
Resource Oblivious Parallel Computing

Vijaya Ramachandran
Department of Computer Science

University of Texas at Austin

Joint work with Richard Cole

Reference. R. Cole, V. Ramachandran, “Efficient Resource Oblivious Algorithms for Multicores”. http://arxiv.org/abs/1103.4071.

0-0

THE MULTICORE ERA

• Chip Multiprocessors (CMP) or Multicores:

Due to power consumption and other reasons, microprocessors are
being built with multiple cores on a chip.

Dual-cores are already on most desktops, and number of cores is
expected to increase (dramatically) for the foreseeable future

• The multicore era represents a paradigm shift in general-purpose

computing.

• Computer science research needs to address the multitude of

challenges that come with this shift to the multicore era.

1

ALGORITHMS : VON NEUMANN ERA VS MULTICORE

In order to successfully move from the von Neumann era to the emerging

multicore era, we need to develop methods that:

• Exploit both parallelism and cache-efficiency.

• Further, these algorithms need to be portable
(i.e., independent of machine parameters).

Even better would be a resource oblivious computation where both

the algorithm and the run-time system are independent of machine
parameters.

2

MULTICORE COMPUTATION MODEL

• We model the multicore computation with:

– A multithreaded algorithm that generates parallel tasks (‘threads’).

– A run-time scheduler that schedules parallel tasks across cores.
(Our scheduler has a distributed implementation.)

– A shared memory with caches.

– Data organized in blocks with cache coherence to enforce data
consistency across cores.

– Communication cost in terms of cache miss costs, including costs
incurred through false sharing.

Our main results are for multicores with private caches.

3

OUR RESULTS

• The class of Hierarchical Balanced Parallel (HBP) algorithms.

• HBP algorithms for scans, matrix computations, FFT, etc., building on
known algorithms.

• A new HBP sorting algorithm:
SPMS: Sample, Partition, and Merge Sort.

• Techniques to reduce the adverse effects of false sharing:

limited access writes, O(1) block sharing, and gapping.

4

OUR RESULTS (CONTINUED)

• The Priority Work Stealing Scheduler (PWS).

• Cache miss overhead of the HBP algorithms, when scheduled by
PWS, is bounded by the sequential cache complexity, even when the

cost of false sharing is included, given a suitable ‘tall cache’.

(for large inputs that do not fit in the caches).

At the end of the talk, we address multi-level cache hierarchy
[Chowdhury-Silvestri-B-R’10], and other parallel models.

5

6

ROAD MAP

• Background on multithreaded computations and work stealing.

• Cache and block misses.

• Hierarchical Balanced Parallel (HBP) computations.

• Priority Work Stealing (PWS) Scheduler.

• An example with Strassen’s matrix multiplication algorithm.

• Discussion.

7

MULTITHREADED COMPUTATIONS

M-Sum(A[1..n], s) % Returns s =
Pn

i=1 A[i]

if n = 1 then return s := A[1] end if
fork (M-Sum(A[1..n/2], s1); M-Sum(A[n

2
+ 1..n], s2))

join: return s = s1 + s2

• Sequential execution computes recursively in a dfs traversal of this

computation tree.

8

MULTITHREADED COMPUTATIONS

M-Sum(A[1..n], s) % Returns s =
Pn

i=1 A[i]

if n = 1 then return s := A[1] end if
fork (M-Sum(A[1..n/2], s1); M-Sum(A[n

2
+ 1..n], s2))

join: return s = s1 + s2

• Sequential execution computes recursively in a dfs traversal of this

computation tree.

• Forked tasks can run in parallel.

• Runs on p cores in O(n/p + log p) parallel steps by forking log p times
to generate p parallel tasks.

8-a

WORK-STEALING PARALLEL EXECUTION

M-Sum(A[1..n], s) % Returns s =
Pn

i=1 A[i]

if n = 1 then return s := A[1] end if
fork (M-Sum(A[1..n/2], s1); M-Sum(A[n

2
+ 1..n], s2))

join: return s = s1 + s2

9

WORK-STEALING PARALLEL EXECUTION

M-Sum(A[1..n], s) % Returns s =
Pn

i=1 A[i]

if n = 1 then return s := A[1] end if
fork (M-Sum(A[1..n/2], s1); M-Sum(A[n

2
+ 1..n], s2))

join: return s = s1 + s2

• Computation starts in first core C

• At each fork, second forked task is placed on C ’s task queue T .

• Computation continues at C (in sequential order), with tasks popped
from tail of T as needed.

• Task at head of T is available to be stolen by other cores that are idle.

9-a

10

WORK-STEALING

• Work-stealing is a well-known method in scheduling with various

heuristics used for stealing protocol.

• Randomized work-stealing (RWS) has provably good parallel
speed-up on fairly general computation dags. [Blumofe-Leiserson

1999].

• Caching bounds for RWS are derived in [ABB02, Frigo-Strumpen10,

BGN10]; more recently in [Cole-R11].

None of these cache miss bounds are optimal.

11

ROAD MAP

• Background on multithreaded computations and work stealing.

• Cache and block misses.

• Hierarchical Balanced Parallel (HBP) computations.

• Priority Work Stealing (PWS) Scheduler.

• An example with Strassen’s matrix multiplication algorithm.

• Discussion.

12

CACHE MISSES

Definition. Let τ be a task that accesses r data items (i.e., words) during
its execution. We say that r = |τ | is the size of τ .

τ is f -cache friendly if these data items are contained in O(r/B + f(r))

blocks.

A multithreaded computation C is f -cache friendly if every task in C is
f -cache friendly

13

CACHE MISSES

Definition. Let τ be a task that accesses r data items (i.e., words) during
its execution. We say that r = |τ | is the size of τ .

τ is f -cache friendly if these data items are contained in O(r/B + f(r))

blocks.

A multithreaded computation C is f -cache friendly if every task in C is
f -cache friendly

Lemma. A stolen task τ incurs an additional O(min{M, |τ |}/B + f(τ))

cache misses compared to the steal-free sequential execution.

If f(|τ |) = O(|τ |/B) and |τ | ≥ 2M , this is a 0 asymptotic excess,

i.e., the excess is bounded by the sequential cache miss cost.

13-a

FALSE SHARING

• False sharing, and more generally block misses, occur when there is
at least one write to a shared block.

• In such shared block accesses, delay is incurred by participating

cores when control of the block is given to a writing core, and the
other cores wait for the block to be updated with the value of the write.

• A typical cache coherence protocol invalidates the copy of the block at
the remaining cores when it transfers control of the block to the writing

core.

The delay at the remaining cores is at least that of one cache miss,

and could be more.

14

15

16

BLOCK MISS COST MEASURE

Definition. Suppose that block β is moved m times from one cache to
another (due to cache or block misses) during a time interval T = [t1, t2].
Then m is defined to be the block delay incurred by β during T .

The block wait cost incurred by a task τ on a block β is the delay incurred
during the execution of τ due to block misses when accessing β,
measured in units of cache misses.

17

BLOCK MISS COST MEASURE

Definition. Suppose that block β is moved m times from one cache to
another (due to cache or block misses) during a time interval T = [t1, t2].
Then m is defined to be the block delay incurred by β during T .

The block wait cost incurred by a task τ on a block β is the delay incurred
during the execution of τ due to block misses when accessing β,
measured in units of cache misses.

The block wait cost could be much larger than B if multiple writes to the
same location are allowed.

In most of our analysis, we will use the block delay of β within a time
interval T as the block wait cost of every task that accesses β during T .

17-a

BLOCK MISS COST MEASURE

Definition. Suppose that block β is moved m times from one cache to
another (due to cache or block misses) during a time interval T = [t1, t2].
Then m is defined to be the block delay incurred by β during T .

The block wait cost incurred by a task τ on a block β is the delay incurred
during the execution of τ due to block misses when accessing β,
measured in units of cache misses.

The block wait cost could be much larger than B if multiple writes to the
same location are allowed.

In most of our analysis, we will use the block delay of β within a time
interval T as the block wait cost of every task that accesses β during T .

This cost measure is highly pessimistic, hence upper bounds obtained
using it are likely to hold for other cost measures for block misses.

17-b

REDUCING BLOCK MISS COSTS: A LGORITHMIC TECHNIQUES

1. We enforce limited access writes: An algorithm is limited access if

each of its writable variables is accessed O(1) times.

18

REDUCING BLOCK MISS COSTS: A LGORITHMIC TECHNIQUES

1. We enforce limited access writes: An algorithm is limited access if

each of its writable variables is accessed O(1) times.

2. We attempt to obtain O(1)-block sharing in our algorithms.

Definition. A task τ of size r is L-block sharing, if there are O(L(r))

blocks which τ can share with all other tasks that could be scheduled

in parallel with τ and could access a location in the block.

A computation is L-block sharing if every task in it is L-block sharing.

18-a

REDUCING BLOCK MISS COSTS: A LGORITHMIC TECHNIQUES

1. We enforce limited access writes: An algorithm is limited access if

each of its writable variables is accessed O(1) times.

2. We attempt to obtain O(1)-block sharing in our algorithms.

Definition. A task τ of size r is L-block sharing, if there are O(L(r))

blocks which τ can share with all other tasks that could be scheduled

in parallel with τ and could access a location in the block.

A computation is L-block sharing if every task in it is L-block sharing.

3 When O(1) block sharing is not achieved in an algorithm, we use

gapping to reduce the cost of block misses.

18-b

REDUCING BLOCK MISS COSTS: A LGORITHMIC TECHNIQUES

1. We enforce limited access writes: An algorithm is limited access if

each of its writable variables is accessed O(1) times.

2. We attempt to obtain O(1)-block sharing in our algorithms.

Definition. A task τ of size r is L-block sharing, if there are O(L(r))

blocks which τ can share with all other tasks that could be scheduled

in parallel with τ and could access a location in the block.

A computation is L-block sharing if every task in it is L-block sharing.

3 When O(1) block sharing is not achieved in an algorithm, we use

gapping to reduce the cost of block misses.

4 We take special care to reduce block wait costs at the execution

stacks of the tasks.

18-c

SUMMARY: CACHE-RELATED PARAMETERS

We identify two useful cache-related parameters for algorithm design.

• Cache-friendly function f(r):

f(r) = O(
√

r) suffices for good performance with a standard tall
cache.

• Block-sharing function L(r):

L(r) = O(1) is desirable.

19

ROAD MAP

• Background on multithreaded computations and work stealing.

• Cache and block misses.

• Hierarchical Balanced Parallel (HBP) computations.

• Priority Work Stealing (PWS) Scheduler.

• An example with Strassen’s matrix multiplication algorithm.

• Discussion.

20

BP COMPUTATIONS

Definition. A BP computation π is a limited access algorithm that is
formed from the down-pass of a binary forking computation tree T followed

by its up-pass, and satisfies the following properties.

21

BP COMPUTATIONS

Definition. A BP computation π is a limited access algorithm that is
formed from the down-pass of a binary forking computation tree T followed

by its up-pass, and satisfies the following properties.

i. Only O(1) computation at every node in the down-pass and the up-pass.

ii. π may use size O(|T |) global arrays for its input and output.

21-a

BP COMPUTATIONS

Definition. A BP computation π is a limited access algorithm that is
formed from the down-pass of a binary forking computation tree T followed

by its up-pass, and satisfies the following properties.

i. Only O(1) computation at every node in the down-pass and the up-pass.

ii. π may use size O(|T |) global arrays for its input and output.

iii. Balance Condition.

Let the root task have size r; let α be a constant less than 1; and let

c1, c2 be constants with c1 ≤ 1 ≤ c2.

The size of any task τ at level i in the downpass of T satisfies:

c1 · αi · r ≤ |τ | ≤ c2 · αi · r.

21-b

21-1

HBP COMPUTATIONS

A Hierarchical Balanced Parallel Computations (HBP) is a limited access

algorithm that is one of the following:

• A Type 0 Algorithm, a sequential computation of constant size.

• A Type 1, or BP computation.

• A Type t + 1 HBP, for t ≥ 1, which, on an input of size n, calls, in
succession, a sequence of c ≥ 1 collections of parallel recursive

subproblems, each of size s(n) ≤ n/b(n), with b(n) > 1;

each of these collections can be interspersed with calls to HBP

algorithms of type at most t.

22

HBP COMPUTATIONS (CONTINUED)

• A Type max{t1, t2} HBP computation results if it is a sequence of two
HBP algorithms of types t1 and t2.

An HBP computation of type t > 1 is balanced if the recursive problems at

each level of recursion all have sizes within a constant factor of each other.

23

HBP RESULTS

ALGORITHM TYPE f(r) L(r) T∞ Q(n, M, B)

Scans (MA, PS) 1 1 1 O(log n) O(n/B)

Matrix Transposition 1 1 1 O(log n) O(n/B)

Strassen 2 1 1 O(log2 n) nλ/(B · M
λ
2
−1

)

RM to BI 1
√

r 1 O(log n) O(n2/B)

Direct BI to RM 1
√

r
√

r O(log n) O(n2/B)

BI-RM (gap RM) 1
√

r gap O(log n) O(n2/B)

FFT 2
√

r 1 O(log n · log log n) O(n
B

logM n)

LR 3
√

r gap O(log2 n · log log n) O(n
B

logM n)

CC∗ 4
√

r gap O(log3 n · log log n) O(n
B

logM n · log n)

Depth-n-MM 2 1 1 O(n) n3/(B
√

M)

BI-RM for FFT∗ 2
√

r 1 O(log n) O(n2

B
logM n)

Sort (SPMS) 2
√

r 1 O(log n · log log n) O(n
B

logM n)

MA is Matrix Addition and PS is Prefix Sums. RM is Row Major and BI is Bit Interleaved.

TYPE refers to the HBP type.

Input size is n2 for matrix computations, and n otherwise.

All algorithms, except those marked with ∗ , match their standard sequential work bound.

λ = log2 7 in Strassen’s algorithm.

24

ROAD MAP

• Background on multithreaded computations and work stealing.

• Cache and block misses.

• Hierarchical Balanced Parallel (HBP) computations.

• Priority Work Stealing (PWS) Scheduler.

• An example with Strassen’s matrix multiplication algorithm.

• Discussion.

25

PRIORITY WORK STEALING SCHEDULER (PWS)

Consider BP computation π.

• PWS proceeds in rounds, one for each depth in π.

• Priority of a task is its depth in the computation.

• In a round for depth d:

(a) task at head of every non-empty task queue has priority at least d.

(b) only tasks of priority d are stolen in this round

(c) next round starts when task at head of task-queue at every
non-idle core has priority greater than d.

A steal request is unsuccessful if no task priority d task available.

This triggers another steal attempt at priority d + 1.

26

PWS: SOME OBSERVATIONS

Observation 1. There are at most p − 1 tasks that are stolen at any given

depth of the computation.

Observation 2. The total number of steal attempts (including both
successful and unsuccessful steals) across all cores is < 2 · p · D, where

D is the depth of the computation.

Expected number of steals in randomized work-stealing steals is O(pD)

[BL99].

27

CACHE MISSES IN A BP COMPUTATIONS UNDER PWS

Lemma. Consider the down-pass of a BP computation Π of size n

scheduled under PWS. Let sequential cache complexity of Π be Q, and let

f(r) = O(
√

r).

Then, with a tall cache M = Ω(B2), the number of cache misses is
bounded by O(Q + pM/B).

If n = Ω(Mp) then the number of cache misses is O(Q).

28

CACHE MISSES: HBP C OMPUTATIONS

Lemma. Let Π be a balanced Type 2 HBP computation of size n ≥ Mp,
and let c, s(n), and f(r) be as defined earlier. Then, the cache miss

excess for Π when scheduled under PWS has the following bounds with a
tall cache M ≥ B2.

(i) If c = 1, f(r) = O(
√

r): O(pM
B

s∗(n, M)).

(ii) If c = 2, f(r) = O(
√

r), and s(n) =
√

n: O(pM
B

log n
log M

).

(iii) If c = 2, f(r) = O(
√

r), and s(n) = n/4:

O(p[
√

nM
B

+
√

n√
M

P

i≥0 2if(M/4i)]).

where s∗(n, M) is the number of iterations of s needed to reduce n to M .

29

Block Misses Under PWS

30

BLOCK MISSES IN A BP COMPUTATION

Lemma. Let π be the down-pass of a BP computation of size n, and let Q

be its sequential cache complexity. If L(r) = O(1), then, when scheduled
by PWS, the block wait cost is O(Q + pB log B) if n ≥ B.

Proof. By limited access, the block wait cost of any stolen task is O(B).

For stolen tasks of size Ω(B2) this cost is dominated by the

Ω(B2/B) = Ω(B) cache miss cost.

There are at most p − 1 steals at each level, hence O(p log B) stolen tasks

of size O(B2), and their total block miss cost is O(B · p log B).

31

BLOCK MISSES AT THE EXECUTION STACKS

Block wait cost can be incurred at the execution stack.

• An execution stack Sτ is created for a task τ when a core C starts
executing it.

Sτ keeps track of the procedure calls and variables in the work
performed on τ .

The variables on Sτ may be accessed by stolen subtasks also.

As Sτ grows and shrinks it may use and then stop using a block β

repeatedly in an HBP computation.

32

BLOCK MISSES AT THE EXECUTION STACKS

Block wait cost can be incurred at the execution stack.

• An execution stack Sτ is created for a task τ when a core C starts
executing it.

Sτ keeps track of the procedure calls and variables in the work
performed on τ .

The variables on Sτ may be accessed by stolen subtasks also.

As Sτ grows and shrinks it may use and then stop using a block β

repeatedly in an HBP computation.

• Thus, even with limited-access and O(1)-block sharing, a large block

wait cost could be incurred due to accesses to the execution stacks.

32-a

32-1

32-2

EXECUTION STACK : BP AND HBP COMPUTATIONS

We establish the following:

• In a BP computation, block wait cost on any block on the stack is
O(B).

• In HBP computations, the block wait cost at a block could be in excess

of B, due to repeated use of the block for different recursive calls.

— To bound this cost we require an HBP computation τ of Type ≥ 2 to

use Ω(|τ |) space on the execution stack.

— With this requirement we can bound the block wait cost on any

block on the stack as O(B).

33

BLOCK MISSES IN TYPE 2 HBP COMPUTATIONS

Lemma. Let Π be a balanced Type 2 HBP computation of size n ≥ Mp

with α = 1/2 and L(r) = O(1), which is exactly linear space bounded, and
let c, s(n), and L(r) be as defined earlier. Then, the block miss excess for

Π when scheduled under PWS has the following bounds.

(i) c = 1: a cost of O(pB log B · s∗(n)) cache misses.

(ii) c = 2 and s(n) =
√

n: a cost of O(pB log n log log B) cache misses.

(iii) c = 2 and s(n) = n/4: a cost of O(pB
√

n) cache misses.

34

WRAP-UP: OVERHEAD OF STEALS

• Other costs, including usurpations, cost of up-pass, and idle time are
dominated by the cache and block miss excesses incurred by steals

under PWS.

• For any given HBP algorithm, we can apply the results we have

obtained for cache and block miss excess for PWS to determine the
PWS scheduling overhead.

35

ROAD MAP

• Background on multithreaded computations and work stealing.

• Cache and block misses.

• Hierarchical Balanced Parallel (HBP) computations.

• Priority Work Stealing (PWS) Scheduler.

• An example with Strassen’s matrix multiplication algorithm.

• Discussion.

36

STRASSEN ’S MATRIX MULTIPLICATION (BI)

• m = n2 = size of matrix.

• Type 2 HBP with c = 1 collection of 7 subproblems, each of size
s(m) = m/4.

• Uses BP computation MA for the matrix additions.

• Inherently limited access.

• f(r) = L(r) = O(1) if matrix is in BI (bit interleaved) format.

• Sequential cache complexity is Θ(nλ

BMγ), where λ = log2 7 and

γ = (λ/2) − 1.

37

STRASSEN ’S MM UNDER PWS

From PWS results:

Cache miss excess when c = 1, f(r) = O(
√

r): O(pM
B

· s∗(n, M)).

Block miss excess when c = 1, L(r) = O(1): O(pB log B · s∗(n)) cache
misses.

38

STRASSEN ’S MM UNDER PWS

From PWS results:

Cache miss excess when c = 1, f(r) = O(
√

r): O(pM
B

· s∗(n, M)).

Block miss excess when c = 1, L(r) = O(1): O(pB log B · s∗(n)) cache
misses.

Apply to the HBP for Strassen’s algorithm and check for conditions under
which sequential cache complexity dominates:

STRASSEN CACHE MISS OVERHEAD. O(p · M
B

· log n2

M
)

STRASSEN BLOCK MISS OVERHEAD. QB = O(pB log B · log n2).

38-a

STRASSEN BLOCK MISS EXCESS UNDER PWS

We need pB log B · log n2 = O
“

nλ

BMλ/2−1

”

.

It suffices to show that nλ

log n2 = Ω
“

pB2 log B · Mλ/2−1
”

.

When n2 ≥ Mp:

nλ

log n2 = nλ

(2/λ)·log nλ = Ω
“

(Mp)λ/2

log(Mp)λ/2

”

.

So, it suffices to show that

(Mp)λ/2

log(Mp)
= Ω

“

pB2 log B · Mλ/2−1
”

, or Mpλ/2−1 = Ω
`

B2 log B log Mp
´

By considering the two cases p = O(M) and p = ω(M), we can see that a
tall cache M = Ω(B2 log2 B) suffices.

Hence, when M = Ω(B2 log2 B), the block miss (and cache miss) excess
under PWS are dominated by sequential cache complexity.

39

ROAD MAP

• Background on multithreaded computations and work stealing.

• Cache and block misses.

• Hierarchical Balanced Parallel (HBP) computations.

• Priority Work Stealing (PWS) Scheduler.

• An example with Strassen’s matrix multiplication algorithm.

• Discussion.

40

DISCUSSION

• HBP is suitable for Multi-BSP, but is more versatile.

– Though analyzed under PWS for homogeneous cores, HBP under

work stealing adapts gracefully to variations in core speeds, and to
cores entering and leaving the computation.

• Block miss costs in parallel computing.

• Other models, e.g., network obliviousness and
multicore-obliviousness for multi-level cache hierarchy.

41

MULTI-LEVEL CACHE HIERARCHY

Multicore oblivious algorithms for multi-level hierarchical caches.
[Chowdhury-Silvestri-B-R’10]

• No mention of cache parameters or number of processors within the
algorithm.

• Instead, algorithm includes scheduler hints:

– Coarse-grained contiguous (CGC) scheduling for scans.

– Space-bound (SB) scheduling for recursive computations such as
depth n matrix multiplication. Supplies a size bound on task.

– CGC on SB scheduling for more complex recursive computations
such as FFT

The scheduler algorithm, using its knowledge of cache parameters,
schedules tasks on cores so that caches are effectively used at all
levels of cache hierarchy.

42

