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Large-scale graph mining
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Google NYC Large-scale graph mining

Develop a general-purpose library of graph mining tools
for XXXB nodes and XT edges

via MapReduce+DHT (Flume), Pregel, ASYMP
Goals:

* Develop scalable tools (Ranking, Pairwise Similarity,
Clustering, Balanced Partitioning, Embedding, etc)

* Compare different algorithms/frameworks

* Help product groups use these tools across Google in
a loaded cluster (clients in Search, Ads, Youtube,
Maps, Social)

 Fundamental Research (Algorithmic Foundations and
Hybrid Algorithms/System Research)



Outline

Three perspectives:

- Part 1: Application-inspired Problems
. Algorithms for Public/Private Graphs

- Part 2: Distributed Optimization for NP-Hard Problems
- Distributed algorithms via composable core-sets

- Part 3: Joint systems/algorithms research
- MapReduce + Distributed HashTable Service



Problems Inspired by Applications

Part 1: Why do we need scalable graph mining?

Stories:
 Algorithms for Public/Private Graphs,
How to solve a problem for each node on a public graph+its own

private network
with Chierchetti,Epasto,Kumar,Lattanzi,M: KDD’15

- Ego-net clustering
How to use graph structures and improve collaborative filtering

with EpastolLattanziSebeTaeiVerma, Ongoing

- Local random walks for conductance optimization,

Local algorithms for finding well connected clusters
with AllenZu,Lattanzi, ICML13
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Private-Public networks

Rea“ty ~52% of NYC Facebook

users hide their friends
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Applications: friend suggestions

Network signals are very useful [CIKMO3]
Number of common neighbors
Personalized PageRank
Katz
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Applications: friend suggestions

Network signals are very useful [CIKMO3]
Number of common neighbors
Personalized PageRank
Katz

From a user’
perspective,
there are
Interesting
signals




Applications: advertising

Maximize the reachable sets
How many can be reached by re-sharing?
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Applications: advertising

Maximize the reachable sets
How many can be reached by re-sharing?

More influential
from global
prospective




Applications: advertising

Maximize the reachable sets
How many can be reached by re-sharing?
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Private-Public problem

There is a public graph ¢ in addition each node « has
access to a local graph &,
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Private-Public problem

There is a public graph G in addition each node « has
access to a local graph G,



Private-Public problem

For each u, we like to execute some computation on
G UG,



Private-Public problem

For each u, we like to execute some computation on
G UG,

Doing it naively is too expensive



Private-Public problem

Can we precompute data structure for ¢ so that we can
solve problems in G U &, efficiently?
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Private-Public problem

|deally

Preprocessing time: O (|Eq|)
Preprocessing space: O (|V])

Post-processing time: O (|E. |)



Problems Studied

(Approximation) Algorithms with provable bounds
Reachability
Approximate All-pairs shortest paths
Correlation clustering
Social affinity

Heuristics
Personalized PageRank
Centrality measures



Problems Studied

Algorithms 8 8
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Part 2: Distributed Optimization

Distributed Optimization for NP-Hard Problems on Large
Data Sets:

Two stories:

- Distributed Optimization via composable core-sets

- Sketch the problem in composable instances
. Distributed computation in constant (1 or 2) humber of rounds

- Balanced Partitioning
- Partition into ~equal parts & minimize the cut



Distributed Optimization Framework

Run ALG in each machine

Machine 1
5 Run ALG’ to find the
final size k output set
Machine 2
52\> Selected

elements

Machine m




Composable Core-sets

* Technique for effective distributed algorithm
* One or Two rounds of Computation
* Minimal Communication Complexity
* Can also be used in Streaming Models and Nearest Neighbor
Search

* Problems
o Diversity Maximization
o Composable Core-sets
o Indyk, Mahabadi, Mahdian, Mirrokni, ACM PODS’14
o Clustering Problems
o Mapping Core-sets
o Bateni, Bashkara, Lattanzi, Mirrokni, NIPS 2014
o Submodular/Coverage Maximization:
o Randomized Composable Core-sets

o work by Mirrokni, ZadiMoghaddam, ACM STOC 2015



Problems considered:

General: Find a set S of k items & maximize f(S).

* Diversity Maximization: Find a set S of k points
and maximize the sum of pairwise distances i.e.
diversity(S).

* Capacitated/Balanced Clustering: Find a set S
of k centers and cluster nodes around them while
minimizing the sum of distances to S.

* Coverage/submodular Maximization: Find a set
S of k items. Maximize submodular function f(S).

Distributed Graph Algorithmics: Theory and Practice. WSDM 2015, Shanghai



Distributed Clustering

Clustering: Divide data into groups containing

50

Minimize:
k-center : max max d(u, ¢;)
12
k-means : Z Z d(u, ¢;)
1 u€ES;

k-median :

y: y: d(u, c;)

T ueES;

Metric space (d. X)




Distributed Clustering

Many objectives: k-means, k-
median, k-center,...

/ minimize max cluster radius
Framework:

\ - Divide into chunks
V1, V2,..., Vm

- Come up with
“representatives” Si on
machine i << | Vi|

- Solve on union of Si, others
by closest rep.



Balanced/Capacitated Clustering

Theorem(BhaskaraBateniLattanziM. NIPS’14): distributed balanced
clustering with

- approx. ratio: (small constant) * (best “single machine” ratio)
- rounds of MapReduce: constant (2)
- memory: ~(n/m)”2 with m machines

Improving Previous Work
o Bahmani, Kumar, Vassilivitskii, Vattani: Parallel K-means++
. Balcan, Enrich, Liang: Core-sets for k-median and k-center



Experiments

Aim: Test algorithm in terms of (a) scalability, and (b) quality of solution obtained

Setup: Two “base” instances and subsamples (used k=1000, #machines =
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Coverage/Submodular Maximization

* Max-Coverage:
« Given: A family of subsets S, ... S,

» Goal: choose k subsets 57, ... $7, with the

maximum union cardinality.
* Submodular Maximization:
* Given: A submodular function f
* Goal: Find a set S of k elements &
maximize f(S).
» Applications: Data summarization, Feature
selection, Exemplar clustering, ...

Distributed Graph Algorithmics: Theory and Practice. WSDM 2015, Shanghai



Bad News!

* Theorem[IndykMahabadiMahdianM PODS’ 14]
There exists no better tharlegk approximate
composable core-set for suoYiiudular
maximization.

* Question: What if we apply
?

YES! Concurrently answered in two papers:

« Barbosa, Ene, Nugeon, Ward: ICML’15.
* M.,ZadiMoghaddam: STOC’15.



Summary of Results
[M. ZadiMoghaddam - STOC’15]

1. Aclass of 0.33-approximate randomized
composable core-sets of size k for
submodular maximization.

2. to go beyond 2 approximation with
size K. to get better than 1-1/e.

3. 0.58-approximate randomized composable
core-set of for monotone f. Results
in distributed algorithm.

4. For of k’
less than k: -approximate

randomized composable core-set.



(2 -+/2)rapproximate Randomized Core-set

* Positive Result [M, ZadiMoghaddam]: If we
increase the output sizes to be 4k, Greedy
will be (2-/2)-0(1) > 0.585-approximate
randomized core-set for a monotone
submodular function.

 Remark: In this result, we send each item
to C random machines instead of one. As a

result, the approximation factors are
reduced by a O(ln(C)/C) term.



Summary: composable core-sets

Diversity maximization (PODS’14)
Apply constant-factor composable core-sets

Balanced clustering (k-center, k-median & k-means) (NIPS’14)
* Apply Mapping Core-sets = constant-factor

Coverage and Submodular maximization (STOC’15)
 Impossible for deterministic composable core-set
* Apply randomized core-sets - 0.54-approximation

Future:
* Apply core-sets to other ML/graph problems, feature selection.
* For submodular:
 1-1/e-approximate core-set
 1-1/e-approximation in 2 rounds (even with multiplicity)?



Distributed Balanced Partitioning
via Linear Embedding



Balanced Partitioning Problem

s
e Balanced Partitioning: & '.\ o’ \‘.-

o Given graph G(V, E) with edge weights 7
o Find k clusters of approximately the same size
o Minimize Cut, i.e., #intercluster edges

e Applications:
o Minimize communication complexity in distributed computation
o Minimize number of multi-shard queries while serving an
algorithm over a graph, e.g., in computing shortest paths or
directions on Maps



Outline of Algorithm

Three-stage Algorithm:

1.

2.

3.

a.
b.

a.
b.

a.
b.
C.

Reasonable Initial Ordering
Space-filling curves
Hierarchical clustering

Semi-local moves
Min linear arrangement
Optimize by random swaps

Introduce imbalance
Dynamic programming
Linear boundary adjustment
Min-cut boundary optimization
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Step 1 - Initial Embedding

e Space-filling curves (Geo Graphs)

n=3y n=4 n=2>y

e Hierarchical clustering (General Graphs)

n=1 n=322

cal )
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Datasets

e Social graphs
o Twitter: 41M nodes, 1.2B edges

o Livedournal: 4.8M nodes, 42.9M edges
o Friendster: 65.6M nodes, 1.8B edges

e (Geo graphs
o World graph > 1B edges
o Country graphs (filtered)



Related Work

e FENNEL, WSDM'14 [Tsourakakis et al.]

o Microsoft Research
o Streaming algorithm

e UB13, WSDM'13 [Ugander & Backstorm]

o Facebook
o Balanced label propagation

e Spinner, (very recent) arXiv [Martella et al.]
e METIS

o In-memory



Cut percentage

Comparison to Previous Work
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Cut percentage

Comparison to Previous Work

Cut Size Comparison (Twitter) k Spinner Fennel Metis Our Alg
Splnn@lflﬁb"»l (5%) (10%) (2'3%) (0%)

el 2 15% | 6.8%  11.98%  7.43%

—— Combination
(0%)

4 31% 29% | 24.39%  18.16%

8 49% 48% | 35.96%  33.55%



Outline: Part 3

Practice: Algorithms+System Research

Two stories:
- Connected components in MapReduce & Beyond
Going beyond MapReduce to build efficient tool in practice.

« ASYMP

A new asynchronous message passing system.

Large-scale Graph Mining. BIG 2015, Florence



Graph Mining Frameworks

Applying various frameworks to graph algorithmic
problems
* Iterative MapReduce (Flume):
o More widely fault-tolerant available tool
o Can be optimized with algorithmic tricks
* |[ter. MapReduce + DHT Service (Flume
o Better speed compared to MR
* Pregel:
o Good for synch. computation w/ many rounds
o Simpler implementation
*ASYMP (ASYnchronous Message-Passing):
o More scalable/More efficient use of CPU
o Asych. self-stabilizing algorithms



Metrics for MapReduce algorithms

* Running Time
o Number of MapReduce rounds
o Quasi-linear time processing of inputs
e Communication Complexity
o Linear communication per round
o Total communication across multiple rounds
* Load Balancing
o No mapper or reducer should be overloaded
* Locality of the messages
o Sending messages locally when possible
o Use the same key for mapper/reducer when possible
o Effective while using MR with DHT (more later)



Connected Components: Example output
Web Subgraph: 8.5B nodes, 700B edges

Distribution of Cluster Sizes

10.0 B Log10(Number
1.6 billiocn nades scattered in clusters of size 1 or 2 AP Giumea)
(
7.5
5.0
2.5
1 cluster with 5.83 billion nodes
0.0
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Total number of hodes: 8.55 billion



Prior Work: Connected Components in MR

Connected components in MapReduce,
Rastogi et al, ICDE’12

Algorithm

#MR Rounds

Communication / Practice

Round

to-Min

Hash-Min D (Diameter) O(m+n) Many rounds
Hash-to-All Log D O(n Long rounds
Hash-to-Min Open O(nlog n+m) BEST
Hash-Greater - 3 log D 2(n+m) OK, but not the

best




Connected Components: Summary

* Connected Components in MR & MR+DHT
 Simple, local algorithms with O(log? n) round complexity
 Communication efficient (#edges non-increasing)

» Use Distributed HashTable Service (DHT) to

improve # rounds to O~(log n) [from ~20 to ~5]
* Data: Graphs with ~XT edges. Public data with 10B
edges
* Results:
*MapReduce: 10-20 times faster than HashtoMin
*MR+DHT: 20-40 times faster than HashtoMin
*ASYMP: A simple algorithm in ASYMP: 25-55 times faster
than HashtoMin

KiverisLattnziM.RastogiVassilivitskii, SOCC’14.



ASYMP:ASYnchrouns Message Passing

e ASYMP: New graph mining framework

e (Compare with MapReduce, Pregel

e (Computation does not happen in a
synchronize number of rounds

e Fault-tolerance implementation is also
asynchronous

e More efficient use of CPU cycles

e We study its fault-tolerance and scalability

* Impressive empirical performance (e.g., for

connectivity and shortest path)

Fleury, Lattanzi, M.: ongoing.



Asymp model

Nodes are distributed among many machines (workers)
Each node keeps a state and send messages to its
neighbors.

Each machine has a priority queue for sending messages to
other machines

Initialization: Set nodes’ states & activate some nodes
Main Propagation Loop (Roughly):
o Until all nodes converge to a stable state:
= Asynchronously update states and send top messages
in each priority queue
Stop Condition: Stop when priority queues are empty...



Asymp worker design

One Asymp Worker

Incoming RPC
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Data Sets

o 5 Public and 5 Internal Google graphs e.g.

UK Web graph: 106M nodes, 6.6B edges [Public]
Google+ subgraph: 178M nodes, 2.9B edges
Keyword similarity : 371M nodes, 3.5B edges
Document similarity: 4,700M nodes, 452B edges

O O O O

® Sequence of Web subgraphs:
o ~1B, 3B, 9B, 27B core nodes [16B, 4/B, 110B, 356B ]
o ~36B, 108B, 324B, 1010B edges respectively

e Sequence of RMAT graphs [Synthetic and Public]:
O ,.,226, 228’ 230, 232, 234 nodes
o ~2B, 8B, 34B, 137B, 547B edges respectively.



Comparison with best MR algorithms

Running time comparison
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Asymp Fault-tolerance

Asynchronous Checkpointing:

o Store the current states of nodes once in a while

Upon failure of a machine:

o Fetch the last recorded state of each node, &

o Activate these nodes (send messages to neighbors), and
ask them to resend the messages it may have lost.

Therefore, a self-stabilizing algorithm works correctly in
ASYMP.

Example: Dijsktra Shortest Path Algorithm



Impact of failures on running time

* Make a fraction/all of machines fail over time.
o Question: What is the impact of frequent failures?
‘Let D be the running time without any failures. Then

% Machine Failures over the 6% of machine 12% of machine
whole period (= #per batch)  |fajlures at a time failures at a time

50% Time ~= 2D Time ~= 1.4D
100% Time ~= 3.6D Time ~= 3.2D
200% Time ~= 5.3D Time ~=4.1D

* More frequent small-size failures is worse than less
frequent large-size failures
o More robust against group-machine failures



Questions?

Thank you!



Algorithmic approach: Operation 1

Large-star(v): Connect all strictly larger neighbors to
the min neighbor including self

> e

* Do this in parallel on each node & build a new
graph
* Theorems (KLMRV'14):

Executing Large-star in parallel preserves connectivity
Every Large-star operation reduces height of tree by a
constant factor




Algorithmic approach: Operation 2

Small-star(v): Connect all smaller neighbors and self
to the min neighbor including self

o 0 o—©
(8 () >
© ®

 Connect all parents to the minimum parent

+  Theorem(KLMRV'14);

Executing Small-star in parallel preserves connectivity



Final Algorithm: Combine Operations

* Input
o Set of edges with a unique ID per node

Algorithm:

Repeat until convergence

o Repeated until convergence
o Large-Star

o Small-star

Theorem(KLMRV’14):

o The above algorithm converges in O(log? n) rounds.



Improved Connected Components in MR

ldea 1: Alternate between Large-Star and Small-

Star

— Less #rounds compared to Hash-to-Min, Less
Communication compared to Hash-Greater-to-Min

— Theory: Provable O(log? n) MR rounds

Optimization: Avoid large-degree nodes by
branching them into a tree of height two

Practice:

— Graphs with 1T edges. Public data w/ 10B edges

— 2 to 20 times faster than Hash-to-Min (Best of ICDE’12)
— Takes 5 to 22 rounds on these graphs



CCin MR + DHT Service

* |dea 2: Use Distributed HashTable (DHT)
service to save in #rounds

— After small #rounds (e.g., after 3rd round),
consider all active cluster IDs, and resolve their
mapping in an array in memory (e.g. using DHT)

— Theory: O~(log n) MR rounds + O(n/log n) memory.

— Practice:

* Graphs with 1T edges. Public data w/ 10B edges.

* 4.5 to 40 times faster than Hash-to-Min (Best of
ICDE’12 paper), and 1.5 to 3 times faster than our
best pure MR implementation. Takes 3 to 5 rounds on
these graphs.



Data Sets

e 5 Public and 5 Internal Google graphs e.g.
o UK Web graph: 106M nodes, 6.6B edges [Public]
o Google+ subgraph: 178M nodes, 2.9B edges
o Keyword similarity : 371M nodes, 3.5B edges
o Document similarity: 4,700M nodes, 452B edges
e Sequence of RMAT graphs [Synthetic and Public]:
o ~226 228 230 232 234 nodes
o ~2B, 8B, 34B, 137B, 547B edges respectively.
e Algorithms:
o Min2Hash
o Alternate Optimized (MR-based)
o QOur best MR + DHT Implementation
o Pregel Implementation
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Comparing different algorithms

#Rounds

Optimized Alternating

Hash-To-Min

B Alternating

Two Phase DHT
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Speedup over Hash-To-Min

Comparison with Pregel

Speed up over Hash-To-Min Algorithm
B Atemating [l Optimized Alternating I Two-Phase DHT [ HTM |l Pregel

50.0
37.5
25.0

12.5

0.0

Google+ Orkut Related Keyword Document  Friendster Patents LiveJournal UK Web Twitter
Entity Similarity Similarity



Warm-up: # connected components

GraphEx Symposium, Lincoln Laboratory



Warm-up: # connected components
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We can compute the components and assign to each
component an id.

GraphEx Symposium, Lincoln Laboratory



Warm-up: # connected components
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After adding private edges it is possible to recompute it
by counting # newly connected components

GraphEx Symposium, Lincoln Laboratory
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Warm-up: # connected components

After adding private edges it is possible to recompute it
by counting # newly connected components

GraphEx Symposium, Lincoln Laboratory



