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Measles

http://science-education.nih.gov

Total number of U.S. cases

Graph by Alun Lloyd (2002)

Vaccine developed in 1963.



Why do so many people study measles?

The biological system is fairly simple
We can test and improve models (design vaccination strategies)
These models can be used for many applications 
(other diseases, computer viruses, etc.)

Excellent data is available 
We can ask detailed questions about spatial and temporal dynamics
The data exhibits periodic or more complex behavior

Some have conjectured that the dynamics could be chaotic



D. Earn, et al. Science, 2000

Question:
Is the pre-vaccine 
time series chaotic?

Answer:
Undetermined
(Not enough data)



Outline

SEIR model - a model for epidemics in childhood diseases 
(Yorke and London (1973); May and Anderson (1979); Schwartz 
(1983); Grenfell et al. (2000); Hethcote (2000))
Add stochastic perturbations to represent noise in 
population size
Bifurcation to stochastic chaos
Possible vaccination strategies to control and prevent future 
outbreaks



Modeling Epidemics: Assumptions

The  population:
Assume the population is large and well mixed.
Variables and parameters:                 

Normalize the  population: S + E + I + R = 1

InfectivesI:
RecoveredR:

ExposedE:
SusceptiblesS:

birth and death rateµ:µ:µ:µ:
contact rate (for S & I)β:β:β:β:

mean infectious periodγ γ γ γ −−−−1111::::
mean latent exposed periodαααα−−−−1111::::



The standard SEIR model
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Our flavor

The contact rate:

The infectives are roughly 
proportional to the exposed
[Schwartz, J. Math. Biol. 1985]
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The model we study
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The modified SI model (MSI)

The paremeter we vary is δ



Bifurcation diagram

The system is driven 
periodically, so consider 
the discrete map on the
Poincare section.



Adding noise

The system is driven 
periodically, so add noise 
as if it is a map. 
(Additive noise)

Noise: normal distribution, 
mean=0, vary the standard 
deviation (σ)



Noisy dynamics

Time series
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Stochastic Chaos?

Deterministic definition (numerical)
Compact set
Positive Lyapunov exponent 
Not asymptotically periodic

Stochastic version? 
Compact set
Positive Lyapunov exponent
Homoclinic/heteroclinic topology 
(makes chaotic orbits possible)



Lyapunov exponents

Red: σ = 0.01 (noisy)
Blue: σ = 0.05 (chaotic)

But Lyapunov exponents 
can yield false results
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Unstable manifolds

Random trajectories 
follow the unstable 
manifolds of the 
period three saddle

What is the role of 
the manifolds?
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Smale Horseshoe Topology

Homoclinic Orbit

Heteroclinic orbit



Stochastic Chaotic Saddle
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New tool to detect transport

Use a Galerkin approximation of the Stochastic Frobenius-
Perron Operator to detect the flux across a basin 
boundaries and predict the most probable regions of 
transport created by noise.
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Area Flux
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Probability Density Function



How do we use this information?

Predict the occurrence of chaos

Control the dynamics/prevent outbreaks



Predicting chaos
How much noise is 
needed to induce chaos?

• = value of σ so that the largest 

Lyapunov exponent is positive (20 trials)



Controlling the dynamics

If we can identify points in the bull’s eye, then we can 
predict future outbreaks



Controlling the dynamics



Conclusions

Stochastic perturbations can induce new, 
emergent dynamics in models
Chaotic behavior can be induced in models 
by additive noise
The topology reveals the mechanism that 
facilitates these dynamics
We can use the topology to our advantage 
and control the system 


