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Effective Use of Sensors in 
Nuclear Detection Requires:

•Choosing right type of 
sensor
•Putting it in the right place
•Activating it at the right 
times
•Interpreting the results of 
sensor alarms
•Making decisions that 
balance risk and uncertainty
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Multi-disciplinary, Multi-
institutional Project 

•Based at Rutgers University
•Partners at Princeton, Texas State 
University – San Marcos
•Collaborators at LANL, PNNL, Sandia
•Supported by NSF and Domestic 
Nuclear Detection Office



4

Key Underlying Project Themes

•New developments in hardware are 
important in nuclear detection, but so are 
algorithms 
•Nuclear detection involves sorting 
through massive amounts of information
•We need to make use of as many 
sources of information as possible.
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We are Addressing these Issues 
Using Methods of the 

Mathematical Sciences:

•Algorithmic methods 
•Dynamic programming methods
•Bayesian and Multinomial regression
•Machine learning methods
•New data sampling strategies



6

Problem Domains

•Risk Assessment for Containers and 
Trucks at Borders and Seaports
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Problem Domains

•Special Events 
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Problem Domains

•Moving Vehicles or Individuals
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Research Thrusts
1. Analysis of Archival and Non-Real-

Time Data: Trend Analysis and 
Dynamic Resource Allocation

2. Combining Archived and Real-time 
Data: Statistics and Machine Learning

3. Managing Networks of Static and 
Mobile Sensors: Models and 
Algorithms

4. Interpreting Sensor Data: Pattern 
Interpretation and Data Sampling 
Strategies



10

1. Analysis of Archival and Non-
Real-Time Data: Trend Analysis 

and Dynamic Resource Allocation

•Looking at two kinds of data:
- Manifest data
- Radiation sensor data from ports and 
border crossings
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Working with Manifest Data
•Manifest/bill of lading
•Data either text or numerical/categorical
•Increased emphasis by US Customs and Border 
Protection on documents submitted prior to a 
shipping container reaching the US
•Data screened before ship’s arrival in US
•Identifying mislabeled or anomalous shipments 
may prove useful in finding nuclear materials
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Taking into Account Problem of 
“Nuisance” or “Innocent” Alarms
• agricultural products like fertilizer
• kitty litter
• ceramic glazed materials 
• aircraft parts and counter weights
• polishing compounds and abrasives
• propane tanks
• road salt
• welding rods
• camera lenses
• ore and rock
• smoke detectors
• televisions
• medical radioisotopes Slide courtesy of James Ely
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Manifest Data

• We are developing machine learning algorithms to 
detect anomalies in manifest data.

• Making use of our Bayesian Binary and Multinomial 
Regression methods.

• Also making use of “higher order relations”: Higher 
order naïve Bayes (HONB) and higher order path 
analysis (HOPA)

• HONB, HOPA based on work of team member 
Pottenger and his students at Rutgers, showing 
models based on HONB and HOPA outperform 
existing approaches
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Manifest Data
• Manifest descriptions of products such as…

– Soft drink concentrates
– Ten knockdown empty cartons
– Ikea home furnishing products

• …should match classifications of container 
types, ship types, or port of departure types.

• Anomalies may be discoverable when product 
descriptions are closely associated with 
container, ship, or port classifications.

• E.g., a shipment of IKEA products may have 
more in common with specific container, ship, or 
port than a shipment containing airplane parts.
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Manifest Data
• Exploring methods for visualizing the manifest 

data.
• Hope to be able to visualize anomalous patterns 

in the data.
• Goal is to understand average daily contents 

traffic of reported shipments to detect deviations.
• Developing similarity measures to compare 

contents of shipment vectors
• Applying clustering methods based on similarity 

measures
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Port and Borders Radiation Sensor 
Data: Trend Analysis and Dynamic 

Resource Allocation
•Data collected at border crossings and 
seaports.
•Some data is archived and analyzed 
after vehicle has passed.
•Find patterns in data. 
•Applications:
−Early warning of failing detectors
−Anomaly detection
−Help plan manpower/equipment 
allocations
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Analysis of Archival Data: 
Radiation Portal Monitoring 

Project – PNNL 
• Microsoft® Access™ database 

files are produced nightly for 
each supervisory computer, 
including:
– Time distributed background
– Profiles for all vehicles (including 

alarms)
– Metadata for alarms (commodity, 

RIID reading, medical isotopes, 
etc.)

– Event log (status of RPM, 
identifies errors)

– Parameters (settings and 
configuration)

Alarm printouts 
from Ludlum 
and SAIC data.

Slide courtesy of James Ely
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Analysis of Archival Data: 
Approaches

•Trend Analysis: Analyze dual time series 
of sample readings from trucks and from 
background.
•Classical problem.
•But: challenge of finding trends in sensor 
readouts with complex chronological effects.
•Characterization of subtle trends needed to 
mine for abnormalities.
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Analysis of Archival Data: 
Approaches

•Trend Analysis: Using Bayesian methods for 
modeling spatio-temporal data 
•Crucial issue: computational
•Challenge: Develop “online” Bayes methods 

−Allow efficient computation – without having to 
redo analysis from scratch

•Exploring use of our methods for Bayesian Binary 
and Multinomial Regression from an earlier 
Monitoring Message Streams project for the 
intelligence community.
•“World’s most efficient software for ultra-high 
dimensional Bayesian logistic regression”
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Analysis of Archival Data: 
Approaches

•Dynamic Resource Allocation Methods:
−Investigating use of “approximate 
dynamic programming” developed by 
Princeton members of our team
−Use to help plan manpower and 
equipment, allocate inspectors and 
detectors
−Use to help assign resources to tasks in 
presence of uncertain forecasts
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2. Combining Archived and Real-
time Data 

•Portal radiation sensors capture the 
energy spectrum across a range of 
channels from low to high frequency
•Statistical learning tools can help 
make fast decisions during routine 
screening
•We have formulated a Bayesian 
model for the energy emitted by an 
unknown source and classifying it as 
belonging to one of K defined classes 
– including benign materials.
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Combining Archived and Real-
time Data 

•Initial results through simulations show 
approach is very promising.
•Hope this Bayesian learning approach can 
be easily extensible to newer portal devices 
and changes in design.
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Combining Archived and Real-
time Data 

•Our Princeton team has developed new 
online statistical change detection and 
identification rules.
•These rules identify pattern changes in 
sensor readings that indicate presence of 
hazardous materials.
•Algorithms designed to:

-Operate in real time
-Have low level of false alarms
-Work with small amount of computational 
power
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Combining Manifest Data and 
Sensor Data

• Can we learn from false alarms due to “innocent”
materials?

• Combining data from different sources 
decreases probability of a false positive.

• Can we apply learning from manifest data and 
false alarms to check for anomalies/ 
inconsistencies with sensor data?

Photo courtesy of James Ely
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Combining Manifest Data and 
Sensor Data

• We are exploring use together of manifest data and 
sensor (radiation portal monitor) data.

• Developing new machine learning classification 
algorithms

• Challenge: How to incrementally fuse together the 
data to proactively target specific containers

• Using discriminative learning for pre-port data, and
generative classifier for port data

• Methods developed by consultant Sid Dalal
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Big Challenge for Detection: 
Reducing # of false positives

 

 

Source Material  

Location A  
% of Identified 

Alarms  

Location B  
% of Identified 

Alarms  

Location C  
% of Identified 

Alarms  
Kitty litter  34% 25% - 
Medical (In, I, Tc, Tl)  16% - - 
Abrasives/Scouring 
pads 14% 5% - 
Refractory material  8% - - 
Mica 5% - - 
Fertilizer/Potash  5% 13% - 
Granite/Marble slabs  4% - 10% 
Ceramics/Tile/Toilets  4% 9% 28% 
Trucks/cars  2% - - 
Aluminum  - 15% - 
Earth - 11% - 
Bentonite  - 5% - 
Salt - 5% - 
Other metal  - 3% - 
Televisions  - - 27% 
Gas Tankers  - - 13% 
Smoke Detectors  - - 4% 
Other 6% 9% 18% 

• Current Approach:
– Improvement in hardware

• Our Approach
– Combine multiple sources 

of Data- from Manifest and 
Radiation Portal

– Construct new machine 
learning classification 
algorithms

– Advantages-
• better detection, 
• adaptation to changing 

cargo mix
– Flexible  and Easier to 

implement 
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3. Managing Networks of Static 
and Mobile Sensors: Models and 

Algorithms
•Dynamic sensor management
•Modeling the static sensor location 

problem (SLP)
•Algorithms for solving the SLP
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Dynamic Sensor Management: 
Inspecting an Existing Sensor 

Network
•Sensors may deteriorate over time
•Sensors may fail periodically (without our 
knowledge)
•We may only be able to get readings at some of 
the sensors in our system – which ones? 
•We need efficient protocols for doing these things.
•How do we manage a mobile inspector (person, 
team, robotic vehicle) to 

−Inspect sensors for operability?
−Get readings at various points?
−Choose an order of inspection?
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• To address these 
challenges, we 
have produced the 
“optimal inspector 
game,” which can 
be played manually 
or using a family of 
policies.

• Our automated 
policies outperform 
humans by wide 
margin.

Dynamic Sensor Management: 
“The Optimal Inspector Game”
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Dynamic Sensor Management: 
Mobile Sensors

•General Problem: How can we make use of 
sensors that are mobile?
− Carried by people
− Carried by vehicles

•How can we move sensors from time to time 
in static sensor networks?
•Can we develop algorithms for movement of 
sensors?

−Complication: Background changes when 
sensors are moved. 
−Need background learning techniques
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Nuclear Detection using Taxi Cabs
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Nuclear Detection Using Taxi 
Cabs - Design Plan

• Distribute GPS tracking and nuclear detection 
devices to taxi cabs in a metropolitan area.
– Feasibility: New technologies are making 

devices portable, powerful, and cheaper.
– “Ubiquitous sensing” could include sensors on 

police vehicles or cell phones 
• Send out signals if the taxi cabs are getting 

close to nuclear sources. 
• Analyze the information (both locations and 

nuclear signals) to detect potential location of a 
source.

• Carry out the tasks dynamically:
– Continuous and real-time surveillance.
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A simulation of taxi cab locations 

at morning rush hour

Manhattan, New York City
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Taxi Cabs – Model Components
• Source Signal Model

– Definition: random variable S - the indicator of nuclear 
signal from a source

– Values 1 (existence of source) or 0
– The closer to the source, the higher the probability 

P(S=1)
• Source Detection Model

– Random variable D: 
– Values 1 (the sensor detects the source) or 0
– Model parameter: Sensitivity P(D=1|S=1)

• The probability of detecting the true signal.
– Model parameter: Specificity P(D=0|S=0)

• The probability of not detecting nonexistent signal.
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Taxi  Cabs – Clustering of Events
• Definition of Clusters:

– Unusually large number of events/patterns clumping  
within a small region of time, space or location in a 
sequence

• Statistical methodology: 
– Formal tests: provide statistical significance against 

random chance.
• Traditional statistical method is via Scan Statistics

– Scan entire study area and seek to locate region(s) 
with unusually high likelihood of incidence

– E.g, use:
• maximum number of cases in a fixed-size moving 

window
• Diameter of the smallest window that contains a fixed 

number of cases
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Taxi Cabs - Simulation
• Generated data in Manhattan and 

did a simulation – applying the 
clustering approach with success

• Used spatclus package in R:  
software package to detect 
clusters

• Need to improve the current 
method/ algorithm to make it more 
efficient and faster

• Need to develop ways to filter out 
alarms from “innocent” sources

• Need to explore different models 
for movements of taxis 
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Modeling the Static Sensor 
Location Problem

• Sensor Location 
Problem (SLP):
– Context: special events, 

malls, tunnels, 
neighborhoods 

– Choose an appropriate 
mix of sensors 

– decide where to locate 
them for best protection 
and early warning
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The SLP: What is a Measure of 
Success of a Solution?

• A modeling problem.
• Needs to be made precise.
• Many possible formulations.
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The SLP: What is a Measure of 
Success of a Solution?

• Identify and ameliorate false alarms.
• Defending against a “worst case” attack or an 

“average case” attack.
• Minimize time to first alarm? (Worst case?) 

(Average case?)
• Cost: Given a mix of available sensors and a 

fixed budget, what mix will best accomplish our 
other goals?

• Maximize “coverage” of the area.
– Minimize geographical area not covered
– Minimize size of population not covered
– Minimize probability of missing an attack
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Modeling the Static SLP

•We are developing models that make these 
things precise.

•Our models typically involve some sort of 
optimization problem. 
•Often multi-objective optimization.

•Many subtleties:
– E.g., more sensors are not necessarily 

better (more chance of a false positive)



41

Algorithms for Solving the Static 
SLP under Uncertainty

•Analyzing the SLP if we have an estimate of 
probability of an attack at a given location.
•Simple “toy” model based on a network 
of locations located along a linear topology.

−Subway tunnel
−Long, linear dock

•A priori estimate of probability of an “attack” at each 
point on the network.
•Looking at locating sensors so that minimize the 
maximum expected distance from sensor to an 
attack.
•Looking to extend results to more general 
topologies.
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Algorithms for Solving the Static 
SLP: Future Work

•Greedy algorithms (building on work at 
Institute for Defense Analyses)
•Modifying classic facility location and 
clustering algorithms
•Building on “bichromatic clustering” and 
facility location algorithms used for 
placing sensors along highways
•Extending combinatorial optimization 
approaches to equipment placement 
problems developed in telecom.
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4. Interpreting Sensor Data: 
Pattern Interpretation and Data 

Sampling Strategies
•Interpreting Patterns of Sensor Activation    

in Systems of Sensors
•Data Sampling Strategies 
•Combining Information from Many Sources
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Interpreting Sensor Data: 
Interpreting Patterns of Sensor 

Activation in Systems of Sensors
• Pattern Interpretation Problem 

(PIP): When sensors set off an 
alarm, use pattern of activation to 
help decision makers decide
– Has an attack or dangerous material 

taken place or been found?
– What additional monitoring is 

needed?
– What was its extent and location?
– What is an appropriate response?
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Approaching the PIP: Using 
Decision Rules: Future Work

• For sensors using thresholds to sound an 
alarm:
– Alternative decision rule: alarm if two 

sensors reach 90% of threshold, three 
reach 75% of threshold, etc.

– One approach: use clustering algorithms 
for sounding an alarm based on a given 
distribution of clusters of sensors 
reaching a percentage of  threshold (as 
in taxi cab model).
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Approaching the PIP: Using 
Decision Rules: Future Work

• How to interpret signals from a group of sensors?
• Most work has concentrated on the case of 

stochastic independence of information available 
at two sensors – clearly violated in sensor location.

• Even with stochastic independence, finding 
“optimal” decision rules is nontrivial.

• There are promising approaches of Paul Kantor: 
study algorithms for decisions when stochastic 
independence is violated.
– Developed in missile defense
– Used in filtering problems in text analysis
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Data Sampling Strategies: 
Optimal Measurements

• Challenges:
– How do we “optimally 

sample data in real-
time?

– We need to collect 
information as efficiently 
as possible, typically in 
situations where we 
simply cannot measure 
everything even once.
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• Responding to changing 
information
– When did the information 

change?
– What caused the change? 

Medical waste, or terrorist 
activity?

• Goals
– We want to identify both the 

timing of when a signal 
changes, and its cause, as 
quickly as possible.

– The technique has to be fast 
and easy to implement.

Optimal Measurements: 
Quickest Change Detection
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Optimal Measurements

• Important dimensions
– Are measurements correlated?

Independent measurements – For 
example, testing one technology (or 
sampling cargo at one port), tells us nothing 
about other technologies (or maybe even 
other ports).

– Are you managing a physical device to 
take measurements?

We have to think about the cost of a 
measurement, not just what we learn.
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Optimal Measurements -
Uncorrelated

• The knowledge gradient
– How do we determine what we 

should measure next?
– We need to balance the cost of  

the measurement against the value 
of the knowledge earned.

– The knowledge gradient is a simple 
and powerful calculation that 
guides the search process, esp. 
when you have a small 
measurement budget.

– In its simplest form, it ignores 
correlations in measurements, and 
the possibility that we have to 
physically move a sensor around.
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With correlations

Without correlations

Optimal Measurements with 
Correlations

Measurement at one point tells 
us about neighboring points
– Measuring radiation at one 

location provides information 
about other locations.

– Evaluating the performance of 
one nuclear detector provides 
information about others using 
same technology. Our correlated knowledge 

gradient procedure
– Chooses measurements based 

in part on what we learn about 
other potential measurements.

– A few measurements allow us to 
update knowledge about 
everything.

– Requires dramatically fewer 
measurements.
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Combining Information from 
Many Sources

• Context: Detecting moving radiation 
sources

• How can we combine sensor 
information with information 
from other sources, e.g., 
cameras?

• If we use additional information, can 
a variety of data help us pinpoint 
which sensor to focus on next?
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Combining Information from 
Many Sources

• An Approach: Combining 
sensing with imaging.

• A key issue is shape analysis.
• Difficult to train a statistical 

model to represent all possible 
shapes when viewed from 
different viewpoints.

• Challenge: How to combine 
shape space analysis with use 
of sensors.
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Project Team
• Rutgers University

– Fred Roberts
– James Abello
– Jerry Cheng (grad student)
– Sid Dalal (RAND Corp, consultant)
– Robert Davis (undergrad student)
– Emilie Hogan (grad student)
– Richard Mammone
– Dimitris Metaxas
– Alantha Newman (postdoc)
– Bill Pottenger
– Minge Xie

• Princeton University
– Warren Powell
– Savas Dayanik
– Peter Frazier (grad student)
– Ilya Rhyzov (grad student)
– Kazutoshi Yamazaki (grad student)

• Texas State University – San 
Marcos

– Nate Dean
– Jill Cochran (grad student)
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Project Team: National Lab Partners
(helping with advice, information, data)

• PNNL
– Terence Critchlow
– James Ely
– Cliff Joslyn

• LANL
– Frank Alexander
– Nick Hengartner

• Sandia
– Jon Berry
– Bill Hart
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Thank you


