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Given a directed graph and k
source-destination pairs {(s;,d;)}

Flow: Maximum total commodity flow

EdgeCut: Fewest edges whose removal
disconnects all paths from s; to d; Vi

Capacity: Maximum information flow
EdgeCut # Cutset bound
Capacity < Cutset bound

However, we may have
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(For k=1:Flow = = Capacityw

Why bother with
if Flow is a linear program?
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OF THE FOUR DIMENSIONS T
COULD HAVE SPENT MY LIFE
BEING PUSHED INEXORABLY

FORWARD THROUGH, I GUESS
“TIME” ISN'T THE \WJORST.

Reproduced from xkcd.com
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Time 0
S2
Time 1 Delay constraint D = 2
S3 )
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Multicast: same information to
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Open 1: “Multicast”

What happens with delay
constraint?

@ Practical constraint
o Intra-flow coding

o Coding strategies? -
Random coding does not
work
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Open 2: “Triangle-cast gap”
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Theorem (this work)
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Hence, for delay-constrained unicast,
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Flow
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Open 3: “Symmetry Principle”

Under  suitable  symmetry in traffic pattern,
Flow, , Capacity are all not “too far” apart.
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F : Flow

C : Capacity

Open 3: “Symmetry Principle”

-

Bidirected == <F< F<CL
O(log k)
Networks [Leighton-Rao '88]
[Linial-London-Rabinovich '94] [K.-Viswanath '12]
I ——— <F<
Symmetric oo =7 F<C<
Demands
[Klein-Plotkin-Rao-Tardos '93] [K.-Viswanath '12]
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Conclusion

L

Triangle-cast: flow from
s; to dj; for all + > j

Showed a 4log,(k + 1) Flow — — Capacity
approximation guarantee

!

Delay-constrained unicast (delay D) has Capacity

<
Flow = 8log, (D + 1)
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