Sensor Management Problems of Nuclear Detection

Fred S. Roberts
Rutgers University

Effective Use of Sensors in Nuclear Detection Requires:

- Choosing right type of sensor
- Putting it in the right place
- Activating it at the right times
- Interpreting the results of sensor alarms
- Making decisions that balance risk and uncertainty

Multi-disciplinary, Multiinstitutional Project

- Based at Rutgers University
- Partners at Princeton, Texas State
 University San Marcos
- Collaborators at LANL, PNNL, Sandia
- Supported by NSF and Domestic
 Nuclear Detection Office

Key Underlying Project Themes

- •New developments in hardware are important in nuclear detection, but so are algorithms
- Nuclear detection involves sorting through massive amounts of information
- •We need to make use of as many sources of information as possible.

We are Addressing these Issues Using Methods of the Mathematical Sciences:

- Algorithmic methods
- Dynamic programming methods
- Bayesian and Multinomial regression
- Machine learning methods
- New data sampling strategies

Problem Domains

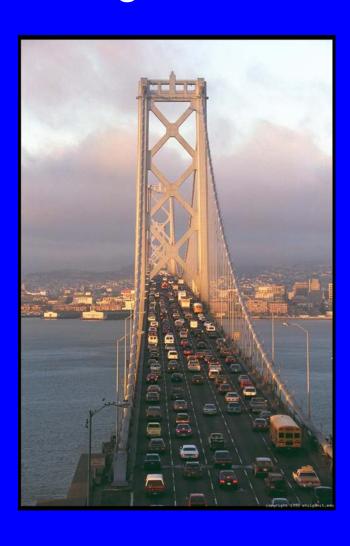
 Risk Assessment for Containers and Trucks at Borders and Seaports

Problem Domains

Special Events

Problem Domains

Moving Vehicles or Individuals



Research Thrusts

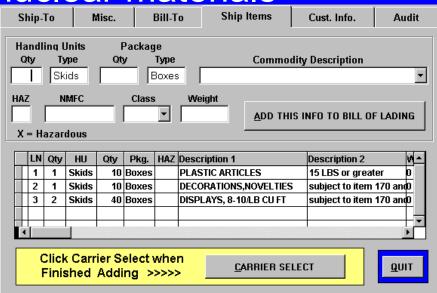
- Analysis of Archival and Non-Real-Time Data: Trend Analysis and Dynamic Resource Allocation
- 2. Combining Archived and Real-time Data: Statistics and Machine Learning
- 3. Managing Networks of Static and Mobile Sensors: Models and Algorithms
- 4. Interpreting Sensor Data: Pattern Interpretation and Data Sampling Strategies

1. Analysis of Archival and Non-Real-Time Data: Trend Analysis and Dynamic Resource Allocation

- Looking at two kinds of data:
 - Manifest data
 - Radiation sensor data from ports and border crossings

Working with Manifest Data

- Manifest/bill of lading
- Data either text or numerical/categorical
- Increased emphasis by US Customs and Border Protection on documents submitted prior to a shipping container reaching the US
- Data screened before ship's arrival in US
- Identifying mislabeled or anomalous shipments may prove useful in finding nuclear materials



Taking into Account Problem of "Nuisance" or "Innocent" Alarms

- agricultural products like fertilizer
- kitty litter
- ceramic glazed materials
- aircraft parts and counter weights
- polishing compounds and abrasives
- propane tanks
- road salt
- welding rods
- camera lenses
- ore and rock
- smoke detectors
- televisions
- medical radioisotopes

Manifest Data

- We are developing machine learning algorithms to detect anomalies in manifest data.
- Making use of our Bayesian Binary and Multinomial Regression methods.
- Also making use of "higher order relations": Higher order naïve Bayes (HONB) and higher order path analysis (HOPA)
- HONB, HOPA based on work of team member Pottenger and his students at Rutgers, showing models based on HONB and HOPA outperform existing approaches

Manifest Data

- Manifest descriptions of products such as...
 - Soft drink concentrates
 - Ten knockdown empty cartons
 - Ikea home furnishing products

- ...should match classifications of container types, ship types, or port of departure types.
- Anomalies may be discoverable when product descriptions are closely associated with container, ship, or port classifications.
- E.g., a shipment of IKEA products may have more in common with specific container, ship, or port than a shipment containing airplane parts.

Manifest Data

- Exploring methods for visualizing the manifest data.
- Hope to be able to visualize anomalous patterns in the data.
- Goal is to understand average daily contents traffic of reported shipments to detect deviations.
- Developing similarity measures to compare contents of shipment vectors

Applying clustering methods based on similarity

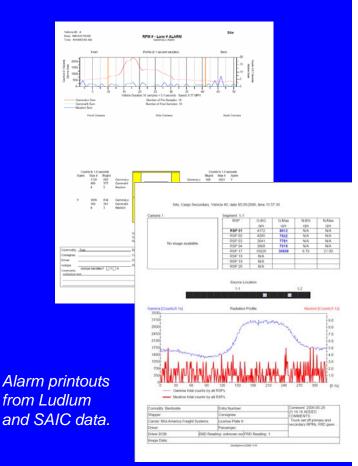
measures

Port and Borders Radiation Sensor Data: Trend Analysis and Dynamic Resource Allocation

- Data collected at border crossings and seaports.
- Some data is archived and analyzed after vehicle has passed.
- Find patterns in data.
- •Applications:
 - -Early warning of failing detectors
 - Anomaly detection
 - -Help plan manpower/equipment allocations

Analysis of Archival Data: Radiation Portal Monitoring Project – PNNL

- Microsoft® Access™ database files are produced nightly for each supervisory computer, including:
 - Time distributed background
 - Profiles for all vehicles (including alarms)
 - Metadata for alarms (commodity, RIID reading, medical isotopes, etc.)
 - Event log (status of RPM, identifies errors)
 - Parameters (settings and configuration)



Slide courtesy of James Ely¹⁷

Analysis of Archival Data: Approaches

- Trend Analysis: Analyze dual time series of sample readings from trucks and from background.
- Classical problem.
- But: challenge of finding trends in sensor readouts with complex chronological effects.
- •Characterization of subtle trends needed to mine for abnormalities.

Analysis of Archival Data: Approaches

- Trend Analysis: Using Bayesian methods for modeling spatio-temporal data
- Crucial issue: computational
- Challenge: Develop "online" Bayes methods
 - -Allow efficient computation without having to redo analysis from scratch
- •Exploring use of our methods for Bayesian Binary and Multinomial Regression from an earlier Monitoring Message Streams project for the intelligence community.
- "World's most efficient software for ultra-high dimensional Bayesian logistic regression"

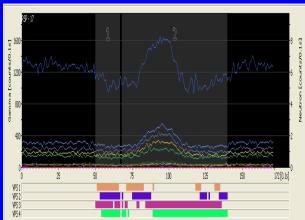
Analysis of Archival Data: Approaches

Dynamic Resource Allocation Methods:

- Investigating use of "approximate dynamic programming" developed by Princeton members of our team
- Use to help plan manpower and equipment, allocate inspectors and detectors
- Use to help assign resources to tasks in presence of uncertain forecasts

2. Combining Archived and Realtime Data

- Portal radiation sensors capture the energy spectrum across a range of channels from low to high frequency
- Statistical learning tools can help make fast decisions during routine screening
- •We have formulated a Bayesian model for the energy emitted by an unknown source and classifying it as belonging to one of K defined classes
- including benign materials.



Combining Archived and Realtime Data

- Initial results through simulations show approach is very promising.
- •Hope this Bayesian learning approach can be easily extensible to newer portal devices and changes in design.

Combining Archived and Realtime Data

- •Our Princeton team has developed new online statistical change detection and identification rules.
- •These rules identify pattern changes in sensor readings that indicate presence of hazardous materials.
- Algorithms designed to:
 - -Operate in real time
 - -Have low level of false alarms
 - -Work with small amount of computational power

Combining Manifest Data and Sensor Data

- Can we learn from false alarms due to "innocent" materials?
- Combining data from different sources decreases probability of a false positive.
- Can we apply learning from manifest data and false alarms to check for anomalies/ inconsistencies with sensor data?

Combining Manifest Data and Sensor Data

- We are exploring use together of manifest data and sensor (radiation portal monitor) data.
- Developing new machine learning classification algorithms
- Challenge: How to incrementally fuse together the data to proactively target specific containers
- Using discriminative learning for pre-port data, and generative classifier for port data
- Methods developed by consultant Sid Dalal

Big Challenge for Detection: Reducing # of false positives

Source Material	Location A % of Identified Alarms	Location B % of Identified Alarms	Location C % of Identified Alarms
Kitty litter	34%	25%	-
Medical (In, I, Tc, Tl)	16%	-	-
Abrasives/Scouring pads	14%	5%	-
Refractory material	8%	-	-
Mica	5%	-	-
Ferti lizer/Potash	5%	13%	-
Granite/Marble slabs	4%	-	10%
Ceramics/Tile/Toilets	4%	9%	28%
Trucks/cars	2%	-	-
Aluminum	-	15%	-
Earth	-	11%	-
Bentonite	-	5%	-
Salt	-	5%	-
Other metal	-	3%	-
Televisions	-	-	27%
Gas Tankers	-	-	13%
Smoke Detectors	•	-	4%
Other	6%	9%	18%

Current Approach:

Improvement in hardware

Our Approach

- Combine multiple sources of Data- from Manifest and Radiation Portal
- Construct new machine learning classification algorithms
- Advantages-
 - · better detection,
 - adaptation to changing cargo mix
- Flexible and Easier to implement

3. Managing Networks of Static and Mobile Sensors: Models and Algorithms

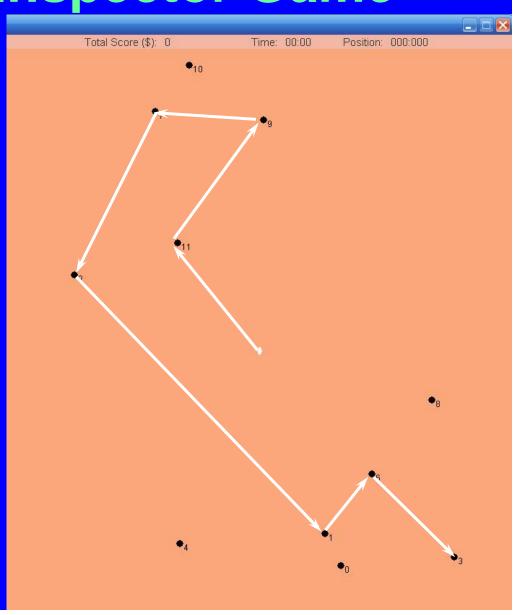
- Dynamic sensor management
- Modeling the static sensor location problem (SLP)
- Algorithms for solving the SLP

Dynamic Sensor Management: Inspecting an Existing Sensor Network

- Sensors may deteriorate over time
- Sensors may fail periodically (without our knowledge)
- •We may only be able to get readings at some of the sensors in our system – which ones?
- •We need efficient protocols for doing these things.
- •How do we manage a *mobile inspector* (person, team, robotic vehicle) to
 - -Inspect sensors for operability?
 - -Get readings at various points?
 - -Choose an order of inspection?

Dynamic Sensor Management: "The Optimal Inspector Game"

- To address these challenges, we have produced the "optimal inspector game," which can be played manually or using a family of policies.
- Our automated policies outperform humans by wide margin.



Dynamic Sensor Management: Mobile Sensors

General Problem: How can we make use of

sensors that are mobile? NUKALERT

- Carried by people
- Carried by vehicles

- •How can we move sensors from time to time in static sensor networks?
- •Can we develop algorithms for movement of sensors?
 - -Complication: Background changes when sensors are moved.
 - Need background learning techniques

Nuclear Detection using Taxi Cabs

Nuclear Detection Using Taxi Cabs - Design Plan

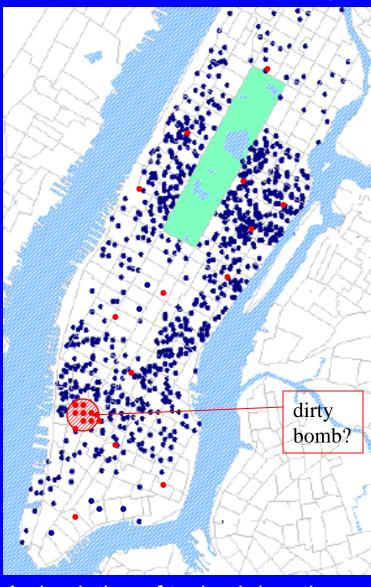
- Distribute GPS tracking and nuclear detection devices to taxi cabs in a metropolitan area.
 - Feasibility: New technologies are making devices portable, powerful, and cheaper.
 - "Ubiquitous sensing" could include sensors on police vehicles or cell phones
- Send out signals if the taxi cabs are getting close to nuclear sources.
- Analyze the information (both locations and nuclear signals) to detect potential location of a source.
- Carry out the tasks dynamically:
 - Continuous and real-time surveillance.

Nuclear Detection using Taxi Cabs

GPS tracking device

Nuclear sensor device

Manhattan, New York City



A simulation of taxi cab locations at morning rush hour

Taxi Cabs - Model Components

Source Signal Model

- Definition: random variable S the indicator of nuclear signal from a source
- Values 1 (existence of source) or 0
- The closer to the source, the higher the probability P(S=1)

Source Detection Model

- Random variable D:
- Values 1 (the sensor detects the source) or 0
- Model parameter: Sensitivity P(D=1|S=1)
 - The probability of detecting the true signal.
- Model parameter: Specificity P(D=0|S=0)
 - The probability of not detecting nonexistent signal.

Taxi Cabs – Clustering of Events

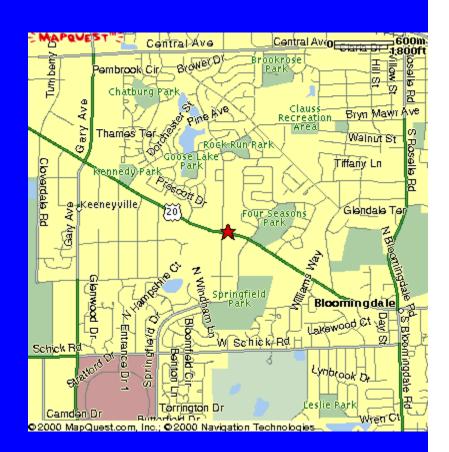
- Definition of Clusters:
 - Unusually large number of events/patterns clumping within a small region of time, space or location in a sequence
- Statistical methodology:
 - Formal tests: provide statistical significance against random chance.
- Traditional statistical method is via Scan Statistics
 - Scan entire study area and seek to locate region(s) with unusually high likelihood of incidence
 - E.g, use:
 - maximum number of cases in a fixed-size moving window
 - Diameter of the smallest window that contains a fixed number of cases

Taxi Cabs - Simulation

- Generated data in Manhattan and did a simulation – applying the clustering approach with success
- Used spatclus package in R: software package to detect clusters
- Need to improve the current method/ algorithm to make it more efficient and faster
- Need to develop ways to filter out alarms from "innocent" sources
- Need to explore different models for movements of taxis

Modeling the Static Sensor Location Problem

- Sensor Location Problem (SLP):
 - Context: special events,
 malls, tunnels,
 neighborhoods
 - Choose an appropriate mix of sensors
 - decide where to locate them for best protection and early warning



The SLP: What is a Measure of Success of a Solution?

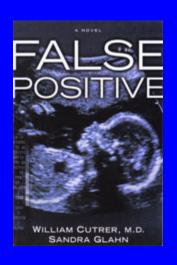
- A modeling problem.
- Needs to be made precise.
- Many possible formulations.

The SLP: What is a Measure of Success of a Solution?

- Identify and ameliorate false alarms.
- Defending against a "worst case" attack or an "average case" attack.
- Minimize time to first alarm? (Worst case?)
 (Average case?)
- Cost: Given a mix of available sensors and a fixed budget, what mix will best accomplish our other goals?
- Maximize "coverage" of the area.
 - Minimize geographical area not covered
 - Minimize size of population not covered
 - Minimize probability of missing an attack

Modeling the Static SLP

- •We are developing models that make these things precise.
- Our models typically involve some sort of optimization problem.
- Often multi-objective optimization.
- •Many subtleties:
 - E.g., more sensors are not necessarily better (more chance of a false positive)

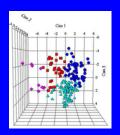


Algorithms for Solving the Static SLP under Uncertainty

- Analyzing the SLP if we have an estimate of probability of an attack at a given location.
- Simple "toy" model based on a network of locations located along a linear topology.
 - -Subway tunnel
 - -Long, linear dock
- •A priori estimate of probability of an "attack" at each point on the network.
- •Looking at locating sensors so that minimize the maximum expected distance from sensor to an attack.
- Looking to extend results to more general topologies.

Algorithms for Solving the Static SLP: Future Work

- Greedy algorithms (building on work at Institute for Defense Analyses)
- Modifying classic facility location and clustering algorithms
- •Building on "bichromatic clustering" and facility location algorithms used for placing sensors along highways
- Extending combinatorial optimization approaches to equipment placement problems developed in telecom.



4. Interpreting Sensor Data: Pattern Interpretation and Data Sampling Strategies

- Interpreting Patterns of Sensor Activation in Systems of Sensors
- Data Sampling Strategies
- Combining Information from Many Sources

Interpreting Sensor Data: Interpreting Patterns of Sensor Activation in Systems of Sensors

 Pattern Interpretation Problem (PIP): When sensors set off an alarm, use pattern of activation to help decision makers decide

- Has an attack or dangerous material taken place or been found?
- What additional monitoring is needed?
- What was its extent and location?
- What is an appropriate response?

Approaching the PIP: Using Decision Rules: Future Work

- For sensors using thresholds to sound an alarm:
 - Alternative decision rule: alarm if two sensors reach 90% of threshold, three reach 75% of threshold, etc.
 - One approach: use clustering algorithms for sounding an alarm based on a given distribution of clusters of sensors reaching a percentage of threshold (as in taxi cab model).

Approaching the PIP: Using Decision Rules: Future Work

- How to interpret signals from a group of sensors?
- Most work has concentrated on the case of stochastic independence of information available at two sensors – clearly violated in sensor location.
- Even with stochastic independence, finding "optimal" decision rules is nontrivial.
- There are promising approaches of Paul Kantor: study algorithms for decisions when stochastic independence is violated.
 - Developed in missile defense
 - Used in filtering problems in text analysis

Data Sampling Strategies: Optimal Measurements

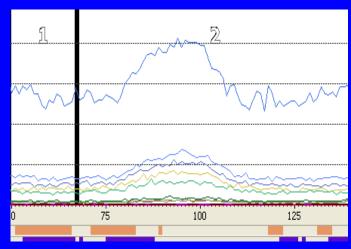
Challenges:

- How do we "optimally sample data in realtime?
- We need to collect information as efficiently as possible, typically in situations where we simply cannot measure everything even once.

Optimal Measurements: Quickest Change Detection

- Responding to changing information
 - When did the information change?
 - What caused the change?
 Medical waste, or terrorist activity?

- We want to identify both the timing of when a signal changes, and its cause, as quickly as possible.
- The technique has to be fast and easy to implement.

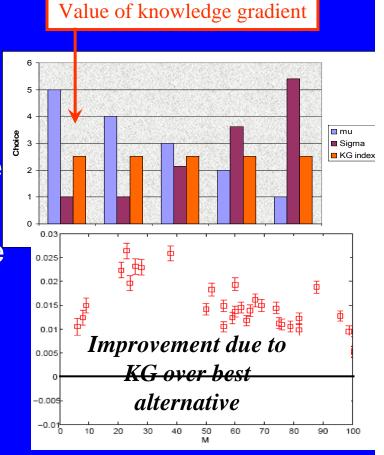


Optimal Measurements

- Important dimensions
 - Are measurements correlated?
 - ✓ Independent measurements For example, testing one technology (or sampling cargo at one port), tells us nothing about other technologies (or maybe even other ports).
 - Are you managing a physical device to take measurements?
 - ✓ We have to think about the cost of a measurement, not just what we learn.

Optimal Measurements - Uncorrelated

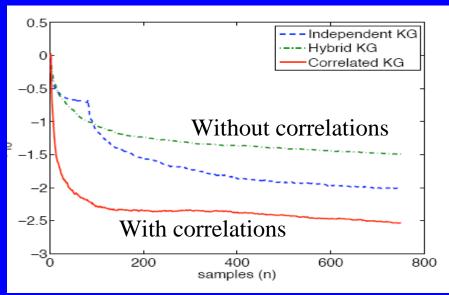
- The knowledge gradient
 - How do we determine what we should measure next?
 - We need to balance the cost of the measurement against the value of the knowledge earned.
 - The knowledge gradient is a simple and powerful calculation that guides the search process, esp. when you have a small measurement budget.
 - In its simplest form, it ignores correlations in measurements, and the possibility that we have to physically move a sensor around.

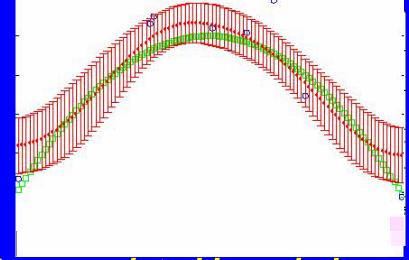


Optimal Measurements with Correlations

Measurement at one point tells us about neighboring points

- Measuring radiation at one location provides information about other locations.
- Evaluating the performance of one nuclear detector provides information about others using same technology.





Our correlated knowledge gradient procedure

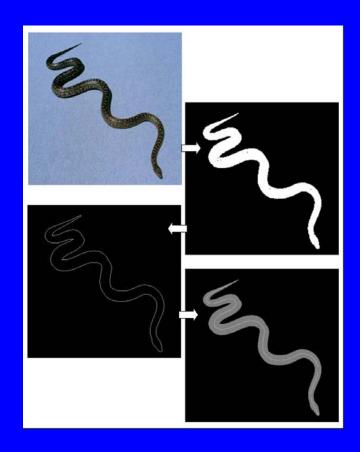
- Chooses measurements based in part on what we learn about other potential measurements.
- A few measurements allow us to update knowledge about everything.
- Requires dramatically fewer measurements.

Combining Information from Many Sources

- Context: Detecting moving radiation sources
- How can we combine sensor information with information from other sources, e.g., cameras?
- If we use additional information, can a variety of data help us pinpoint which sensor to focus on next?

Combining Information from Many Sources

- An Approach: Combining sensing with imaging.
- A key issue is shape analysis.
- Difficult to train a statistical model to represent all possible shapes when viewed from different viewpoints.
- Challenge: How to combine shape space analysis with use of sensors.



Project Team

- Rutgers University
 - Fred Roberts
 - James Abello
 - Jerry Cheng (grad student)
 - Sid Dalal (RAND Corp, consultant)
 - Robert Davis (undergrad student)
 - Emilie Hogan (grad student)
 - Richard Mammone
 - Dimitris Metaxas
 - Alantha Newman (postdoc)
 - Bill Pottenger
 - Minge Xie
- Princeton University
 - Warren Powell
 - Savas Dayanik
 - Peter Frazier (grad student)
 - Ilya Rhyzov (grad student)
 - Kazutoshi Yamazaki (grad student)
- Texas State University San Marcos
 - Nate Dean
 - Jill Cochran (grad student)

Project Team: National Lab Partners (helping with advice, information, data)

- PNNL
 - Terence Critchlow
 - James Ely
 - Cliff Joslyn
- LANL
 - Frank Alexander
 - Nick Hengartner
- Sandia
 - Jon Berry
 - Bill Hart

Pacific Northwest National Laboratory Operated by Battelle for the U.S. Department of Energy

