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Open 3: “Symmetry Principle”

Principle

Under suitable symmetry in traffic pattern,
Flow,EdgeCut,Capacity are all not “too far” apart.
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Open 3: “Symmetry Principle”

F : Flow
EC : EdgeCut
C : Capacity
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Conclusion

s1

s2

sk

d1

d2

dk

Directed Graph

Triangle-cast: flow from

si to dj for all i ≥ j

=
⇒

Capacity

Flow
≤ 8 log

e
(D + 1)

Showed a 4 log
e
(k + 1) Flow − EdgeCut− Capacity

approximation guarantee

Delay-constrained unicast (delay D) has

s1

s2

sk

d1

d2

dk

Directed Graph

10 / 10


