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•  High-level principle: read the “latest” value stored in the system



•  Modern key-value stores - Amazon Dynamo DB, Couch DB,

Apache Cassandra DB, Google Spanner, Voldermort DB …..



•  Used for transactions, reservation systems, multi-player gaming, social 

networks, news feeds, distributed computing tasks etc.
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Servers


Write Clients
 Read Clients

(Decoders)


High level Distributed Storage Model




•  Asynchrony – packets don’t arrive at all the servers simultaneously


•  Distributed nature - nodes do not know which packets have been received by 
other nodes, or if they have failed.


•  Consistency – the reader/decoder needs the latest “possible” version.
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Servers


Write Clients
 Read Clients

(Decoders)


•  Asynchrony, Distributed Nature, Consistency


Analytical understanding of storage costs, latency, is very limited

Replication is used in every commercial solution to provide fault tolerance 


High level Distributed Storage Model




Standard model in 
distributed systems 

theory
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The multi-version coding (MVC) problem

[Wang-C, ISIT, Allerton 2014, arxiv 2015]


As the data gets updated


•  Asynchrony: all servers may not simultaneously get the new version of the 
data


•  Distributed nature: each node is unaware of the versions received by the 
other nodes


•  Consistency: A decoder must get the latest possible version of the data 
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The multi-version coding problem
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The multi-version coding problem


In general, client connects to c servers, demands the latest common version among v 
versions
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The multi-version coding problem

•  n servers

•  v versions

•  c connectivity
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The multi-version coding problem

•  n servers

•  v versions

•  c connectivity

•  Goal: decode the latest common version

  among the c servers

•  Minimize the storage cost	
  	
  
– Worst case, across all “states”

– across all servers 
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Solution 2: MDS code


Separate coding across versions.

Each server stores all the versions received.


c=2


Storage size = (Number of versions / c)*size-of-one-version


 
    = v/c*size-of-one-version
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Normalized by size-of-
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Constructions
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. . . . . . . . .

z}|{ z}|{ z}|{

. . .

Partition 1 Partition 2
Partition v

Partition i: Version i is the latest version

There is at least one partition with dc/ve servers

Simple achievable scheme:

Server in partition i stores 1
dc/ve of version i
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Propagate version 2 to a minimal set of servers

 such that it is decodable


�o(size-of-one-version)



•  Intuition: Find c+v-1 virtual servers, where all v versions 
can be decoded


•  A more intricate puzzle as compared to v=2.



•  Multi-version coding problem related to index-coding/

multiple-unicast/non-multicast network coding

–  More precisely, it is related to pliable index coding


Converse: v > 2


[Brahma-Fragouli 12]




Ver 1


Ver 2
 Ver 2


. . .

. . .

. . .

Converse: v=3


Ver 1
 Ver 1


Ver 2


Ver 3
 Ver 3
 Ver 3
. . .



Ver 1


Ver 2
 Ver 2


. . .

. . .

. . .

Converse: v=3


Ver 1
 Ver 1


Ver 2


Ver 3
 Ver 3
 Ver 3
. . .

Ver 2
Ver 1
 Ver 3


a1

Server a1



Converse: v=3


a1 is the smallest number such that, there is a version x, such that

Version x is decodable, given the symbols of the first a1 servers with all 3 versions

and the messages of versions {1, 2, 3}� {x}



Ver 1


Ver 2
 Ver 2


. . .

. . .

. . .

Converse: v=3


Ver 1
 Ver 1
 Ver 1


Ver 2


Ver 3
 Ver 3
 Ver 3
. . .

Ver 2


Ver 3


. . .

. . .

. . . Ver 3


Ver 1
 Ver 3


Ver 1


Ver 1
 Ver 3


a1

a2

Server a2Server a1



Converse: v=3


a1 is the smallest number such that, there is a version x, such that

Version x is decodable, given the symbols of the first a1 servers with all 3 versions

and the messages of versions {1, 2, 3}� {x}

a2 is the smallest number such that, there is a version y 2 {1, 2, 3}� {x}, such
that

Version y is decodable, given the symbols of the first a1 � 1 servers with all 3

versions and the remaining a2 � (a1 � 1) servers with versions {1, 2, 3}� {x}

and the message of version {1, 2, 3}� {x, y}
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Constructions


Lower bound
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v = Number of Versions

c = Connectivity

1
dc/ve

�o(size-of-one-version)

v/c

Summary


*

*

These bounds can be improved.


See “Multi-version Coding – An Information Theoretic Perspective of Distributed Storage ”, 

Wang-Cadambe, arxiv, 2015


*



Multi-version codes – Main Insights


•  Redundancy required to ensure consistency in an 
asynchronous environment

–  Redundancy increases with the number of parallel versions in the 

system




•  Simple codes are (approximately) optimal

–  Separate coding across versions

–  Random linear codes within versions




•  More insights may be obtained by going beyond worst-
case measures

–  Correlated versions

–  Allow a small fraction of “erroneous” statess
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•  Arrival at client: One packet in every time slot. Sent immediately to the servers.



•  Channel from the write client to the server: Delay is an integer in [0,T-1].


•  Channel from server to read client: instantaneous (no delay).


•  Goal: decoder invoked at time t, gets the latest common version among c servers


Toy Model for packet arrivals, links




49	
  

Servers


Write Clients
 Read Clients

(Decoders)




•  Arrival at client: One packet in every time slot. Sent immediately to the servers.



•  Channel from the write client to the server: Delay is an integer in [0,T-1].


•  Channel from server to read client: instantaneous (no delay).


•  Goal: decoder invoked at time t, gets the latest common version among c servers


Toy Model for packet arrivals, links




Insights from multi-version codes over toy model


Achievability “Theorem”:


Converse “Theorem”:


There exists an achievable storage strategy that achieves a storage cost of

1
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There exists no achievable storage strategy that achieves a storage cost smaller
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Insights from multi-version codes over toy model


Achievability “Theorem”:


Converse “Theorem”:


Number of versions ⌫, depends on degree of asynchrony T

There exists an achievable storage strategy that achieves a storage cost of

1

dT
c e

⇥ size-of-one-version

There exists no achievable storage strategy that achieves a storage cost smaller

than

T

T + c� 1

⇥ size-of-one-version� o(size-of-one-version)



Multi-version Coding


Toy model for distributed 
storage


Standard model in 
distributed systems 

literature
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Servers


Write Clients
 Read Clients

(Decoders)


Model studied in distributed systems – Key features




•  Arrival at clients: arbitrary


•  Channel from clients to servers:  arbitrary delay, reliable


•  Clients and servers are modeled as I/O automata, so their protocols can be 
designed.







54	
  

Servers
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Model studied in distributed systems – Key features




•  Arrival at clients: arbitrary


•  Channel from clients to servers:  arbitrary delay, reliable


•  Clients and servers are modeled as I/O automata, so their protocols can be 
designed.




Multi-version coding converse for v=2 can be lifted to this setting.




55	
  

Future Work – Many open questions



•  Less conservative modeling assumptions,


-  Exploiting correlation between versions

-  Allow for a “small” number of erroneous states

-  Less distributed, knowledge of the state of other nodes.




•    Finer network and node models (beyond toy models).

-  Can lead to finer insights in to communication and storage costs

-  Allow for the design of protocols, for say, the read client (or the write client)






•  Study of errors/Byzantine adversaries instead of erasures - 

useful assumption for ensuring security.s
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