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Two important problems

Clustering of disease: PART 1
 Development of Space-time models
 Modelling vs Testing
 Hidden process models
 Example from Scotland
 Future directions

Relative risk change detection: PART 2
 What is meant by surveillance
 Statistical aspects of surveillance
 Bayesian models space-time risk
estimation

 discussion
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Clustering of disease

What is a cluster ?

 No universally accepted definition

 A working (spatial) definition was given
by Knox (1989)

‘A geographically bounded group of
occurrences of sufficient size and
concentration to be unlikely to have
occurred by chance’
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 In space-time slightly more complicated
since we can have 3 different types of
clusters.
 Temporal cluster: occurs in the whole
study region, but for a limited time.

 Spatial cluster: occurs during the
whole study period, but in a small
area.

 Spatio-temporal cluster: should exist
in a small area and for a limited time.
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Testing or modelling

Large number of tests for clustering exist
 Diggle-Chetwynd, Knox, Scan,
Besag-Newell, etc

All have different properties, however
some common concerns are
 adjustment for multiple testing results in
loss of power

 how to deal with covariates, stratification
is wasteful.

Better to fit a model
 no adjustment needed for multiple testing
 deals with covariates in ‘traditional’ way
 flexibility
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Hidden Process Model
development

 From definition of clustering we expect
clustering to be a localized phenomenon
and occur around some ‘centre’.

 ‘Centre’ can be any shape – most
commonly a point or a line
 Point may reflect the location of a
factory or a waste processing site

 Line may reflect the location of a
highway or a river

 Centres not directly observed, they form a
hidden process
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 Observed cases form a realisation of a
hetrogeneous Poisson process with
intensity given by

x, t  gx, texpTzmc1,c2,c3,x, t

 x, t  space and time coordinates
 gx, t  background rate due to
‘population at risk’

 Tz  is the linear predictor of
covariates

 c1  spatial cluster centres
 c2  temporal cluster centres
 c3  spatio-temporal cluster centres
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 Different choices of the function m result
in different models. We normally use

mc1,c2,c3,x, t  1  1
i1

ns

Kx  c1i

 2
i1

nt

Kt  c2i

 3
i1

nst

Kx, t  c3i

 The K functions are called cluster
distribution functions

 The K functions describes how the cases
are distributed around the cluster centre. It
makes sense to assume that the density of
cases decreases with distance from the
centre.
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 For points we use a radial symmetric
Gaussian distribution
Kx  c  1

2 exp 
1
2 x  c

2
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Model Estimation

Background:

 gx, t is a nuisance function which must
be properly accounted for.

 It seems natural to consider a
nonparametric estimate as we don not wish
to make inferences regarding gx, t

 If we have a control disease (one with
similar age-sex distribution) we can
construct an estimate based on kernel
smoothing

ĝx, t w1
x  vj
h1

w2
t   j
h2
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 w1 and w2 are kernel functions, h1 and h2
are smoothing parameters, vj, j are the
space-time coordinates of a realisation of
the control disease.
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Prior distribution for cluster
centres

 Assume cluster centres are points
 We need to have a prior point process
model for the location and number

 The Strauss prior is suitable for this since
it is natural to assume that cluster centres
are not very close to each other.

fc  bkRc,r,
 where b is a rate parameter, r an inhibition
distance, k number of points,Rc, r is the
number of r-close pairs,  is an inhibition
parameter.

 These parameters are usually fixed before
fitting the model to given weak inhibition.
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Other prior distributions

 Weights
p1,2,3  exp1  2  3

i.e. each weight is exponentially
distributed with mean 1.0

 Regression parameter vector has a uniform
prior

Likelihood

 Recall, x, t is the intensity.

L 
 i1

n xi, ti


A

T
u,vdudv

n
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Count Data
 Above model is for individual level (point)
data. Often we observe data at an
aggregated level (e.g. ZIP code, Postcode
sector).

 Possible to adapt a model at the individual
level to the aggregated level

 For count data we replace the intensity by
the integrated intensity over the region.

mit  
Ai

Tt
u,vdudv

 eit expTz 
Ai

Tt
1  1

i1

ns

Ks  c1i

 2
i1

nt

Kt  c2i

 3
i1

nst

Ks, t  c3idtds
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Birth/Death/Shift Algorithm

 Unknown parameters:
 Cluster variances: 1,2,3
 Cluster centres: c1,c2,c3

(note both number and location
unknown)
  weights: 1,2,3

 covariate parameter vector: 1,2,3
 Cluster variances, weights, covariate
parameter can be estimated using standard
MCMC, centres need to be estimated via
BDS

 BDS consists of doing one of the following
at each iteration
 Death: remove a centre;
 Birth: add a centre;
 Shift: move a centre
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Example: Scottish Birth
Abnormalities

 Complete set of all singleton Birth
abnormalities in Scotland during the period
Jan 1991 to Dec 1995 with postcode
sectors DD or PH. 92 postcode sectors and
60 months

 Complete set of all live singleton births
during same period.

 Carstairs deprivation index computed from
1991 census.

 Question: do the birth abnormalities cluster
in space-time
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 Observed count: number of singleton birth
abnormalities in postcode sector i and
month t mit

 Expected count: is

eit  nit.
mit
nit
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Exploratory analysis

 Time series plot of the standardised
mortality ratio (obs/exd) is

Months since January 1991
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 No evidence of any trend in time
 Some evidence of clustering at 20 and 50
months
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 Autocorrelation plot
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 Evidence of short-term correlation
suggests clustering.
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 A plot of the spatial SMR is

 small SMR is rural (north west) area, and
high SMR in city areas (Dundee and Perth)

 elevated SMR tend to cluster in middle of
map
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 Yearly SMRs can be used to reveal
patterns in space-time

1991

21



1992

1993
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1994

1995
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Model-based results
 fitted count model for month-postcode
sector data

 covariates: x-direction, y-direction,
deprivation index

 Strauss parameters set at 0.2 for the radius
parameter, 3 for the rate parameters, 0.1
for the inhibition parameter (measured on
unit square).

 Ran MCMC algorithm for 20,000
iterations, based inference on next 500
iterations.

 Fitted full model and reduced models by
removing one-term only
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model 2*loglik ns nt nst BIC
full -27740.36 6.8 4.0 9.0 -55712.7
dep -27723.70 6.7 5.0 14.0 -55718.8
x-coord -27712.79 8.6 2.1 10.0 -55656.8
y-coord -27785.42 7.8 2.1 6.4 -55766.6
spatial -28007.71 - 5.0 6.4 -56163.6
time -27759.02 6.7 - 9.0 -55700.9
s-t -27781.62 6.0 2.1 - -55684.9
 The number of spatial and temporal
clusters change only slightly, whereas
space-time clusters change dramatically.

 Lack of relationship with deprivation,
 East/west gradient
 Temporal clustering
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Location of Clusters
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PART 2

Relative risk change
detection
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Background
The Centers for Disease Control (CDC)
defines public health surveillance as: the

ongoing, systematic collection, analysis, and
interpretation of health data essential to the
planning, implementation, and evaluation of
public health practice, closely integrated with

the timely dissemination of these data to
those who need to know. The final link of the
surveillance chain is the application of these
data to prevention and control. A surveillance
system includes a functional capacity for data
collection, analysis, and dissemination linked

to public health programs. Thacker and
Berkelman (1992)



  Broad definition of surveillance implied

 How can statistical methods can be
developed or employed to aid the task of
surveillance of populations?

 Clearly spatial statistics may be useful
but a temporal element must also be
included in the analysis, where changes
in disease distribution are possible

 Spatio-temporal (ST) methods will be
important

 However good ST models arent
necesarily the best models for
surveillance



Building Disease
Surveillance Models
  In a model-based approach to

surveillance it is natural to consider
monitoring of parameters.

 In spatio-temporal surveillance, it is
clearly important that models be chosen
which
1. are capable of describing the

overall behaviour of disease in
space and time, and

2. will be sensitive to changes in
the spatio-temporal structure in
time,

3. be reasonably flexible so that
multiple foci can be included.

 The first criteria means that the model
should be able to capture spatial and
temporal effects and spatio-temporal
interaction effects.



 The second criteria suggest that the
parameterisation should allow for
changes in time, as well as modelling
time.

 This may be achieved by maintaining a
relatively simple model, from which
important deviations can be detected.

 The third criterion implies that the model
should be flexible enough to encompass
a variety of behaviours.



A Simple Count
Surveillance Model
 Define a possible simple model for disease

count data surveillance

 We want to examine a change within a fixed
time period t and spatial unit j, then we could
assume the following model for the count of
disease in the j, t th unit:

yjt  Poissonejt. jt

where yjt is the observed number of cases in
the j th region in time period t, ejt is the
expected number of cases in the j th region in
time period t and  jt is the relative risk in the j
th region in time period t.



 A model could be assumed for the relative
risk of the form:

ln jt   jt     t   j   j  jt,

 where  is an intercept term defining the
overall level of the relative risk,  t is a
component describing the temporal variation,
 j, j are components describing the spatial
extra-variation

 The component  j is the correlated
component and  j the uncorrelated
component.

 The final term jt represents the interaction
between spatial and temporal effects in the
maps.

 In this form, independent temporal and spatial
terms are used and the relation between these
is assumed to be included in the jt term.

 This model is a relatively simple one



compared to the possibly large number of
effects which could be conceived. For
example, in some published studies,  jand  j

are regarded as time-dependent also and so
terms such as  jt and  jt appears. Other
studies include simple time trends, and it is
also possible to include spatial trends.

 For this model we can specifiy prior
distributions for the parameters. These
distributions help to define the role of the
parameters within the relative risk and make
them easier to estimate.



 The prior distributional specifications
assumed are as follows. The temporal effect
distribution is defined as:

 t| t1  N t1,K1. t
2

where  is an autoregressive parameter and
 t

2 is the variance. This allows there to be a
smooth time-on-time variation in risk at any
spatial site.

 The spatial components are specified as

|j  N j
,K2. ss

2

mj


where mj is the number of spatial neighbours
of the j th region,  j is the set of neighbours
of the j th region and j is the parameter set
excluding  j, ss

2 is the correlated spatial
component variance and

 j  N0,K3.us
2 .

where us
2 is the uncorellated spatial

component variance.



 These components are not dependent on time
and are estimated for the complete data
available at any given time. The
spatio-temporal effect is defined as

jt  N0,K4.st
2 .

where st
2 is the spatio-temporal component

variance. This component is estimated for
each site at each period.

 The K parameters are scaling constants
which we will use in the surveillance
exercise.



 In surveillance in space-time we want to
monitor changes to a process via changes in
parameter values. We can monitor a variety
of changes by examining changes in
K1,K2,K3, K4. If the process is in control
then K1  K2  K3  K4  1. If K1  1
then a sharp jump in the risk occurs in time,
K2  1 is a change in the global spatial
correlation structure, K3  1 suggests a
change in variability across the map, while
K4  1 is a change in the risk at a particular
space-time location. Hence the basic
procedure examined here is the examination
of changes to global model parameters via the
sequential fitting of a global model.



 Variants of this model have been examined
by Knorr-Held (2000), who fitted the model
variants to complete space-time sequences of
lung cancer in Ohio.

 He found that a variant of the above model
fits the complete 21 year sequence well. The
variant has the interaction prior distribution
specified as:

jt  Njt1,K4.st
2 

where there is a random walk dependence in
the interaction, as opposed to a zero-mean
prior distribution.

 That author did not examine the surveillance
of the sequence of maps of lung cancer as
they arose. Here I examine the difference in
these two interaction models applied to the
surveillance of the Ohio lung cancer example



Ohio Lung Cancer Example
 The Ohio lung cancer data set described by

Carlin and Louis (1996) (amongst others) is
considered here.

 This data set consists of lung cancer counts
for 88 counties of Ohio for 21 year time
periods (1968-1988).

 The surveillance of the 21 years of the map
sequence is examined here.

 MCMC algorithms can be used to posterior
sample these models

 These algorithms are not readily available for
use by non-specialists, although the package
WinBugs does provide an environment in
which spatio-temporal models can be fitted to
complete sequences of maps.

 It appears that sequential analysis of maps is
not possible within WinBugs currently.

 For the models presented here the posterior
sampling was custom-programmed in Visual
Fortran.



 The models fitted were sampled using
Metropolis-Hastings steps. These steps are
straightforward to implement, however
sequential re-fitting of these models presents
a problem as at each new time period a new
set of data is added and a new set of
parameters are included.

 A simple approach to the problem is to adopt
a sliding window of time units within which
the effects are estimated.

 This is clearly an approximate procedure as
any temporal effects longer than the window
will not be properly estimated.

 Here we have used such moving window to
reduce the computational time (see also
particle filters and SIR methodology e.g.
Doucet et al (2001)).

 Each model fit was monitored for
convergence using a range of diagnostics
including posterior convergence plotting and
variance comparisons.

 For simplicity we have estimated the
K parameters as ratios of current to lag-one
variances.



 Here, the multiple time series of K1,K2, K3,
K4 and the corresponding variances are
examined.

 The SMRs for lung cancer are presented here
for time periods: 1, 2, 20, 21, based on a Ohio
state yearly rate for each year period.

 Two basic models were examined: the
models with independent space-time
interaction and the dependence model.

Ohio_smr1

1.19 to 1.83  (16)
0.94 to 1.19  (16)
0.83 to 0.94  (18)
0.61 to 0.83  (18)
0  to 0.61  (20)

1968



Ohio_smr2

1.29 to 1.92  (14)
0.98 to 1.29  (20)
0.85 to 0.98  (16)
0.61 to 0.85  (20)
0  to 0.61  (18)

1969
Ohio_smr20

1.12 to 1.6   (20)
1.05 to 1.12  (10)
0.88 to 1.05  (21)
0.73 to 0.88  (17)
0  to 0.73  (20)

1987



Ohio_smr21

1.15 to 1.58  (15)
1.07 to 1.15  (17)
0.88 to 1.07  (19)
0.66 to 0.88  (18)
0  to 0.66  (19)

1988



Results
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Discussion
 Empirical ratios of variances as crude

estimates of the Kparameters only reported
here

 Further hyperpriors could be used to
distinguish the parameters but our need for
parsimony deters such steps.

 The variance parameters display a variety of
differences: The spatial parameters are
similar between models and show a few
isolated peaks particularly near the end of the
period and ratios close to one except near the
period end. This suggests short term changes
in variability of the counties and also possibly
some clustering.



 The time variances show increasing trend in
both models. The spatio-temporal increase
suggests that as time proceeds there are
changes in localised incidence.

 There is some evidence of interaction
between the unstructured spatial component
and time parameters, and this may also be
related to the spatio-temporal interaction
effects.

 In other studies of the Ohio data set it has
been found that there is considerable upward
trend overall in the study region, while there
are localised differences in pattern.

 In Knorr-Held(2000) rural increases in trend
in interaction were found. Here we report the
existence of jumps or changepoints in the
temporal increases and in the interactions
suggesting clustering changes.



 Carlin and Louis (1996) found marked
positive temporal trends for the study area
and also marked increases in the south west
counties (Hamilton, Clermont, Butler and
Warren). Although in the case of Hamilton
there is the presence of a large urban area
(Cincinnati).

 Neither previous analysis could provide the
temporal measure of parameter change which
is provided here.

 While we don’t examine in depth the spatial
distribution of the parameter change results,
we note the importance of being able to flag,
in real time, any changes to pattern which
arise and to be able to examine quickly the
corresponding spatial distribution of changes.





 The sequential approach could be used to
isolate forms of variation in trend, s-t
clustering, and global changes in the spatial
structure. Bayesian alarm monitoring could
form the next extension to this study.

 Another feature of this approach is the
examination of overall goodness-of-fit (GOF)
over time. As time proceeds we can assess
whether our model fits the data well or if it
diverges globally in its goodness-of-fit. As
we are not in a ‘control’ system and therefore
can’t adjust the behaviour of the system
immediately, we would want to alter our
model if the global goodness-of-fit suggested
a serious lack of fit.

 To this end we here display the sequential
Bayesian Information Criterion (SBIC) for
the interaction dependence model. Note that
as time proceeds then the number of
parameters, and the number of data points



also increase and so the balance between the
likelihood and penalty could change because
of this.



 Displayed is the successive BIC values for
this model.
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Successive BIC values for the interaction
dependence model



 As time proceeds there is an overall reduction
in validity of the model. Of course this may
suggest that a more flexible modelling
strategy should be envisaged. One possibility
would be to include a general AR1 prior
specification for the interaction component,
thereby allowing a range of models within
one prior:

jt  N jt1,K4.st
2 .

 Of course care would have to be exercised in
separation of non-stationary components, and
this also raises the question of how to
determine which components of the model
are lacking in GOF, and how to allow for this
within an active sequential surveillance
system.



Conclusions
 There is considerable scope for development

of new methods within the general area of
surveillance of disease maps.

 There is a need to develop spatial methods
which are sensitive to the sequential nature of
the surveillance task. This could be via
updating algorithms or through the sequential
methods discussed.

 Ultimately it would be useful to develop
methods which could be employed easily or
routinely within a public health surveillance
context.

 This development may require both methods
development, dissemination and the
incorporation of methods into a suitable
surveillance system as tools which can be
used by public health analysts.




