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Codes with algebraic structure are sought after to mimic the performance
of random i.i.d. codes.
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Algebraic Approach:

Utilize linear or lattice codebooks.

Compelling examples starting from the work of Korner and Marton on
distributed compression and, more recently, many papers on physical-layer
network coding, distributed dirty paper coding, and interference alignment.

Coding schemes exhibit behavior not found via i.i.d. ensembles.
However, some classical coding techniques are still unavailable.

Most of the initial efforts have focused on Gaussian networks and have
employed nested lattice codebooks.

Are these just a collection of intriguing examples or elements of a more
general theory?

This Talk: We build on previous work and propose a joint typicality
approach to algebraic network information theory.
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Compute-and-Forward

Goal: Send linear combinations of the messages to the receivers.

e Compute-and-forward can serve as a framework for communicating
messages across a network (e.g., relaying, MIMO uplink/downlink,
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Goal: Send linear combinations of the messages to the receivers.

e Compute-and-forward can serve as a framework for communicating
messages across a network (e.g., relaying, MIMO uplink/downlink,
interference alignment).

e Much of the recent work has focused on Gaussian networks.
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Computation over Gaussian MACs

e Symmetric Gaussian MAC.

e Equal power constraints:

2
Bl < nP. ot Z
e Use nested lattice codes. ) . .

e Wilson-Narayanan-Pfister-Sprintson 10, Nazer-Gastpar '11:
Decoding is successful if the rates satisfy

1 1
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Rk<20g <2+ >

1
e Cut-set upper bound is 3 log(1 + P).

e What about the “14"7 Still open! (Ice wine problem.)
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Computation over Gaussian MACs

e How about general
Gaussian MACs? m- &

e Model using unequal (i) mo—| &

power constraints:
mK_) gK

E|jx¢||? < nP,.
e Nam-Chung-Lee '11: At each transmitter, use the same fine lattice
and a different coarse lattice, chosen to meet the power constraint.

o Decoding is successful if the rates satisfy
1 P,
Ry < 7 log* <+ —I—Pg) .
2 2.z b

e Nazer-Cadambe-Ntranos-Caire '15: Expanded compute-and-forward
framework to link unequal power setting to finite fields.
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e Messages: m € [2"%] £ {0,..., 2" — 1}
e Encoder: a mapping z"(m) € X™ for each m € [2"]
e Decoder: a mapping 1 (y") € [2"F] for each y" € Y™

C=max [(X;Y)

px(z)

e Proof relies on random i.i.d. codebooks combined with
joint typicality decoding.



Random i.i.d. Codes

e Codewords are independent of one another.
e Can directly target an input distribution px(z).
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Code Construction:
e Pick a finite field Fq and a symbol mapping x : Fq — X
e Set Kk =nR/log(q).

e Draw a random generator matrix G € Fg*" elementwise
i.i.d. Unif(Fq). Let G be a realization.
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Code Construction:
e Pick a finite field Fq and a symbol mapping = : Fy — X

e Set k = nR/log(q).

e Draw a random generator matrix G € Fg*" elementwise
i.i.d. Unif(Fq). Let G be a realization.

e Draw a random shift (or “dither”) D" elementwise i.i.d. Unif(Fg).
Let d" be a realization.

e Take g-ary expansion of message m into the vector v(m) € Fyg.
e Linear codeword for message m is u™(m) = v(m)G & d".

e Channel input at time i is ;(m) = x(u;(m)).



Random Linear Codes

e Codewords are pairwise independent of one another.
 Codewords are uniformly distributed over [Fy.
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o Well known that a direct application of linear coding is not sufficient
to reach the point-to-point capacity, Ahlswede '71.

¢ Gallager '68: Pick F; with q > & and choose
to reach c.a.i.d. from Unif(Fq). This can attain the capacity.

e This will not work for us. Roughly speaking, if each encoder has a
different input distribution, the may be quite
different, which will disrupt the linear structure of the codebook.

e Padakandla-Pradhan '13: It is possible to shape the input
distribution using nested linear codes.

e Basic idea: Generate many codewords to represent one message.
Search in this “bin” to find a codeword with the desired type, i.e.,
multicoding.
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e Messages m € [2"f] and auxiliary indices | € [2”R].

e Set & =n(R+ R)/log(q).

e Pick generator matrix G and dither d" as before.

e Take g-ary expansions [v(m) v(l)] € F&.

e Linear codewords: u"(m,l) = [v(m) v(1)]G & d".
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e Joint Typicality Decoding: Find the unique index m such that
(um(m, 1), y") € ﬁ(n)(U,Y) for some index [.

e Succeeds w.h.p. if R+ R < I(U;Y) + D(pu|pq)
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Theorem (Padakandla-Pradhan '13)

Any rate R satisfying

is achievable. This is equal to the capacity if q > |X|.

R < max I(U;Y)
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e This is the basic coding framework that we will use for each

transmitter.

o Next, let's examine a two-transmitter, one-receiver

network.
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o Messages my, € [2"%*] and auxiliary indices I}, € [2”Rk], k=1,2.
o Set k = n(max{R; + Ry, Ry + Ro})/log(q).

e Pick generator matrix G and dithers d7, dj as before.
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Code Construction:
o Messages my, € [2"%%] and auxiliary indices [, € [2"%*], k = 1,2.

o Set k = n(max{R; + Ry, Ry + Ro})/log(q).
e Pick generator matrix G and dithers d7, dj as before.
o Take g-ary expansions [v(m1) v(lh)] € Fq
[v(m2) v(ly) 0] € Fi  Zero-padding



Nested Linear Coding Architecture

Py|x1X,

YTL

Linear Multi- | U7 NN X7
My Code coding () \

Linear Multi- | Us' [ /
Mo Code [ ] coding w2(u2)

X5

Code Construction:
o Messages my, € [2"%%] and auxiliary indices [, € [2"%*], k = 1,2.

e Set K = n(max{R; + Ri, Ro+ R2})/10g(Q)-

e Pick generator matrix G and dithers d7, dj as before.

e Take g-ary expansions [n(m1,l1)] € Fy

[’I’)(mg, lg)] S Fg

Decoder




Nested Linear Coding Architecture

Linear Multi- | U7 e () | X
My Code coding 1(u)
YTL
Py|x1X, Decoder
Linear Multi- | U3 _/
My Code [ | coding z2(uz) X3

Code Construction:
o Messages my, € [2"%%] and auxiliary indices [, € [2"%*], k = 1,2.

o Set k = n(max{R; + Ry, Ry + Ro})/log(q).
e Pick generator matrix G and dithers d7, dj as before.
e Take g-ary expansions [ (ma, ] € Fy
[n(ma,12)] €
(ma, ll)G @ dy
uy (ma, lo) =n(me,l2)G & dy

e Linear codewords: uf(m,l1) =n



Nested Linear Coding Architecture

YTL

Linear Multi- | U7 iy _X{L

My Code coding () \
Py|x1X,

Linear Multi- | Us' [ _/

M2 Code ] coding 3/2(”/2) X%L

Encoding:

Decoder




Nested Linear Coding Architecture

YTL

Linear Multi- | U7 NN X7
My Code coding () \
Py|x1X,
Linear Multi- | U3 [ /
My Code coding z2(u2) 7 X3
Encoding:

e Fix p(u1), p(ug), x1(u1), and zo(us).

Decoder




Nested Linear Coding Architecture

. i UTL X7L
M, Linear Multi 1 1

Code | | coding w1(u1)
YTL

Py|x1X, Decoder
Linear Multi- | U3 [ _/
My Code coding w2(uz) X3
Encoding:

e Fix p(u1), p(ug), x1(u1), and zo(us).

e Multicoding: For each my, find an index [ such that
uZ(mk,lk) € ’Egn)(Uk)



Nested Linear Coding Architecture

Multi- | U7 X7

Linear o (72 |
My Code | | coding w1(u1) \

YTL
Py|x1X, Decoder

. — un /
M, Linear | | Multi 2 o (u2) H

Code coding X%L

Encoding:

e Fix p(u1), p(ug), x1(u1), and zo(us).

e Multicoding: For each my, find an index [ such that
up (my, l) € ﬁgn)(Uk)

e Succeeds w.h.p. if ]?k > D(pu, |lpq)-



Nested Linear Coding Architecture

Multi- | U7 X7

Linear o (72 |
My Code | | coding w1(u1) \

Y’I’L
Py|x1X, Decoder

. — un /
M, Linear | | Multi 2 oy

Code coding w2(uz) X3

Encoding:

e Fix p(u1), p(ug), x1(u1), and zo(us).

e Multicoding: For each my, find an index [ such that
up (my, l) € ﬁgn)(Uk)

e Succeeds w.h.p. if Ry > D(py, ||pq)-

e Transmit z; = xy (/(Lk,,;(’ﬂl,k,, lk)).



Nested Linear Coding Architecture

Multi- | U7 X7

Linear o (72 |
My Code | | coding w1(u1) \

Y’I’L
Py|x1X, Decoder

. — un /
M, Linear | | Multi 2 oy

Code coding w2(uz) X3

Encoding:

e Fix p(u1), p(ug), x1(u1), and zo(us).

e Multicoding: For each my, find an index [ such that
up (my, l) € ﬁgn)(Uk)

e Succeeds w.h.p. if Ry > D(py, ||pq)-

e Transmit z; = xy (/(Lk,,;(’ﬂl,k,, lk)).



Nested Linear Coding Architecture

Linear Multi- | U7 71|
My Code coding 71 (w)

Linear Multi- | U3 1 |
M, Code [ coding xa(ug)

Computation Problem:

n
Xl

n
XQ

Py|x1X,

YTL

Decoder




Nested Linear Coding Architecture

M

My

YTL

Linear Multi- | UT' o1 (un)H X7
Code coding ™ \
Py|x1X,
Linear Multi- | U3’ I~ ( )_/
Code coding T2\ Xy
Computation Problem:
o Consider the coefficients a € Fg, a=[a1, ag]

Decoder




Nested Linear Coding Architecture

Linear Multi- Uln X{L

Code | | coding w1(u1)
yn A

Py|X1 X Decoder =T
. . Un /
M, Linear | | Multi 2 o (u2) H

Code coding X%L

M

Computation Problem:
o Consider the coefficients a € F, a = [a1, as]

e For my € [2"%], [} € [2”Rk], the linear combination of codewords
with coefficient vector a is
alqu(ml, ll) SP) agug(mg, ZQ)
= [am(ml, ll) & agn(mg, ZQ)] G D ald’f D GQdEL
=v(t)Ge d,
— wn(t)’ te [znmax{Rl-l—Rl,Rg-i-RQ}]



Nested Linear Coding Architecture

Linear Multi- | U7 iy X7
M, Code coding QLl(ul)
YTL
Py|x1X, Decoder
Linear Multi- | U3 [ /
My Code | | coding w2(uz) X3
Computation Problem:

o Let M} be the chosen message and L the chosen index from the
multicoding step.




Nested Linear Coding Architecture

Linear Multi- | U7 o X7
M, Code coding Ll(ul)
YTL
Py|x1X, Decoder
Linear Multi- | U3 [ /
My Code | | coding w2(uz) X3
Computation Problem:

o Let M} be the chosen message and L the chosen index from the
multicoding step.

e Decoder wants a linear combination of the codewords:

WTL(T) = alUi”(]Wl, Ll) &) agUgL(Afg, Lg)




Nested Linear Coding Architecture

n
Xl

N\

Linear Multi- oL
My Code | | coding w1(u1)

Linear Multi- oy L
My Code | | coding w2(uz)

Py|x1X,

YTL

/

X5

Computation Problem:

Decoder

o Let M} be the chosen message and L the chosen index from the
multicoding step.

e Decoder wants a linear combination of the codewords:
WTL(T) = alUi”(]Wl, Ll) b agUgL(Afg, Lg)
e Decoder: f(y") € [2nmax{Ri+RiRatRa}] g c yn

e Probability of Error: P™ = P{T £ T}



Nested Linear Coding Architecture

n
Xl

N\

Linear Multi- oL
My Code | | coding w1(u1)

Linear Multi- oy L
My Code | | coding w2(uz)

Py|x1X,

YTL

/

X5

Computation Problem:

Decoder

o Let M} be the chosen message and L the chosen index from the
multicoding step.

Decoder wants a linear combination of the codewords:

WTL(T) = alUi”(]Wl, Ll) &) agUgL(Afg, Lg)

Decoder: Lt(yn) S [2nmax{Rl+RlyR2+R2}], yn ey
Probability of Error: P = P{T # 17}

e A rate pair is achievable if there exists a sequence of codes such that
PE")—>Oasn—>oo.



Nested Linear Coding Architecture

. i UTL X7L
M, Linear Multi 1 1

Code | | coding w1(u1)
yn A

Py|xiX2 Decoder (— T’
Linear Multi- | U3 [ _/
My Code coding w2(uz) X3
Decoding:

e Joint Typicality Decoding: Find an index t € [2”max(R1+R1’R2+R2)]
such that (w™(t),y") € T,



Nested Linear Coding Architecture

M

My

n
Xl

N\

Linear Multi- | U7 v (u )_
Code coding A
Linear Multi- | U3 (2 H
Code coding T2\

Py|x1X,

YTL

/

n
X2

Theorem (Lim-Chen-Nazer-Gastpar Allerton '15)

A rate pair (Ry, Ro) is achievable if

R < I(W;Y) — I(W; Ug),
Ry < I(W;Y) — I(W; Ul),

k=1,2, and W = a1U; ® asUs.

Decoder

for some p(u1)p(ug) and functions x1(u1), x2(u2), where Uy, = Iy,



Nested Linear Coding Architecture

M

My

n
Xl

N\

Linear Multi- | U7 v (u )_
Code coding A
Linear Multi- | U3 1 |
Code coding 7a(u2)

Py|x1X,

YTL

/

n
X2

Theorem (Lim-Chen-Nazer-Gastpar Allerton '15)

A rate pair (Ry, Ro) is achievable if

R < I(W;Y) — I(W; Ug),
Ry < I(W;Y) — I(W; Ul),

k=1,2, and W = a1U; ® asUs.

e Padakandla-Pradhan '13: Special case where R1 = R».

Decoder

for some p(u1)p(ug) and functions x1(u1), x2(u2), where Uy, = Iy,
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WLOG assume M = {M; =0,My =0,L; =0, Ly = 0}.

Union bound: P™ < ZP{ Wn(t),Y™) € TW|M}.
20

Notice that the L depend on the codebook so Y™ and W"(t) are
not independent.

To get around this issue, we analyze
=Y P{W"(),Y") € T, U0,0) € T, U3(0,0) € T |M}
t#0
Conditioned on M, Y™ — (U7(0,0),U(0,0)) — W"(t)
P(£) tends to zero as n — oo if
Ry + Rk + Rl + RQ
<I(W3Y) + D(pwllpa) + D(pu:[lpa) + D(pus [pa)
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e Consider a Gaussian MAC with real-valued channel output
Y =mXi+hXo+72

Want to recover a; XT' + a2 X3 for some integers ay, as.
e Gaussian noise: Z ~ N(0,1)
Usual power constraint: E[X?Z] < P

Via Gaussian quantization arguments, we can recover the following
theorem.



Compute-and-Forward over a Gaussian MAC

e Consider a Gaussian MAC with real-valued channel output
Y=mnX1+hXo+2Z2

Want to recover a1 X' 4+ a2 X3 for some integers aq, as.
e Gaussian noise: Z ~ N(0,1)
Usual power constraint: E[X2] < P

Via Gaussian quantization arguments, we can recover the following
theorem.
Theorem (Nazer-Gastpar '11)

For any channel vector h and integer coefficient vector a, any rate
tuple satisfying Ry, < Rcomp(h,a) for k s.t. aj, # 0 is achievable where

1 P
Reomp(h, a) = _10g+ —
e 2 aT(P~I+ hhT) 'a
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Beyond One Linear Combination

e |n some scenarios, it is of interest to decode two or more linear
combinations at each receiver.

e For example, Ordentlich-Erez-Nazer '14 approximates the sum
capacity of the symmetric Gaussian interference channel via
decoding two linear combinations.

e Ordentlich-Erez-Nazer '13 improves upon compute-and-forward for
two or more linear combinations via successive cancellation.

e What about jointly decoding the linear combinations?
e Ordentlich-Erez '13 derived bounds for lattice-based codes.

e This talk: We can analyze this via joint typicality decoding to get an
achievable rate region.
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e At node k € [1 : K], the message M, is encoded using the nested
linear coding architecture.

e Let L be the chosen index from the multicoding step.

e The objective of the receiver is to compute two linear combinations
of the codewords,

K

Wi(Ty) = €D arpuf (M, L)
k=1

W3(T3) @azkuk (Mp, L)

with vanishing probability of error.



Jointly Decoding Two Linear Combinations of K Codewords

e At node k € [1 : K], the message M, is encoded using the nested
linear coding architecture.

e Let L be the chosen index from the multicoding step.

e The objective of the receiver is to compute two linear combinations
of the codewords,

K

Wi(T1) = €D arkuii (My, Ly,)
k=1

W3(Ty) = @a%uk My, L)
k=1

with vanishing probability of error.

e Key Technical Issue: Random linear codewords are pairwise
independent, but not 4-wise independent!



Jointly Decoding Two Linear Combinations of K Codewords
Theorem (Lim-Chen-Nazer-Gastpar Allerton '15)

A rate tuple (Ry,...,Rg) is achievable for computing two linear
combinations if

Ry, < min{H(Uy) — HV|Y), HUy) — HWy, Wa|Y,V)}, k€Ki
R; < I(Wy Y, W1) — H(Wy) + H(U;), j € Ka,
Ry + R; < I(Wy, Wy Y) — HWy, Wa) + H(Uz) + H(U;), k€ K1,j € Ky
or
Ry, < I(Wy;Y,Wy) — HWh) + H({Uy), k€K,
R; < min{H (U;) — H(V|Y), H{U;) — HWy, W2|Y,V)}, j € Ko,
Ry + R; < I(Wy, Wy Y) — HWy, W) + H(Uz) + H(U;), k€ K1,j € Ky

for some Hlep(uk) and xy,(ux) and non-zero vector b € Fz,
where Ky = {k € [1: K] : ajq # 0}, j = 1,2
and V = b] I/’V] (&) bQI/I/Y‘Z.



Jointly Decoding Two Linear Combinations of K Codewords
Theorem (Lim-Chen-Nazer-Gastpar Allerton '15)

A rate tuple (Ry,...,Rg) is achievable for computing two linear
combinations if

Ry, < min{H(Uy) — HV|Y), H{Uy) — HWy, Wa|Y, V)}, k€ Ky
R; < I(Wy Y, W1) — H(Wy) + H(U;), j € Ka,
R+ Rj < I(Wy,Wa;Y) — HWy, W) + H(Ug) + H(U;), ke€Ki,je€Ksy
or
Ry, < I(Wy;Y,Wy) — HWh) + H({Uy), k€K,
R; < min{H (U;) — H(V|Y), H{U;) — HWy, W2|Y,V)}, j € Ko,
R+ Rj < I(W1,Wa;Y) — HWy, W) + H(Ug) + H(U;), k€ Ky,je€Ksy

for some Hlep(uk) and xy,(ux) and non-zero vector b € Fz,
where Ky = {k € [1: K] : ajq # 0}, j = 1,2
and V = b] I/’V] (&) bQI/I/Y‘Z.

e The auxiliary linear combination V' plays a key role in classifying
dependent competing pairs in the error analysis.



A rate pair (R1, R2) is achievable for the discrete memoryless
multiple-access channel if

Ri< m;%(min{H(Ul) = H(W‘Y), H(Ul) = H(Ul, UQ‘Y, W)},
a
Ry < I(XQ;Y’Xl),
Ry + Ry < I(X1,X2;Y),
Ry < I(Xl;Y|X2),
Ry< m;%(min{H(UZ) — HWI|Y), H{U,) — H(Uy,Us|Y, W)},
a
R+ Ry < I(Xl,XQ;Y)

for some p(u1)p(ug) and x1(uy), x2(uz), where W = a1Uy @ agUs.



K74 N

Ry
0 I

Ry < Iy,
Ry < I(X2;Y[X1),
Ri+ Ry < I(Xl,X2;Y);) N
min{H(U;) — HW|Y), H(U;
where I} = 1;1;%(



1>

%>

R
0

R < I(Xl;YlXQ)y
< IQ7 v |
22 e U) ) — H(Up, Up]Y, W)}
1 .
{H(U2) - HW[Y), H(
min
where [y = 1;1%
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e Multiple-access rate region via nested linear codes:

U Ao



e Even if the receiver is only
interested in recovering one
linear combination it can
sometimes help to decode two!

MAC Capacity Region
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CF2 e Even if the receiver is only

interested in recovering one
linear combination it can
sometimes help to decode two!
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Multiple-Access via Nested Linear Codes



CF2 e Even if the receiver is only

interested in recovering one
linear combination it can
sometimes help to decode two!
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Union of MACs
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o First steps towards bringing algebraic network information theory
back into the realm of joint typicality.

e Joint decoding rate region for compute-and-forward that
outperforms parallel and successive decoding.



