needed right-local Dijkstra

Sendining Axioms

```
ADD.ASSOCIATIVE : a \oplus (b \oplus c) = (a \oplus b) \oplus c
```

ADD.COMMUTATIVE : $a \oplus b = b \oplus a$

ADD.LEFT.ID : $\overline{0} \oplus a = a$

WWITCHSEOCHATINE: $AD(DBB) \stackrel{\#}{=} (ABBD)BB$

MULT.LEFT.ID : $\overline{1} \otimes a = a$ MULT.kidhhimb : $a \otimes \overline{A} = a$

MULt!.Ll EHt! ANNM : $\overline{0}/B/A + \overline{0}$

 $MUMLT/PMWSMTM.MMM : a/B/\overline{0} \# \overline{0}$

UDVSHHABUHVE: ABU(BBB) <math>H(ABBB)

PI/DISHHIBUHWE: (ABB)/PB/C <math>H (ABB)/PI/(DIB/C)

Additional axioms needed right-local Dijkstra

ADD.SELECTIVE : $\underline{a} \oplus b \in \{\underline{a}, b\}$ ADD.LEFT.ANN : $\overline{1} \oplus a = \overline{1}$

ADD.RIGHT.ANN : $a \oplus \overline{1} = \overline{1}$

RIGHT.ABSORBTION : $a \oplus (a \otimes b) = a$

Need left-local optima?

$$\mathbf{L} = (\mathbf{A} \otimes \mathbf{L}) \oplus \mathbf{I} \qquad \Longleftrightarrow \qquad \mathbf{L}^T = (\mathbf{L}^T \hat{\otimes}^T \mathbf{A}^T) \oplus \mathbf{I}$$

where \otimes^T is matrix multiplication defined with as

$$a \otimes^T b = b \otimes a$$

and we assume left-inflationarity holds, L.INF : $\forall a, b : a \leq b \otimes a$.

Tools? Metarouting Project

- Language of combinators for algebraic structures + library of verified algorithms.
- Vilius Naudžiūnas implemented prototype in Coq
- Allows users to instantiate generic algorithms with custom built algebras
- No theorem proving required of users correctness check of instantiation is done by "type checking"

Our approach to defining a language of combinators

Starting with an initial set of properties \mathcal{P}_0 ...

- \bullet Define a language ${\cal L}$ of combinators,
- a well-formedness condition WF(E), for $E \in \mathcal{L}$,
- \bullet and a set of properties $\mathcal{P},$ with $\mathcal{P}_0\subseteq\mathcal{P}$

so that properties are decidable for well-formed expressions:

$$\forall \mathsf{Q} \in P : \forall E \in \mathcal{L} : \mathsf{WF}(E) \implies (\mathsf{Q}(\llbracket E \rrbracket) \vee \neg \mathsf{Q}(\llbracket E \rrbracket))$$

(The logic is constructive!)

Difficulty: increase expressive power while preserving decidability ...

Example: A bottleneck semiring¹

The idea ...

- arc weights from a partial order ≤
- path weight w(p) = set of edges in p with maximal weight.
- $w(p) \le w(q) \iff \forall x \in w(p), \exists y \in w(q), x \le y$

... in Coq (so far abstract syntax only)

```
Definition s1 := sProduct sNatMin sNatMin
Definition s2 :=
    sFMinSetsUnion (pRightNaturalOrder s1)
Definition bottleneck :=
    bFMinSets (oRightNaturalOrder s2)
```

¹Originally defined in **Bottleneck shortest paths on a partially ordered scale.**, Monnot, J. and Spanjaard, O., 4OR: A Quarterly Journal of Operations Research. 2003

The language design methodology

For every combinator C and every property P

find $\operatorname{wf}_{P,C}$ and $\beta_{P,C}$ such that

$$\mathsf{wf}_{P,C}(\vec{a}) \Rightarrow (P(C(\vec{a})) \Leftrightarrow \beta_{P,C}(\vec{a}))$$

... which is then turned into two "bottom-up rules" ...

$$\mathsf{wf}_{P,C}(\vec{a}) \wedge \beta_{P,C}(\vec{a}) \Rightarrow P(C(\vec{a}))$$

 $\mathsf{wf}_{P,C}(\vec{a}) \wedge \neg \beta_{P,C}(\vec{a}) \Rightarrow \neg P(C(\vec{a})),$

Current development snapshot

		(positive)	
name	signature	properties	constructors
Sets	(S)	3	9
Semigroups	(\mathcal{S},\oplus)	14	17
Preorders	(\mathcal{S},\leq)	4	5
Bisemigroups	$(\mathcal{S},\oplus,\otimes)$	22	20
Order semigroups	$(\mathcal{S},\leq,\oplus)$	17	6
Transforms	$(\mathcal{S}, \mathcal{L}, \rhd)$	2	8
Order transforms	$(S, L, \leq, \triangleright)$	3	2
Semigroup transforms	$(S, L, \oplus, \triangleright)$	4	10

where $\triangleright \in L \rightarrow S \rightarrow S$.

This represents over 1700 bottom-up rules ...

One open problem

Relationship of Routing and Forwarding

- simple: routing = path finding + mapping
- reality: routing = path finding + mapping + forwarding
- The data plane uses paths in many different ways
 - exact match
 - best match
 - tunnels
 - **...**
- We don't understand relationship
 - eBGP should be done with tunnels
 - are 2547 VPNs broken ?
 - subnetting
 - overlay/underlay