
IMPLEMENTING BP-OBFUSCATION

USING GRAPH-INDUCED

GRADED ENCODING

Shai Halevi

Tzipora Halevi

Victor Shoup

Noah Stephens-Davidowitz

Supported by the Defense Advanced Research Projects Agency (DARPA) and Army
Research Office (ARO) under Contract No. W911NF-15-C-0236.

https://eprint.iacr.org/2017/104

https://eprint.iacr.org/2017/104

PROGRAM OBFUSCATION

Make program “unintelligible”

 Hide inner workings, only I/O should be “visible”

Enable hiding secrets in software

 E.g. cryptographic key, or an algorithm

We seek an obfuscating compiler:

 Arbitrary program in, obfuscated program out

 Without changing the functionality

 At most polynomial slowdown

OBFUSCATION IS USEFUL

Commercially available ad-hoc obfuscation

 Heuristic, trying to make reverse-engineering harder

 Can always be broken with “enough debugging”

Can we get “crypto-strength” obfuscation?

CRYPTOGRAPHIC OBFUSCATION

1st plausible construction in [GGHRSW’13]

 Several others since then

Constructions have a “core component” that

obfuscates “somewhat simple” programs

 E.g., “branching programs” (BPs)

Then a transformation that extends it to

general programs

 Using other tools (e.g., FHE, NIZK, RE, etc.)

HOW TO OBFUSCATE?

Main tool is “graded encoding” [GGH’13]

 Like homomorphic encryption, values can be

hidden by “encoding”, but still manipulated

 Main difference: can see if the encoded value is 0

High-level idea: run program on encoded

values, check at the end if the result is zero

 Main problem: hiding whether or not any two

intermediate values are the same

 Use randomization techniques for that

CRYPTOGRAPHIC OBFUSCATION CHALLENGES

Security is poorly understood

Current-day graded encoding is very costly

 Other components make “core obfuscator” more

costly still

Previous implementation attempts:

 [AHKM’14]: 14-bit point function

 [LMA+’16] (5Gen): 80+ bit point function

More accurately 20+ nibbles

 Note: point functions can be obfuscated much

faster using special-purpose constructions

OUR WORK

Obfuscate “read once branching programs”

 Aka nondeterministic finite automata (NFA)

Can handle ~100 states & upto 80-bit inputs

 More accurately, 20 nibbles

Can obfuscate some non-trivial functions

 E.g., Substring/superstring/fuzzy match

Still not enough for the “somewhat simple

functions” that we would like to handle

OUR WORK

Using the “graph-induced” graded encodings

scheme of Gentry et al. [GGH’15]

 Previous implementations used the encoding

scheme of Coron et al. [CLT’13]

 GGH15 seems better for NFAs with many states

For performance reasons, could not implement

one of the steps in [GGH’15]

 Namely, the “bundling factors”

 implementation is only safe when used to

obfuscate read-once BPs, not arbitrary BPs

SOME DETAILS

don’t worry, only three slides

OBFUSCATING BPS/NFAS

Graphs, represented by transition matrices

 Need to “hide” matrices, but allow them to be

multiplied and compared to zero

Begin by randomizing these matrices

 Mainly Kilian-style randomization:

𝑀1 ×𝑀2 ×𝑀3 → 𝑀1𝑅1 × 𝑅1
−1𝑀2𝑅2 × (𝑅2

−1𝑀3)

Apply graded encoding to randomized matrices

Can multiply encoded matrices, check for zero

 But cannot “see” the original matrices

“GRAPH-INDUCED” GRADED ENCODING

Parametrized by a chain of matrices 𝐴𝑖

𝐴0 → 𝐴1 → 𝐴2 → … → 𝐴𝑛
We encode “plaintext matrices” wrt edges

Encoding of 𝑀𝑖 wrt 𝐴𝑖−1 → 𝐴𝑖 is a low-norm

matrix 𝐶𝑖 s.t., 𝑨𝒊−𝟏𝑪𝒊 = 𝑴𝒊𝑨𝒊 + small-error

 The “hard part” is finding such a low-norm 𝐶𝑖

𝑀1 𝑀2 𝑀3 𝑀𝑛

“GRAPH-INDUCED” GRADED ENCODING

Parametrized by a chain of matrices 𝐴𝑖

𝐴0 → 𝐴1 → 𝐴2 → … → 𝐴𝑛
We encode “plaintext matrices” wrt edges

Encoding of 𝑀𝑖 wrt 𝐴𝑖−1 → 𝐴𝑖 is a low-norm

matrix 𝐶𝑖 s.t., 𝑨𝒊−𝟏𝑪𝒊 = 𝑴𝒊𝑨𝒊 + small-error

 The “hard part” is finding such a low-norm 𝐶𝑖

 It follows that 𝐴0ς𝑖 𝐶𝑖 = ς𝑖𝑀𝑖 𝐴𝑛 + small-error

 At least when the 𝑀𝑖 ’s themselves are small

To test if ς𝑖𝑀𝑖 = 0, check the size of 𝐴0ς𝑖 𝐶𝑖

𝑀1 𝑀2 𝑀3 𝑀𝑛

OUR MAIN OPTIMIZATIONS

Finding a small solution 𝐶 for 𝐴𝐶 = 𝐵:

 Variant of trapdoor-sampling from [MP’12]

 A new high-dimensional Gaussian lattice sampling

 Working with integers in CRT representation

Optimizing multiplication of very large matrices

 Each matrix takes more than 18Gb to write down

Many lower-level optimizations

 Stash to reduce the number of samples, multi-

threading strategies, memory-saving methods, …

SOME PERFORMANCE NUMBERS

100 states, security=80, binary alphabet. L=input length, m=dimension

68 hours

SOME PERFORMANCE NUMBERS

SOME PERFORMANCE NUMBERS

SOME PERFORMANCE NUMBERS

When using “nibbles” rather than bits for input:

 Obfuscation time, disk usage, 8x increase

 Everything else remains the same

To handle BP of length 20 with input nibbles:

 Init: 13hrs, obfuscate: 23 days, Eval: 25mins

 RAM: 400GB

 Disk space: ~10TB

CONCLUSIONS

Cryptographic “general-purpose obfuscation” is

barely feasible

 Can handle some non-trivial functions

 With inputs up to 20 characters (=80 bits)

A new generation of constructions is now

emerging [Lin’16,…]

 Security is somewhat better understood

 Practical performance still unknown

Could be better than previous constructions, or worse

Questions?

REFERENCES

 [MP’12] Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter,
faster, smaller. Eurocrypt 2012

 [GGH’13] Garg, Gentry, Halevi. Candidate Multilinear Maps from Ideal
Lattices. Eurocrypt 2013

 [CLT’13] Coron, Lepoint, Tibouchi. Practical multilinear maps over the
integers. CRYPTO 2013

 [GGHRSW’13] Garg, Gentry, Halevi, Raykova, Sahai, Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits.
SIAM J. Comput., 45(3):882-929, 2016.

 [AHKM’14] Apon, Huang, Katz, Malozemo. Implementing cryptographic
program obfuscation. http://eprint.iacr.org/ 2014/779

 [GGH’15] Gentry, Gorbunov, Halevi. Graph-induced multilinear maps from
lattices. TCC 2015

 [LMA+’16] Lewi, Malozemo, Apon, Carmer, Foltzer, Wagner, Archer,
Boneh, Katz, Raykova. 5Gen: A framework for prototyping applications
using multilinear maps and matrix branching programs. CCS 2016

 [Lin’16] Indistinguishability obfuscation from constant-degree ideal graded
encoding, Eurocrypt 2016

