IMPLEMENTING BP-OBFUSCATION
USING GRAPH-INDUCED
GRADED ENCODING

Shai Halevi
Tzipora Halevi
® Victor Shoup

Noah Stephens-Davidowitz

https://eprint.iacr.org/2017/104

Supported by the Defense Advanced Research Projects Agency (DARPA) and Army
Research Office (ARO) under Contract No. W911NF-15-C-0236.

https://eprint.iacr.org/2017/104

PROGRAM OBFUSCATION

Make program “unintelligible”

Hide inner workings, only I/O should be “visible”
Enable hiding secrets Iin software

E.g. cryptographic key, or an algorithm
We seek an obfuscating compiler:

Arbitrary program in, obfuscated program out

Without changing the functionality
At most polynomial slowdown

OBFUSCATION IS USEFUL

Commercially available ad-hoc obfuscation

Code Obfuscation - Big Sale Now On

www topsaleoot.com/Code+0bfuscation

Code Obfuscation up to 77% Off. Hurry, Limited Time Only - Save Mow!

Find the Best Prices - Top Price Comparison - New ltems on Sale - Massive Savings - Up to 70% Off
On Offer - Free Delivery - Limited Sale - Clearance

Code Obfuscation Best Prices - Buy It Now At 70% Off
www.bestdeals today/Code_Obfuscatio/Deals ¥

Find Our Lowest Possible Price! Cheapest Code Obfuscation For Sale

Searches related to Code Obfuscation products

code obfuscation techniques obfuscator c#

code obfuscation tools obfuscation javascript

Heuristic, trying to make reverse-engineering harder
Can always be broken with “enough debugging”

Can we get “crypto-strength” obfuscation?

CRYPTOGRAPHIC OBFUSCATION

15t plausible construction in [GGHRSW'13]
Several others since then
Constructions have a “core component” that
obfuscates “somewhat simple” programs
E.g., “branching programs” (BPs)
Then a transformation that extends it to
general programs
Using other tools (e.qg., FHE, NIZK, RE, etc.)

How TO OBFUSCATE?

Main tool is “graded encoding” [GGH'13]

Like homomorphic encryption, values can be
hidden by “encoding”, but still manipulated

Main difference: can see if the encoded value is O
High-level idea: run program on encoded
values, check at the end if the result Is zero

Main problem: hiding whether or not any two
Intermediate values are the same

Use randomization techniques for that

CRYPTOGRAPHIC OBFUSCATION CHALLENGES

Security I1s poorly understood

Current-day graded encoding Is very costly

Other components make “core obfuscator” more
costly still

Previous implementation attempts:
[AHKM’14]: 14-bit point function
[LMA+'16] (5Gen): 80+ bit point function

More accurately 20+ nibbles

Note: point functions can be obfuscated much
faster using special-purpose constructions

OUR WORK

Obfuscate “read once branching programs”
Aka nondeterministic finite automata (NFA)

Can handle ~100 states & upto 80-bit inputs
More accurately, 20 nibbles

Can obfuscate some non-trivial functions
E.g., Substring/superstring/fuzzy match

Still not enough for the “somewhat simple
functions” that we would like to handle

OUR WORK

Using the “graph-induced” graded encodings
scheme of Gentry et al. [GGH'15]

Previous implementations used the encoding
scheme of Coron et al. [CLT’13]

GGH15 seems better for NFAs with many states

For performance reasons, could not implement
one of the steps in [GGH'15]
Namely, the “bundling factors”

=» implementation Is only safe when used to
obfuscate read-once BPs, not arbitrary BPs

Ly, eorF=iF,
LHew FAL
1 ~a T-la
Elwz SE=0 S
EKHU AQ-(quant) C, AT pgs g Z ' Zi;r' B
E=E, AQ,=AW,tAE 1 PV=nRT
Lt RT eepr SO T

Pinous ‘T a

A
x=Acos{ut){or} Asn{ux =
v=~Aw sn(u)t:){= I{}or} 31001;{(.1) M=pV Pl_Pz

a=Awrcos{ut)= for} -Aursin{u) oM, _ AP=pg Ah

B=p, V. g
J [Zm "’J R,=6.37(10)6m el o
e N7 Jax G=6.67(10)"! N m¥Kg? 2

| @ SOME DETAILS
I don’t worry, only three slides

V= T
x—)x._,y x, —)x s -
VIV, ¥, VeV, I—Zlnilz =6, +&)t+ afz
H%% e o - 2a(8 6,)
‘J —

OBFUSCATING BPs/NFAs

Graphs, represented by transition matrices

Need to “hide” matrices, but allow them to be
multiplied and compared to zero

Begin by randomizing these matrices

Mainly Kilian-style randomization:
M; X My X M3 = (MyR;) X (R{*M,R;) x (R7"M3)

Apply graded encoding to randomized matrices

Can multiply encoded matrices, check for zero
But cannot “see” the original matrices

“GRAPH-INDUCED” GRADED ENCODING

Parametrized by a chain of matrices A;

Ag B A B A, B A,

We encode “plaintext matrices” wrt edges

Encoding of M; wrt A;_; — A; Is a low-norm

matrix C; s.t., A;_1C; = M;A; + small-error
The “hard part” is finding such a low-norm (;

“GRAPH-INDUCED” GRADED ENCODING

o Parametrized by a chain of matrices A4;

Ag FA; B A, . BA,

o We encode “plaintext matrices” wrt edges

o Encoding of M; wrt A;_; — A; Is a low-norm
matrix C; s.t., A;_1C; = M;A; + small-error
e The "hard part” is finding such a low-norm (;

oIt follows that 4y [1; C; = (I1; M;)A,, + small-error
» At least when the M;’s themselves are small

oTo testif |[; M; = 0, check the size of A, |1, C; ‘

OUR MAIN OPTIMIZATIONS

Finding a small solution C for AC = B:
Variant of trapdoor-sampling from [MP’12]
A new high-dimensional Gaussian lattice sampling
Working with integers in CRT representation
Optimizing multiplication of very large matrices
Each matrix takes more than 18Gb to write down

Many lower-level optimizations

Stash to reduce the number of samples, multi-
threading strategies, memory-saving methods, ...

SOME PERFORMANCE NUMBERS

L m | Initialization | Obfuscation | Evaluation

Intel Xeon CPU E5-2698 v3:
5 3352 66.61 249.80 5.81
6 3932 135.33 503.01 13.03
8 5621 603.06 1865.67 56.61
10 | 6730 1382.59 4084.14 125.39
12 | 8339 3207.72 8947.79 300.32
14 | 9923 7748.91 18469.30 621.48
16 | 10925 11475.60 38926.50 949 .41
17 | 11928 16953.30 44027 .80 1352.48

18 | 12403 20700.00 | out-of-RAM

4 x 16-core Xeon CPUs:

17 | 11928 16523.7 84542.3 646.46
68 hours 49 113564 36272.9 182001.4 1139.36
20 | 14145 46996.8 — 243525.6 1514.26

100 states, security=80, binary alphabet. L=input length, m=dimension

SOME PERFORMANCE NUMBERS

Memory vs. BP length

sec=80, 32 threads, binary alphabet

-i== obfuscation

memory (GB)
g

4 6 8 10 12 14 16 18 20 22
BP length

SOME PERFORMANCE NUMBERS

Hard drive vs. BP length

sec=80, 32 threads, binary alphabet

=== [nitialization
=== obfuscation

hard drive (GB)

4 6 8 10 12 14 16 18 20 22
BP length

SOME PERFORMANCE NUMBERS

When using “nibbles” rather than bits for input:
Obfuscation time, disk usage, 8x increase
Everything else remains the same

To handle BP of length 20 with input nibbles:
nit: 13hrs, obfuscate: 23 days, Eval: 25mins
RAM: 400GB

DIsk space: ~10TB

CONCLUSIONS

Cryptographic “general-purpose obfuscation” is
barely feasible

Can handle some non-trivial functions

With inputs up to 20 characters (=80 bits)
A new generation of constructions is now
emerging [LIn'16,...]

Security Is somewhat better understood

Practical performance still unknown
Could be better than previous constructions, or worse

Questions?

Thiaals You/

REFERENCES

[MP’12] Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter,
faster, smaller. Eurocrypt 2012

GGH’13] Garg, Gentry, Halevi. Candidate Multilinear Maps from Ideal
Lattices. Eurocrypt 2013

CLT’13] Coron, Lepoint, Tibouchi. Practical multilinear maps over the
Integers. CRYPTO 2013

GGHRSW’13] Garg, Gentry, Halevi, Raykova, Sahai, Waters. Candidate
Indistinguishability obfuscation and functional encryption for all circuits.
SIAM J. Comput., 45(3):882-929, 2016.

'AHKM’14] Apon, Huang, Katz, Malozemo. Implementing cryptographic
program obfuscation. http://eprint.iacr.org/ 2014/779

(GGH’15] Gentry, Gorbunov, Halevi. Graph-induced multilinear maps from
attices. TCC 2015

LMA+’16] Lewi, Malozemo, Apon, Carmer, Foltzer, Wagner, Archer,
Boneh, Katz, Raykova. 5Gen: A framework for prototyping applications
using multilinear maps and matrix branching programs. CCS 2016

[Lin’16] Indistinguishability obfuscation from constant-degree ideal graded
encoding, Eurocrypt 2016

