
Abstractions for Routing

Brighten Godfrey
DIMACS • 23 May 2012

Abstractions for Network Routing

Brighten Godfrey
DIMACS • 23 May 2012

Abstractions for Network Routing

Absurdisms for Network Routing

Neo-Dadaisms for Network Routing

Impressions of Network Routing

See also: Postmodern Routing
[Bhattacharjee, Calvert, Griffioen, Spring, & Sterbenz]

What routing abstractions facilitate
flexibility and evolvability?

How can we quantitatively compare
architectures and abstractions?

rather than just
performance of an implementation

Setting the Stage

Routing Defined

Selection of path in network
along which to send message

Routing Defined

Selection of services in network
along which to send message

D
at

a
pl

an
e

C
on

tr
ol

 p
la

ne
Components of Routing

forwarding
service

routing
service

service
advertisement

service
selection

forwarding
action

Components of Routing

forwarding
service

routing
service

service
advertisement

service
selection

forwarding
action

Follows from
forwarding

Most
fundamental
abstraction

“Just” a distributed
systems problem... Who,

where,
how?

Components of Routing

forwarding
service

routing
service

service
advertisement

service
selection

forwarding
action

Today: all components

coupled at each router

Summary so far

Key questions:

• What’s the right abstraction of forwarding service?
• Who should choose the services and how?

Traditional (next-hop-style) networking: coupled

• Each router locally selects service, installs forwarding
service, advertises directly to all recipients (neighbors)

Software Defined Network: decoupled

• [forwarding] [service advertisement] [service selection]

Interdomain: ???

What problem are we solving?

• What’s the right abstraction of forwarding service?
• Who should choose the services and how?

What do these this mean??

“Flexibility”

Today’s inflexible routing: BGP

Routing fixed within the network, leading to:

• Unreliability (long convergence)
• Inefficient resource allocation (prefix-level load

balancing)
• Insecurity

- Even with Secure BGP, traffic attraction attacks
- Each domain’s security is dependent on the actions of

many other domains between it and the destination

You get one path to each IP prefix, and this path may
be broken, inefficient, or insecure.

Source routing for flexibility

Separate route computation from the network

• Route (i.e., selected services) is parameter given to the
network

Source routing for flexibility

Reliability
source can
switch quickly
or use many

Path quality
source knows
what it wants

Lowest latency path

Path the network
would have picked for you

Highest bandwidth path

Security
Each domain can independently protect itself

Source routing challenges

Security

• Can attackers exploit route control? (Can defenders?)

Scalability

• How do sources quickly pick good paths without huge
amounts of dynamic state distribution?

• “Eh.”

Route control tussle

• How can an architecture enable source control yet still
provide sufficient network owner control of routing?

Solving the route control tussle

Pick one “reasonable” tradeoff between source and
network control?

• then get everyone to agree...
• then standardize it...

Better solution: design for variation

Design for variation in outcome, so that
the outcome can be different in
different places, and the tussle takes
place within the design, not by
distorting or violating it.

Clark, Wroclawski, Sollins &
Braden, 2002
“Tussle in Cyberspace”

“

”

––

Pathlet routing

vnode virtual node

pathlet fragment of a path:
a sequence of vnodes

Source routing over pathlets.

virtual graph:
flexible way to define

policy constraints

provides many path
choices for senders

[Godfrey, Ganichev, Shenker, Stoica, SIGCOMM 2009]

vnodes

vnode: virtual node
within an AS

Walla Walla New York

San Diego Roosterville

Crumstown

vnodes

vnode: virtual node
within an AS

designated ingress vnode
for each neighbor

Internally: a forwarding
table at one or more
routers

router

router
router

Pathlets

7

2

3
... ...
3 push 7,2; fwd to B

delivered!

Forwarding table

7,2

2

A

B

C

D

... ...
2 fwd to D

... ...
7 fwd to C

3

Packet route field

So what?

For network owners,
flexibility to define
how the network

can be used.

For users,
flexibility to choose
paths or services.

Choice for senders

source destination

ingress from
a provider

ingress from
a customer

Example: allow all valley free routes

provider provider

customer customer

egress to
a customer

egress to
a provider

e.g., all valley free routes
(“customers can go anywhere;

anyone can route to customer”)

Example: flexible granularity

A

B

C

BA

AS
BGP
announcement
message

CBA

ACBA
X

Router

filtered!

cut

BGP Pathlet routing

cut
cut

Flexible policies

128.2.0.0/16

Flexible policies

Flexible policies

128.2.0.0/16

Quantifying policy flexibility

We don’t know how to figure out
whether one of our ideas is better than
another.

David Clark

“
”

––

Quantifying policy flexibility

Feedback-based
routing

Strict
source routing

Pathlet routing

NIRA

Routing deflections,
path splicingLISP

IP (BGP)

MIRO

Loose
source routing

Quantifying policy flexibility

Feedback-based
routing

Strict
source routing

Pathlet routing

NIRA

Routing deflections,
path splicingLISP

IP (BGP)

MIRO

Loose
source routing

“Evolvability”

Evolvability

Goal:

• Communication infrastructure for all of humanity

Only hope: evolve across time

• Ratnasamy, Shenker, McCanne [SIGCOMM’05]
• FII [CCR’11]
• OPAE [Ghodsi, Koponen, Raghavan, Shenker, Singla,

Wilcox, HotNets’11]
• XIA [Anand, Dogar, Han, Li, Lim, Machado, Wu, Akella,

Andersen, Byers, Seshan, Steenkiste, HotNets’11 &
NSDI’12]

What is an evolvable architecture?

Our history: Not Good

IP options? Usually dropped

UDP? Sometimes dropped

Not HTTP? Sometimes dropped

...

Attacks on evolution

Useful frame of mind: Some parties will act to hinder
evolution

• Apathy
• Security
• Government control

Therefore, should design architecture to defend
against evolution attacks

• What abstraction yields “defensive evolvability”?

Quantifying evolvability (Toy Model)

Node state

• Legacy
• Attacker
• Deployed New Protocol

When can we run the New Protocol along a path?

• Source runs N.P. and no attacker on path

Utility of a path to source

• 0 for old protocol
• ~ (#new hops) for new protocol

Attacks kill evolution: simulation

















     
























Simplistic simulation on CAIDA AS-level Internet topology (2011)
36,878 nodes, 103,485 edges













     















Attacks kill evolution: dynamics

Simplistic simulation on 500-node degree-5 random graph
1% initial deployment

0%
attack

Attacks kill evolution: dynamics













     















Simplistic simulation on 500-node degree-5 random graph
1% initial deployment

0%
attack10%

50%
90%

Case Study #1: Next-Hop Fwd’ing

Traditional IP routing & forwarding

• Each router selects one hop of path (= service)

Result: all routers along path know, agree to, and
select the end-to-end service

Case Study #2: XIA

“How should a legacy router in the middle of the
network handle a new principal type that it does not
recognize?”

• Fallbacks:

Result: Each router is explicitly aware of novel
services being deployed

• Analogous to IP options
• Potential result: drop anything “weird” (e.g., security risk)

XIA is flexible, but is it really evolvable?

ated content. The self-certifying nature of this identifier
allows any network element to verify that the content
retrieved matches its content identifier.

3.2 XIP Addressing
Next, we introduce key concepts for XIP addresses that
support the long-term evolution of principal types, the
encoding mechanism for these addresses, and a represen-
tative set of addressing “styles” supported in XIP.

3.2.1 Core concepts in addressing
XIA provides native support for multiple principal types,
allowing senders to express their intent by specifying a
typed XID as part of the XIP destination address. How-
ever, XIA’s design goal of evolvability implies that a
principal type used as the intent of an XIP address may
not be supported by all routers. Evolvability thus leads
us to the architectural notion of fallback: intent that may
not be globally understood must be expressed with an
alternative backwards compatible route, such as a glob-
ally routable service or a host, that can satisfy the request
corresponding to the intent. This fallback is expressed
within an XIP address since it may be needed to reach the
intended destination.

XIP addressing must also deal with the fact that not
all XID types will be globally routable, for example, due
to scalability issues. This problem is typically addressed
through scoping based on network identifiers [10]. Since
XIA supports multiple principal types, we generalize scop-
ing by allowing the use of XID types other than ADs for
scoping. For example, scaling global flat routing for CIDs
may be prohibitively expensive [12, 42], and, thus, re-
quests containing only a CID may not be routable. Allow-
ing the application to refine its intent using hierarchical
scoping using ADs, HIDs, or SIDs to help specify the
CID’s location can improve scalability and eliminate the
need for XID-level global routing. We explore the effec-
tiveness of using this more scalable approach in §5.3.

The drawback of scoping intent is that a narrow inter-
pretation could limit the network’s flexibility to satisfy
the intent in the most efficient manner, e.g., by delivering
content from the nearest cache holding a copy of the CID,
rather than routing to a specific publisher. We can avoid
this limitation by combining fallback and scoping, a con-
cept we call (iterative) refinement of intent. When using
refinement of intent, we give the XID at each scoping
step the opportunity to satisfy the intent directly without
having to traverse the remainder of the scoping hierarchy.

3.2.2 Addressing mechanisms
XIA’s addressing scheme is a direct realization of these
high-level concepts. To implement fallback, scoping, and
iterative refinement, XIA uses a restricted directed acyclic
graph (DAG) representation of XIDs to specify XIP ad-
dresses. A packet contains both the destination DAG and

the source DAG to which a reply can be sent. Because of
symmetry, we describe only the destination address.

Three basic building blocks are: intent, fallback, and
scoping. XIP addresses must have a single intent, which
can be of any XID type. The simplest XIP address has
only a “dummy” source and the intent (I) as a sink:

I

The dummy source (•) appears in all visualizations of
XIP addresses to represent the conceptual source of the
packet.

A fallback is represented using an additional XID (F)
and a “fallback” edge (dotted line):

I

F

The fallback edge can be taken if a direct route to the
intent is unavailable; we allow up to four fallbacks.

Scoping of intent is represented as:
S I

This structure means that the packet must be first routed
to a scoping XID S, even if the intent is directly routable.

These building blocks are combined to form more
generic DAG addresses that deliver rich semantics, imple-
menting the high-level concepts in §3.2.1. To forward a
packet, routers traverse edges in the address in order and
forward using the next routable XID. Detailed behavior
of packet processing is specified in §3.3.2.

3.2.3 Addressing style examples
XIP’s DAG addressing provides considerable flexibil-
ity. In this subsection, we present three (non-exhaustive)
“styles” of how it might be used to achieve important
architectural goals.
Supporting evolution: The destination address encodes
a service XID as the intent, and an autonomous domain
and a host are provided as a fallback path, in case routers
do not understand the new principal type.

SID1

AD1 HID1

This scheme provides both fallback and scalable routing.
A router outside of AD1 that does not know how to route
based on intent SID1 directly will instead route to AD1.
Iterative refinement: In this example, every node in-
cludes a direct edge to the intent, with fallback to domain
and host-based routing. This allows iterative incremental
refinement of the intent. If the CID1 is unknown, the
packet is then forwarded to AD1. If AD1 cannot route to
the CID, it forwards the packet to HID1.

CID1

AD1 HID1

4

Defensive Evolvability

Hammer: Modularity

• Hide functionality from those who need not see it

AS/user should be able to unilaterally deploy a new
type of connectivity service

• ...without approval of parties used to reach that service
• ...and without them even knowing!

Rough solution: pathlets++

• Each segment is a general “function” rather than just a
link between two vnodes

Putting together the pieces

Observations

1. Flexibility and evolvability come from modularity

• “the degree to which a system's components may be
separated and recombined” – wikipedia

2. The principal function of networks is connectivity

3. Need clean abstraction to recombine connectivity

4. Hypothesis: The current architecture lacks such an
abstraction

• Instead of one reusable abstraction, we keep inventing
special-purpose tunnels: overlay networks, VPNs, ports, ...

Vasily Kandinsky
“Small Worlds”

1922

