Chaotic Epidemic Outbreaks: Deterministic or Random?

Lora Billings

Montclair State University, Upper Montclair, NJ

Ira Schwartz

Naval Research Laboratory, Washington, DC

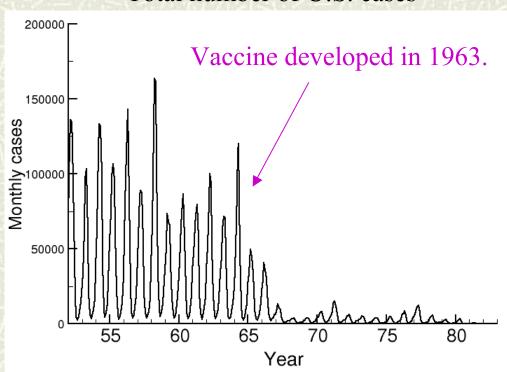
Erik Bollt

Clarkson University, Potsdam, NY

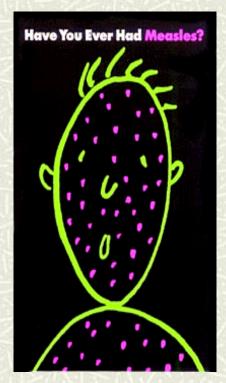
Supported by ONR N00173-01-1-G911

Measles

Total number of U.S. cases



Graph by Alun Lloyd (2002)



http://science-education.nih.gov

Why do so many people study measles?

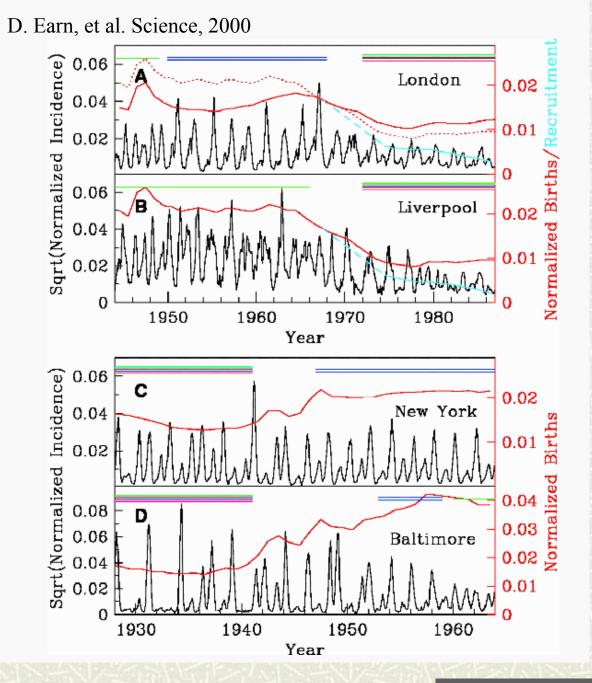
- # The biological system is fairly simple
 - We can test and improve models (design vaccination strategies)
 - These models can be used for many applications (other diseases, computer viruses, etc.)
- **♯** Excellent data is available
 - We can ask detailed questions about spatial and temporal dynamics
 - The data exhibits periodic or more complex behavior
- Some have conjectured that the dynamics could be chaotic

Question:

Is the pre-vaccine time series chaotic?

Answer:

Undetermined (Not enough data)



Outline

- **■** SEIR model a model for epidemics in childhood diseases (Yorke and London (1973); May and Anderson (1979); Schwartz (1983); Grenfell et al. (2000); Hethcote (2000))
- ★ Add stochastic perturbations to represent noise in population size
- **♯** Bifurcation to stochastic chaos

Modeling Epidemics: Assumptions

The population:

- # Assume the population is large and well mixed.
- **#** Variables and parameters:

S: Susceptibles α^{-1} : mean latent exposed period

E: Exposed γ^{-1} : mean infectious period

I: Infectives u: birth and death rate

R: Recovered B: contact rate (for S & I)

 \blacksquare Normalize the population: S + E + I + R = 1

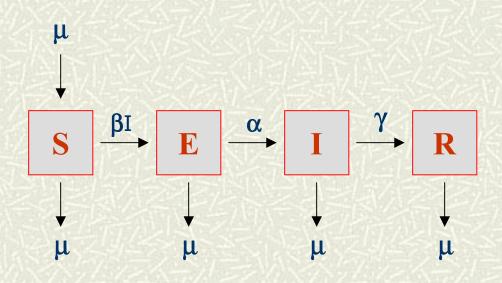
The standard SEIR model

$$\frac{dS}{dt} = \mu - \beta(t)IS - \mu S$$

$$\frac{dE}{dt} = \beta(t)IS - \alpha E - \mu E$$

$$\frac{dI}{dt} = \alpha E - \gamma I - \mu I$$

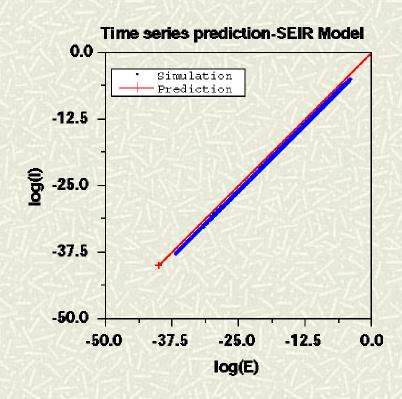
$$\frac{dR}{dt} = \gamma I - \mu R$$



Our flavor

- # The contact rate: $\beta(t) = \beta(t+1) = \beta_0(1+\delta\cos 2\pi t)$
- The infectives are roughly proportional to the exposed [Schwartz, J. Math. Biol. 1985]

$$I(t) \approx \left(\frac{\alpha}{\mu + \gamma}\right) E(t)$$



The model we study

The modified SI model (MSI)

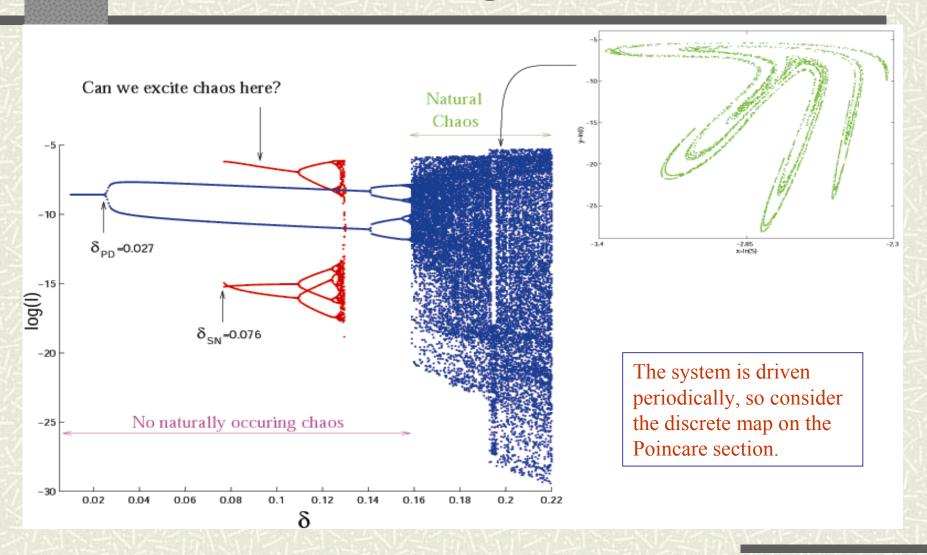
$$\frac{dS}{dt} = \mu - \beta(t)IS - \mu S$$

$$\frac{dI}{dt} = \left(\frac{\alpha}{\mu + \gamma}\right)\beta(t)IS - (\mu + \alpha)I$$

$$\beta(t) = \beta_0(1 + \delta\cos(2\pi t))$$

The paremeter we vary is δ

Bifurcation diagram



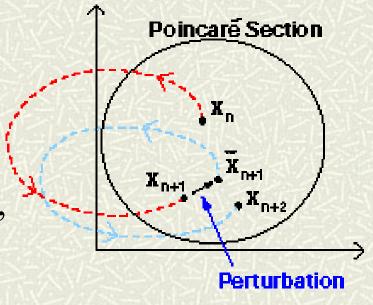
Adding noise

➡ The system is driven periodically, so add noise as if it is a map.

(A ddition noise)

(Additive noise)

Moise: normal distribution, mean=0, vary the standard deviation (σ)

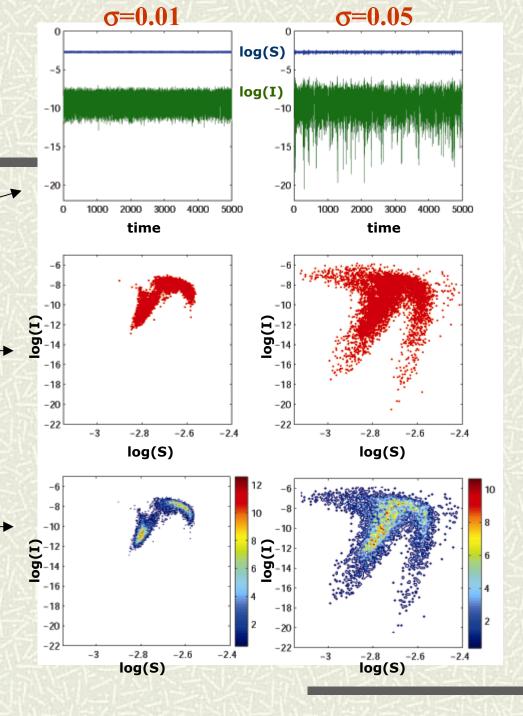


Noisy dynamics

Time series

♯ Phase space ___ diagram

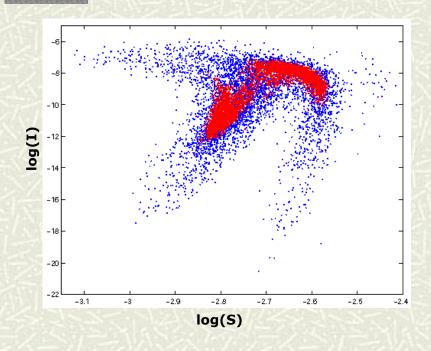
Probability densityfunction



Stochastic Chaos?

- **♯** Deterministic definition (numerical)
 - Compact set
 - Positive Lyapunov exponent
 - Not asymptotically periodic
- **♯** Stochastic version?
 - Compact set
 - Positive Lyapunov exponent
 - Homoclinic/heteroclinic topology (makes chaotic orbits possible)

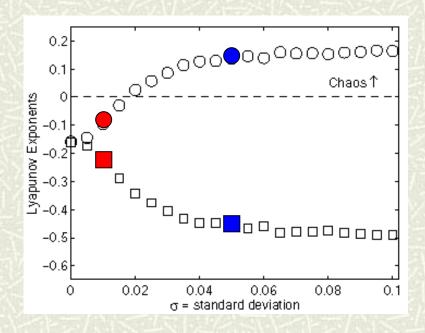
Lyapunov exponents



But Lyapunov exponents can yield false results

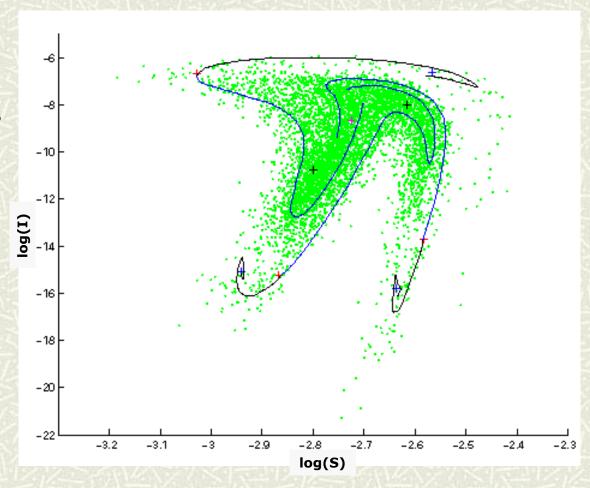
 \blacksquare Red: $\sigma = 0.01$ (noisy)

 \blacksquare Blue: $\sigma = 0.05$ (chaotic)



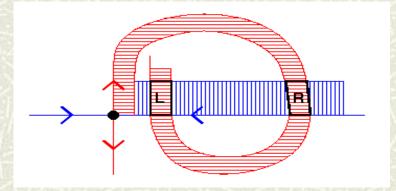
Unstable manifolds

- Random trajectories follow the unstable manifolds of the period three saddle
- **₩** What is the role of the manifolds?

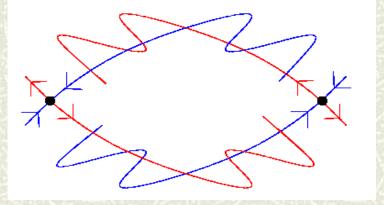


Smale Horseshoe Topology

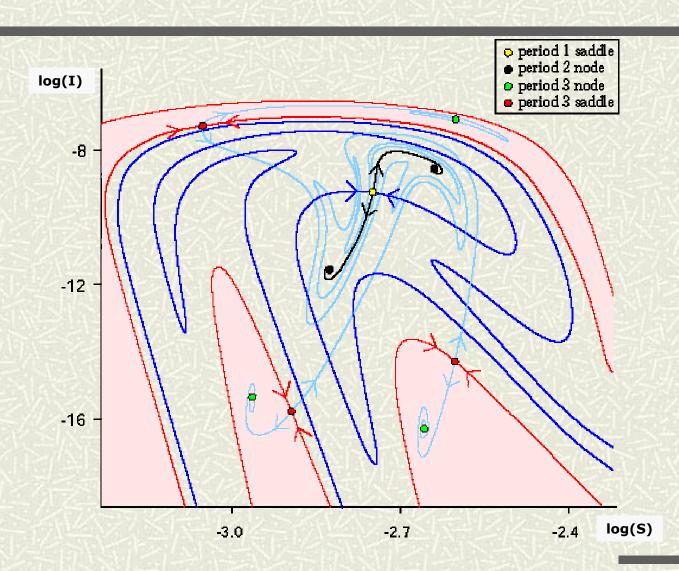
Homoclinic Orbit



Heteroclinic orbit

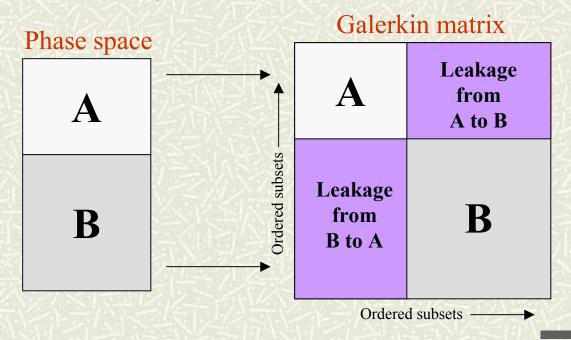


Stochastic Chaotic Saddle

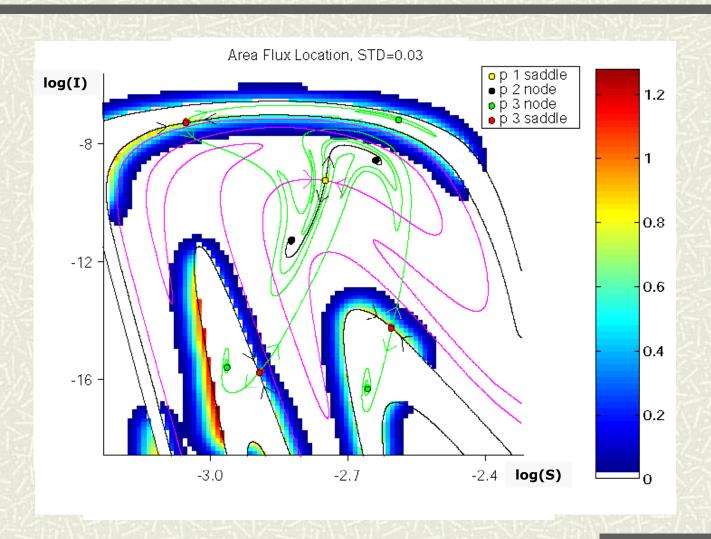


New tool to detect transport

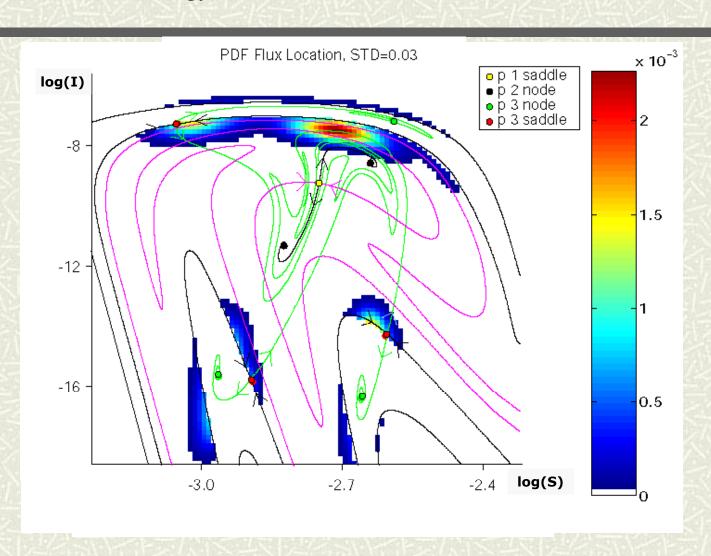
Use a Galerkin approximation of the Stochastic Frobenius-Perron Operator to detect the flux across a basin boundaries and predict the most probable regions of transport created by noise.



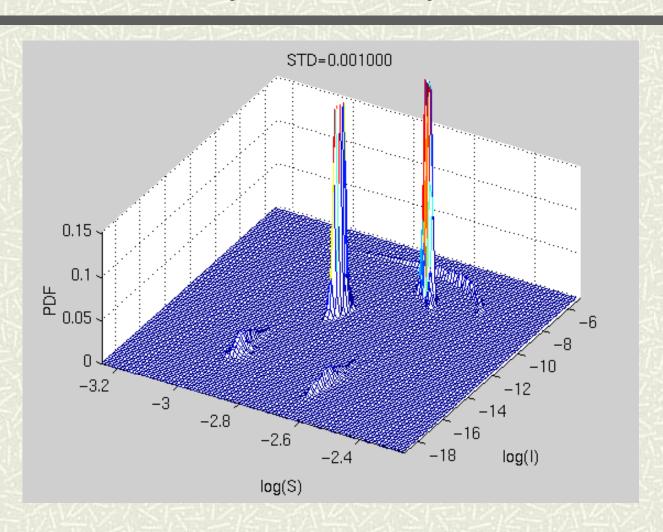
Area Flux



PDF Flux



Probability Density Function

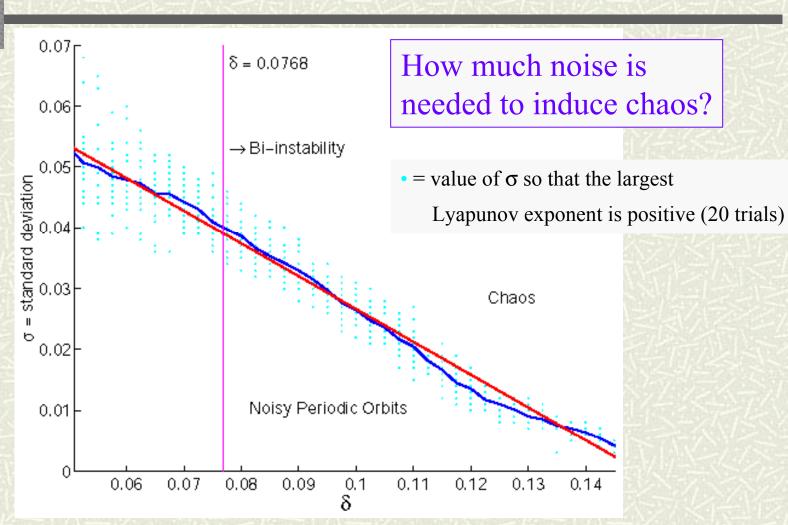


How do we use this information?

Predict the occurrence of chaos

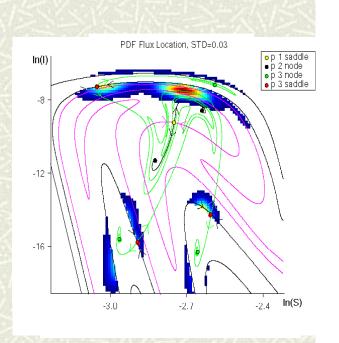
Control the dynamics/prevent outbreaks

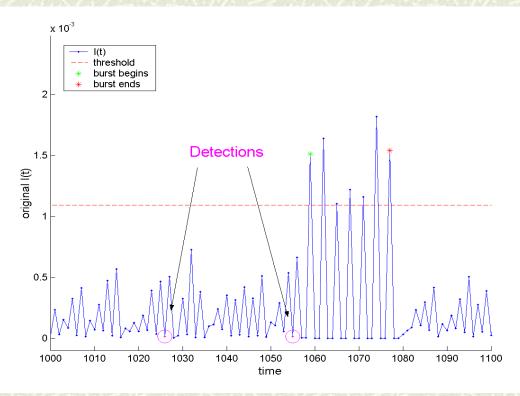
Predicting chaos



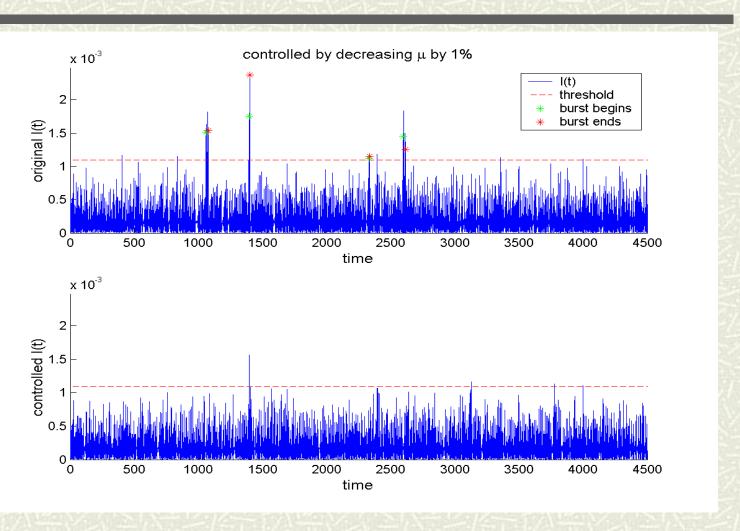
Controlling the dynamics

♯ If we can identify points in the bull's eye, then we can predict future outbreaks





Controlling the dynamics



Conclusions

- **♯** Stochastic perturbations can induce new, emergent dynamics in models
- ★ Chaotic behavior can be induced in models by additive noise
- **♯** The topology reveals the mechanism that facilitates these dynamics
- We can use the topology to our advantage and control the system