Delay-Constrained Unicast:
Improved upper bounds

Sudeep Kamath

(*% PRINCETON
UNIVERSITY

Joint work with

Chandra Chekuri Sreeram Kannan Pramod Viswanath

DIMACS workshop on Network Coding, 17 December 2015

0/10

Delay-constrained unicast [Wang-Chen '14]

Single flow with delay constraint D

For this network

({_ &@_’.\/ with .D=6,4

Capacity

Flow 3

1/10

Delay-constrained unicast [Wang-Chen '14]

&

Single flow with delay constraint D

For this network

fx/ with D=6,
i 4

Capacity

Flow 3

@ Practical constraint - eg. video streaming, financial data

1/10

Delay-constrained unicast [Wang-Chen '14]

Single flow with delay constraint D

For this network

);@*@{ 8 —— with D=6,
drad Lo

Capacity 4

Flow 3

@ Practical constraint - eg. video streaming, financial data

@ Intra-flow coding has fewer security and privacy concerns

1/10

Delay-constrained unicast [Wang-Chen '14]

Single flow with delay constraint D

For this network

);@*@{ 8 —— with D=6,
drad Lo

Capacity 4

Flow 3

@ Practical constraint - eg. video streaming, financial data
@ Intra-flow coding has fewer security and privacy concerns

@ Implementation aligned with self-interest

1/10

Delay-constrained unicast [Wang-Chen '14]

Single flow with delay constraint D

For this network

({_ &@_’.\/ with .D=6,4

Capacity

Flow 3

1/10

Delay-constrained unicast [Wang-Chen '14]

Single flow with delay constraint D
For this network
G{_ @{ TW ~—— with D=6,
@_'@ Capacity 4
Flow 3

How large can this ratio be?

1/10

Delay-constrained unicast [Wang-Chen '14]

Single flow with delay constraint D

For this network

Cg— @i &@_’@_'@4/ with .D=6,

Capacity
Flow

How large can this ratio be?

4

3

1/10

Delay-constrained unicast [Wang-Chen '14]

Single flow with delay constraint D

For this network

({_ &@_’.\A/ with .D=6,4

Capacity

Flow 3

How large can this ratio be?

2 < sup Capacity _ « —We improve
" graphs Flow T over this

1/10

Optimization

Combinatorial

This work

Network
Information
Theory

2/10

Multi-commodity
flow problem

i i Network
Combinatorial _
Optimization Information
i Theory

This work

2/10

Multi-commodity
flow problem

Optimization

Combinatorial

Multiple-unicast
problem

This work

Network
Information
Theory

2/10

Multi-commodity flow / Multiple-unicast

Given a directed graph and k
source-destination pairs {(s;,d;)}

3/10

Multi-commodity flow / Multiple-unicast

Given a directed graph and k (" 3
source-destination pairs {(s;,d;)} ‘\ /CQ

3/10

Multi-commodity flow / Multiple-unicast

Given a directed graph and k (" 3
source-destination pairs {(s;,d;)} .\ /CQ

Flow: Maximum total commodity flow

3/10

Multi-commodity flow / Multiple-unicast

Given a directed graph and k (" N
source-destination pairs {(s;,d;)} =

Flow: Maximum total commodity flow

& o

Flow =1

3/10

Multi-commodity flow / Multiple-unicast

Given a directed graph and k
source-destination pairs {(s;,d;)}

Flow: Maximum total commodity flow

EdgeCut: Fewest edges whose removal
disconnects all paths from s; to d; Vi

3/10

Multi-commodity flow / Multiple-unicast

Given a directed graph and k
source-destination pairs {(s;,d;)}

Flow: Maximum total commodity flow

EdgeCut: Fewest edges whose removal
disconnects all paths from s; to d; Vi

3/10

Multi-commodity flow / Multiple-unicast

Given a directed graph and k
source-destination pairs {(s;,d;)}

Flow: Maximum total commodity flow

EdgeCut: Fewest edges whose removal
disconnects all paths from s; to d; Vi

Flow =1
EdgeCut =1

3/10

Multi-commodity flow / Multiple-unicast

Given a directed graph and k
source-destination pairs {(s;,d;)}

Flow: Maximum total commodity flow

EdgeCut: Fewest edges whose removal
disconnects all paths from s; to d; Vi

Capacity: Maximum information flow

Flow =1
EdgeCut =1

3/10

Multi-commodity flow / Multiple-unicast

Given a directed graph and k
source-destination pairs {(s;,d;)}

Flow: Maximum total commodity flow

EdgeCut: Fewest edges whose removal
disconnects all paths from s; to d; Vi

Capacity: Maximum information flow

(M
S

Flow =1
EdgeCut =1

3/10

Multi-commodity flow / Multiple-unicast

(M
S

Given a directed graph and k
source-destination pairs {(s;,d;)}

Flow: Maximum total commodity flow

EdgeCut: Fewest edges whose removal
disconnects all paths from s; to d; Vi

Capacity: Maximum information flow

A\,

Flow =1
EdgeCut =1
Capacity = 2

3/10

Multi-commodity flow / Multiple-unicast

4 M
S

Given a directed graph and k
source-destination pairs {(s;,d;)}

Flow: Maximum total commodity flow

EdgeCut: Fewest edges whose removal
disconnects all paths from s; to d; Vi

Capacity: Maximum information flow

EdgeCut # Cutset bound

A\,

Flow =1
EdgeCut =1
Capacity = 2

3/10

Multi-commodity flow / Multiple-unicast

4 M
S

Given a directed graph and k
source-destination pairs {(s;,d;)}

Flow: Maximum total commodity flow

EdgeCut: Fewest edges whose removal
disconnects all paths from s; to d; Vi

Capacity: Maximum information flow
EdgeCut # Cutset bound

Capacity < Cutset bound

A\,

Flow =1
EdgeCut =1
Capacity = 2

3/10

Multi-commodity flow / Multiple-unicast

4 M
S

Given a directed graph and k
source-destination pairs {(s;,d;)}

Flow: Maximum total commodity flow

EdgeCut: Fewest edges whose removal
disconnects all paths from s; to d; Vi

Capacity: Maximum information flow
EdgeCut # Cutset bound
Capacity < Cutset bound

However, we may have
EdgeCut < Capacity

A\,

Flow =1
EdgeCut =1
Capacity = 2

3/10

v
4/10

|

For k = 1: Flow = EdgeCut = Capacity
(Max-Flow Min-Cut Theorem)

|

4/10

|

Fork =1: Flow =
(Max-Flow Min-Cut Theorem)

= Capacity

|

For k = 2:

4 /10

|

Fork =1: Flow =
(Max-Flow Min-Cut Theorem)

= Capacity

|

For k = 2:

[Flow <

) (Flow < Capacity) [

S Capacit}a

4/ 10

Fork =1: Flow = = Capacity
(Max-Flow Min-Cut Theorem)

For k = 2:
(Flow <) (Flow < Capacity) [< Capacity)

° o [
0 Flow Capacity

4/ 10

Fork =1: Flow = = Capacity
(Max-Flow Min-Cut Theorem)

Fork =2:
(Flow <) (Flow < Capacity) [< Capacity)
o @- @
0 Flow Capacity

[Saks-Samorodnitsky-Zosin '04], [Harvey-Kleinberg-Lehman '06],
[Ambiihl-Mastrolilli-Svensson '07], [Chuzhoy-Khanna '07],
[Dougherty-Freiling-Zeger '05], [Chan-Grant '08]

4 /10

Fork =1: Flow = = Capacity
(Max-Flow Min-Cut Theorem)

Fork =2:
(Flow <) (Flow < Capacity) [< Capacity)
° o o
0 Flow Capacity
Linear
Program

[Saks-Samorodnitsky-Zosin '04], [Harvey-Kleinberg-Lehman '06],
[Ambiihl-Mastrolilli-Svensson '07], [Chuzhoy-Khanna '07],
[Dougherty-Freiling-Zeger '05], [Chan-Grant '08]

4 /10

Fork =1: Flow = = Capacity
(Max-Flow Min-Cut Theorem)

Fork =2:
(Flow <) (Flow < Capacity) [< Capacity)
[@- o
0 Flow Capacity
Linear NP-hard,
Program hard to approximate

[Saks-Samorodnitsky-Zosin '04], [Harvey-Kleinberg-Lehman '06],
[Ambiihl-Mastrolilli-Svensson '07], [Chuzhoy-Khanna '07],
[Dougherty-Freiling-Zeger '05], [Chan-Grant '08]

4 /10

(For k=1:Flow = = Capacityw

Why bother with
if Flow is a linear program?

4/10

Fork =1: Flow = = Capacity
(Max-Flow Min-Cut Theorem)

Fork =2:
(Flow <) (Flow < Capacity) [< Capacity)
[@- o
0 Flow Capacity
Linear NP-hard,
Program hard to approximate

[Saks-Samorodnitsky-Zosin '04], [Harvey-Kleinberg-Lehman '06],
[Ambiihl-Mastrolilli-Svensson '07], [Chuzhoy-Khanna '07],
[Dougherty-Freiling-Zeger '05], [Chan-Grant '08]

4 /10

Fork =1: Flow = = Capacity
(Max-Flow Min-Cut Theorem)

For k = 2:
(Flow <) (Flow < Capacity) [< Capacity)
e @- o
0 Flow Capacity
Linear NP-hard, Linear coding not sufficient,
Program hard to approximate entropic cone necessary

[Saks-Samorodnitsky-Zosin '04], [Harvey-Kleinberg-Lehman '06],
[Ambiihl-Mastrolilli-Svensson '07], [Chuzhoy-Khanna '07],
[Dougherty-Freiling-Zeger '05], [Chan-Grant '08]

(/10

Fork =1: Flow = = Capacity
(Max-Flow Min-Cut Theorem)

For k = 2:
(Flow <) (Flow < Capacity) [< Capacity)
((Can be multiplicative factor k apart)
/
e @ o
0 Flow Capacity
Linear NP-hard, Linear coding not sufficient,
Program hard to approximate entropic cone necessary

[Saks-Samorodnitsky-Zosin '04], [Harvey-Kleinberg-Lehman '06],
[Ambiihl-Mastrolilli-Svensson '07], [Chuzhoy-Khanna '07],
[Dougherty-Freiling-Zeger '05], [Chan-Grant '08]

4 /10

Triangle-cast

5/10

Triangle-cast

Multiple-unicast: flow from
s; to d; for all i

5/10

Triangle-cast

Multiple-unicast: flow from
s; to d; for all i

Triangle-cast: flow from

s; to dj for all i > j

5/10

Triangle-cast

Multiple-unicast: flow from
s; to d; for all i

Triangle-cast: flow from

s; to dj for all i > j

k(k+1

flows

5/10

Triangle-cast

Multiple-unicast: flow from
s; to d; for all i

Triangle-cast: flow from

s; to dj for all i > j

k(k+1

flows

Main Result 1: For triangle-cast as above,

EdgeCut

s ha—— < C ity < EdgeCut
4loge(k+1)_ ow < Capacity < EdgeCu

5/10

Triangle-cast

Multiple-unicast: flow from
s; to d; for all i

Triangle-cast: flow from
2

Main ideas:
@ Adaptation of a “region-growing” technique [Garg-Vazirani-Yannakakis '96]
@ Generalized Network Sharing bound [K.-Tse-Anantharam '11]
N J

Main Result 1: For triangle-cast as above,

EdgeCut

s ha—— < C ity < EdgeCut
4loge(k+1)_ ow < Capacity < EdgeCu

5/10

Triangle-cast

Multiple-unicast: flow from
s; to d; for all i

Triangle-cast: flow from

s; to dj for all i > j

k(k+1

flows

Main Result 1: For triangle-cast as above,

EdgeCut

s ha—— < C ity < EdgeCut
4loge(k+1)_ ow < Capacity < EdgeCu

5/10

Delay constraint D = 2

Delay constrained network

/10

OF THE FOUR DIMENSIONS T
COULD HAVE SPENT MY LIFE
BEING PUSHED INEXORABLY

FORWARD THROUGH, I GUESS
“TIME” ISN'T THE \WJORST.

Reproduced from xkcd.com

6/10

Delay constraint D = 2

Delay constrained network

/10

Delay constraint D = 2

Delay constrained network

6/10

Delay constraint D = 2

Delay constrained network

6/10

Multiple-unicast

Delay constraint D = 2

Delay constrained network

6/10

7

=

i
S AE
d’lF.ﬁd-F
=
3
[¢]
lw)
+
N

Multiple-unicast

Information delivered earlier is ok!

Delay constraint D = 2

Delay constrained network

6/10

S1
Time 0

S2
Time 1

53
Time 2

Multiple-unicast

Time D
dy
Time D+1
dy
Time D+2
ds

Information delivered earlier is ok!

Delay constraint D = 2

Delay constrained network

6/10

S1
Time 0
S2
Time 1 Delay constraint D = 2
53
Time 2 Time D Delay constrained network
dy
Time D+1
dy
- Time D+2
ds
Multiple-unicast
Information delivered earlier is ok!
Hence, triangle-cast!

6/10

51

Time 0
S2
Time 1 Delay constraint D = 2
S3)
Time 2 Time D Delay constrained network
dy
Time D+1
do
Time D+2 Capacity
——— < 8log (D+1
@ Flow = S108.(D+1)

Multiple-unicast

D = Delay

Information delivered earlier is ok!

Hence, triangle-cast!

6/10

Open 1: “Multicast”

Multicast: same information to
all destinations

7/10

Open 1: “Multicast”

e What happens with delay
constraint?

Multicast: same information to
all destinations

7/10

Multicast: same information to
all destinations

Open 1: “Multicast”

What happens with delay
constraint?

@ Practical constraint
o Intra-flow coding

o Coding strategies? -
Random coding does not
work

7/10

Open 2: “Triangle-cast gap”

Theorem (this work)

For k-triangle-cast,

EdgeCut

— = < Flow<C ity < EdgeCut
Tlog, (k+1) = ow < Capacity < EdgeCu

8/10

Open 2: “Triangle-cast gap”
Theorem (this work)

For k-triangle-cast,

— = < Flow<C ity <
4loge(k‘—|—1)_ ow < Capacity <

For k-triangle-cast,

< Flow < Capacity <

Hence, for delay-constrained unicast,

Capacity
Flow

8/10

Open 3: “Symmetry Principle”

Under suitable symmetry in traffic pattern,
Flow, , Capacity are all not “too far” apart.

9/10

Open 3: “Symmetry Principle”

F : Flow
EC : EdgeCut
C : Capacity

9/10

F : Flow

C : Capacity

Open 3: “Symmetry Principle”

-

Bidirected == <F< F<CL
O(log k)
Networks [Leighton-Rao '88]
[Linial-London-Rabinovich '94] [K.-Viswanath '12]
I ——— <F<
Symmetric oo =7 F<C<
Demands
[Klein-Plotkin-Rao-Tardos '93] [K.-Viswanath '12]
— <F< <C<L
Group-cast g <F= F=C=2x
[Naor-Zosin '01] [K.-Viswanath '12]
- e SFE <C<L
Triangle-cast O(log k) F=C=<
[This work] [This work]

)/ 10

F : Flow

C : Capacity

Open 3: “Symmetry Principle”

-

o
idi — _<F<
Bidirected olog) = F< F<CL
Networks [Leighton-Rao '88]
[Linial-London-Rabinovich '94] [K.-Viswanath '12]
I ——— <F<
Symmetric ool = < F<C<
Demands
[Klein-Plotkin-Rao-Tardos '93] [K.-Viswanath '12]
— <F< <C<L
Group-cast g <F< F=C<=2x
[Naor-Zosin '01] [K.-Viswanath '12]
. = S K <C<L
Triangle-cast O(log k) F=C=<
[This work] [This work]
7?77
/

/10

Conclusion

L

Triangle-cast: flow from
s; to dj; for all + > j

Showed a 4log,(k + 1) Flow — — Capacity
approximation guarantee

!

Delay-constrained unicast (delay D) has Capacity

<
Flow = 8log, (D + 1)

10/10

