AP
PN
-

IN THE CITY OF NEW YORK

—— d d
P 4
[4
’I‘ II‘R DIMACS
U G S Qb COLUMBIA UNIVERSITY - o
v
14 L4 4
E— Center for Discrete Mathematics & Theoretical Computer Science 4 4
Founded as a National Science Foundation Science and v
\ cor . Techrology Center

EFFICIENT SEQUENTIAL DECISION-MAKING
ALGORITHMS FOR CONTAINER INSPECTION
OPERATIONS

Sushil Mittal and Fred Roberts
Rutgers University & DIMACS

David Madigan
Columbia University & DIMACS

Port of Entry Inspection Algorithms

eGoal: Find ways to intercept illicit nuclear
materials and weapons destined for the U.S. via

the maritime transportation system

eCurrently inspecting only small % of containers
arriving at ports

Port of Entry Inspection Algorithms

Aim: Develop decision support algorithms that will help us
to “optimally” intercept illicit materials and weapons
subject to limits on delays, manpower, and equipment

N

minimize total cost including : 1
.y i ; *‘" . \IW'" b

cost of false positives and '| wl s

false negatives LT

Mobile VACIS: truck-
mounted gamma ray
imaging system

Sequential Decision Making Problem

Containers arriving are classified into categories
Simple case: 0 = “ok”, 1 = “suspicious”
Containers have attributes, either in state O or 1
Sample attributes:

— Does the ship’s manifest set off an alarm?

— |Is the neutron or Gamma emission count above certain
threshold?

— Does a radiograph image return a positive result?

— Does an induced fission test return a positive result?

Inspection scheme:

— specifies which inspections are to be made based on
previous observations

Different “sensors” detect presence or absence of various

attributes

Sequential Decision Making Problem

eSimplest Case: Attributes are in state O or 1
eThen: Container is a binary string like 011001

eSo: Classification is a decision function F that assigns
each binary string to a category.

011001 0or 1
‘.‘

If attributes 2, 3, and 6 are present, assign container to
category F(011001).

Sequential Decision Making Problem

o|f there are two categories, 0 and 1, decision function F’
is @ Boolean function.

eExample:

(@]

F(abc)

R PP R OO OOl
R P OORKrR KR OO|IT
R OFrRPRORFRORFRO
PR P RPORFROOO

eThis function classifies a container as positive iff it has at
least two of the attributes.

Binary Decision Tree Approach

eBinary Decision Tree:

—Nodes are sensors or categories (0 or 1)

—Two arcs exit from each sensor node, labeled left and
right.

—Take the right arc when sensor says the attribute is
present, left arc otherwise

a b c |F(abc)
— [0 000 |
— [0 0 1 0] a c
 J 1010 b/\b /\ /\
301 11]
— [1 000] O/\C /\ /\c /\ b é\
3T O0TI](1 /\I\ /\/\ /\
— s 101 0101 0101 010 1
—>» |1 1 1|1

Cost of a BDT

* Cost of a BDT comprises of:
— Cost of utilization of the tree and
— Cost of misclassification

/a\ f(T) = })O(Ca + })aO|0Cb +])aO|O})bl|0Cc + })al|0Cc)
b 1 +H(C, + PaO|1Cb + PaouPbluCc + Pal|1Cc)
ABDT, T 0/ \c 0/\1
with 72 = 3 0/ \1 +h, (])aO|0])bl|0])cl|0 + Pal|oPc1|o)CFP

+E (P Pbou + PaouB;mPcou + PamP O|1)CFN

a0l c

P, is prior probability of occurrence of a bad container

Py;is the conditional probability that given the container was in
state j, it was classified as i

Sensor Thresholds

K, T, 1 Ps=qp0

] PS=1|1

Bl Ps-o
BP0

S

Pyt Pegp =1

S

Pogot Py =1

T, can be adjusted for minimum cost

*Anand et. al. reported the cheapest trees obtained from an
extensive search over a range of sensor thresholds. For
example: for n=4, 194,481 tests were performed with
thresholds varying between [-4,4] with a step size of 0.4

Previous work: A quick overview

* Approach:

— Builds on ideas of Stroud and Saeger! at Los Alamos
National Laboratory

— Inspection schemes are implemented as Binary Decision
Trees which are obtained from various Boolean
functions of different attributes

— Only “Complete” and “Monotonic” Boolean functions

give potentially acceptable Binary decision trees
— n=4

1 Stroud, P. D. and Saeger K. J., “Enumeration of Increasing Boolean Expressions and Alternative Digraph
Implementations for Diagnostic Applications”, Proceedings Volume IV, Computer, Communication and Control
Technologies, (2003), 328-333

Optimum Threshold Computation

* Extensive search over a range of thresholds has
some practical drawbacks:
— Large number of threshold values for every sensor
— Large step size

— Grows exponentially with the number of sensors
(computationally infeasible forn > 4)

* Therefore, we utilize non-linear optimization techniques
like:
— Gradient descent method
— Newton’s method

Searching through a Generalized
Tree Space

We expand the space of trees from Stroud and Saeger’s
“Complete” and “Monotonic” Boolean Functions to Complete
and Monotonic BDTs, because...

Unlike Boolean functions, BDTs may not consider all sensor
outputs to give a final decision

Advantages:

— Allows more, potentially useful trees to participate in the
analysis

— Helps defining an irreducible tree space for search
operations

— Moves focus from Boolean Functions to Binary Decision
Trees

Revisiting Monotonicity

e Monotonic Decision Trees

— A binary decision tree will be called monotonic if all
the left leafs are class “0” and all the right leafs are
class “1”.

e Example:
a b b
F(abc) b/ \c a/ \c c/ \a

abc
/
8828 0/\10\1 O/\c a/\1 0/\a 1/\c
010]1 /\ I\ /\ /\
01 1|1] 0:10 0c1 0 1 .
1011 SN\, SN N N
0 SACA A A AA S
1111 O/aa1 0 a a 1 b\)a1 Oab\l
/\ I\ /\ I\ /\ /\ /\ I\
0110 17001 0 1 0 1 1001

Revisiting Completeness

 Complete Decision Trees

— A binary decision tree will be called complete if every sensor
occurs at least once in the tree and at any non-leaf node in
the tree, its left and right sub-trees are not identical.

e Example:
a a
a b c |F(abc) b/\c c/\b
0]00 |[0
oj01 ||1 c\1 b/\1 b/\1 4\1
ol10 |1 /\ /\ /\ /\
ol11 |1 01 0 1 0 1 0 1
1{o00 [0 a a
1101 [[1 "\ "\l
ol /N AN
111 /b\\1 g c 1 ¢ 1

The CM Tree Space

No. of Distinct BDTs Trees From CM Complete and
attributes Boolean Functions | Monotonic BDTs
2 74 4 4
3 16,430 60 114
4 1,079,779,602 11,808 66,000

Ny o

. AN
b/ C b/ c
\ /\ 7\ /\
c d 1 c C d
/N I\ ARV ANAN
1d 10 1 0 1d 10 1
/N !\
0 1 0 1
a a
b/\c b/\
C
\ /N /\ I\
c d 1 0 ¢ d 1
ANVAN TANIAN
/d\i/b\1 d\lo b
/
0 10 1 0 1 ({
b/a\
C
/\ I\
0 ¢ d b
TANIVANEAN
d 10 10 1
/ ™\
0 1

Tree Space Traversal
* Greedy Search

1. Randomly start at any tree in the CM tree space

2. Find its neighboring trees using neighborhood operations
3. Move to the neighbor with the lowest cost

4. lterate till the solution converges

— The CM Tree space has a lot of local minima. For
example: 9 in the space of 114 trees for 3 sensors and
193 in the space of 66,000 trees for 4 sensors.

* Proposed Solutions
e Stochastic Search Method with Simulated Annealing
* Genetic Algorithms based Search Method

Tree Space Irreducibility

 We have proved that the CM tree space is irreducible
under the neighborhood operations

e Simple Tree:

— A simple tree is defined as a CM tree in which every sensor
occurs exactly once in such a way that there is exactly one
path in the tree with all sensors in it.

/\ /N A
/b\ 1 b 1 0 d
¢ /N a
VA 0 ¢ ¢ 1
/({ ! d/) O/ \a
J 1 A A
0 1 0 1

To Prove: Given any two trees 7, 7, in CM tree space, 7",

T, can be reached from t, by an arbitrary sequence of
neighborhood operations

We prove this in three different steps:
1. Anytree t,can be converted to a simple tree 7,

2. Anysimple tree t, can be converted to any other simple
tree 7,

3. Anysimple tree t, can be converted to any tree t,

CM Tree space, ™

Simple trees

T
T, T /

Results

* Significant computational savings over previous
methods

* Have run experiments with up to 10 sensors

* Genetic algorithms especially useful for larger scale
problems

Current Work

Tree equivalence
Tree reduction and irreducible trees

Canonical form representation of the equivalence
class of trees

Revisiting completeness and monotonicity

Thank Youl

Previous work: A quick overview

Monotonic Boolean Functions:
*Given two strings x,x,...x,, V{¥,...y,
["is monotonic iff x; >y, for all i implies that

Fxxy..x,) = FQy,...0,).

Complete Boolean Functions:

eBoolean function F'is incomplete if F' can be calculated
by finding at most n-1 attributes and knowing the value
of the input string on those attributes

e|n other words, F'is complete if all the attributes
contribute towards the output

Previous work: A quick overview

e Stroud and Saeger: “brute force” algorithm for enumerating
binary decision trees implementing complete, monotonic

Boolean functions and choosing least cost BDT.

BDTs from CM

No. .O f Distinct BDTs M Boo{ean Boolean
attributes Expressions .
Functions
2 /4 2 4
3 16,430 9 60
4 1,079,779,602 114 11,808
5 5x108 6894 263,515,920

Infeasible beyond n > 4!

Problems with Standard Approaches

Gradient Descent Method: Setting the value of the step
size heuristically, since:

— Too small step size: long time to converge

— Too big step size: might skip the minimum

Newton’s Method:

— The convergence depends largely on the starting point

— Occasionally drifts in the wrong direction and hence fails
to converge.

Solution: combination of gradient descent and Newton’s
methods

The Combined Method

. Initialize T as vector of random sensor threshold

values
. Compute of , Hf(7)

3. If Hf(7) is not positive definite, then find a close

approximation

. If Hf(7) is not well-conditioned, then take a few steps
using gradient descent until it becomes well-
conditioned

. Take a step using Newton’s method

. Repeat steps 1-5 until the solution converges

. Repeat steps 1-6 a few times and choose the overall

Tree Neighborhood and Tree Space

e Structure based methods
e Classification based methods

 We choose structure based neighborhood methods
because :

* Small changes in tree structure do not effect the
cost significantly , and...

e All BDTs with same Boolean function may differ a
lot in cost

Tree Neighborhood and Tree Space

* Define tree neighborhood such that the Complete
and Monotonic (CM) tree space is irreducible

* Irreducibility

— Any tree in the CM tree space can be reached from any
other tree by using the neighborhood operations
repetitively

— An irreducible CM tree space helps “search” for the
cheapest trees using neighborhood operations

Search Operations

e Split
Pick a leaf node and replace it with a sensor that is

not already present in that branch, and then
insert arcs from that sensor to 0 and to 1.

d d
ZaN A\
/ \ / \
0\c d/1 SPLIT \ /

| I\ /\ l\
d 10 1
/\ /\ /\
0 1 0O 10 1

Search Operations

* Swap

Pick a non-leaf node in the tree and swap it with
its parent node such that the new tree is still
monotonic and complete and no sensor occurs
more than once in any branch.

a
b/\c N\,
((\ SWAP> /\d C{\
/\/\ /\/\
d 10 10
/\ \

Search Operations

* Merge
Pick a parent node of two leaf nodes and make it a
leaf node by collapsing the two leaf nodes below
it, or pick a parent node with one leaf node,
collapse both of them and shift the sub-tree up in
the tree by one level.

a a a
N\, N ¥\
§ % ¢ MERGE, ¢ ¢M 6% 4%
/\ I\ /\ I\ /\ I\
4107 0101 0101

01

Search Operations

* Replace

Pick a node with a sensor occurring more than
once in the tree and replace it with any other
sensor such that no sensor occurs more than once
in any branch.

da a
s N\ " \e
0/\c d/\1 REPLACE> 0/\c b/\1
/\ I\ /\ I\
d 101 d 101

/\ /\
0 1 0 1

Stochastic Search Method

1. Randomly start at any tree in CM space
2. Find its neighboring trees, and find their optimum costs

3. Select move according to the following probability. If we are at
the ith tree 7, then the probability of going to its kth neighbor
T, 1S given by

_ (f@)/fa))"

Pki i 1/t
> (F@)/ @)

where 7, is the number of neighboring trees of t;

4. Initialize the temperature r = 1, and lower it in discrete unequal

steps after every m hops until the solution converges

5. Repeat steps 1-4 a few times and choose the overall minimum

Tree Space Irreducibility

1. Tl—ﬁfslz

*Repeated subtree merger
*To remove a node at depth &, at most k-2 need to be checked

for completeness
*We prove that there is at least one node in a subtree at any

time, that can be merged without disturbing the overall
completeness constraint

Tree Space Irreducibility

2. Tsl—ﬁ TSZ:

*First convert t, to have similar “skeleton” as t,
*Then use repeated Swap operations

b b b b
/N / N\ / N\ / N\
d 1 d 1 d 1 d 1
/c/ \1 SPLIT /c a E / /a / >a
0 \a 0 \a 0 1 0 10 \1 0 1¢ \1
/\ / \
0 1 0 1 0 1
lMERGE
A R
b/ \ / ‘\1 / ! :
4 \ A
¢ _SWAP d swap © /d\ SWAP 0 a
A /°/ 1 A A
0 \1 0 \1 0 1 \|

Tree Space Irreducibility

T,— Ty

*The process of going from a tree to a simple tree is entirely
reversible. For example:
— any split operation can be reversed using a merge
operation and vice-versa
— swap and replace operations can be reversed by opposite
swap and replace operations, respectively

* Therefore, T,— t, impliest.,— T
2 s2 s2 2

Genetic Algorithms based Search

 The underlying idea is to get a population of
“better” trees from a current population of
“good” trees by using the basic operations:

— Selection
— Crossover
— Mutation

* “better” decision trees correspond to the ones
cheaper than the current ones (“good”)

Genetic Algorithms based Search

e Selection:

— Select a random, initial population of N trees from
CM tree space

e Crossover:

— Performed k times between every pair of trees in
the current best population, bestPop

Genetic Algorithms based Search

— For each crossover operation between two trees t,
and T, we randomly select a node in each tree and
exchange their subtrees

— However, we impose certain restriction on the
selection of nodes, so that the resultant trees still
lie in CM tree space

Genetic Algorithms based Search

* Mutation:

— Performed after every m generations of the

algorithm

— We do two types of mutations:

1.

Generate all neighbors of the current best
population and put them into the gene pool

Replace a fraction of the trees of bestPop with

random trees from the CM tree space

Results | - Threshold Optimization

500 —

450 © Combined Optimization o
_ ()
o Extensive search
400 |-
350 —
300 |—
250 |-
o6 o6 &® PcPee
200| B ! 8 &8 B
150 o -
| oo 8o
Fo0 ° ns”
&5 8 8 8
00| % @@@@@@ @@@ @%@ : ¢ o 900 -
| | i i Q@@%Qfg@@ e | o | B |
0 20 40 60 80 100

* Many times the minimum obtained using the
optimization method was considerably less than the
one from the extensive search technique.

Results Il - Searching CM Tree Space

* Stochastic Search Method:
e Successfully performed experiments forupton =5
* For example, for 4 sensors (66,000 trees)
— 100 different experiments were performed

— Each experiment was started 10 times randomly at some tree
and chains were formed by making stochastic moves in the
neighborhood, until convergence

— Only 4890 trees were examined on average for every
experiment

— Global minimum was found 82 times while the second best
tree was found 10 times

Results Il - Searching CM Tree Space

* Genetic Algorithms based Method:
e Successfully performed experiments for up ton = 10
 For 4 sensors (66,000 trees)
— 100 different experiments were performed

— Each experiment was started with a random population of 20
trees and was continued for 27 generations each; the
mutations are performed after every 3 generations

— Only 1440 trees were examined on average for every
experiment

— Global minimum was found all 100 times

— The algorithm returns a whole population of good trees most
of which belong to 50 best trees

Results Il - Searching CM Tree Space

e Similarly, for n =5, the tree space consists of more than
22.5 billion trees, we always obtained one of the following
best trees:

a

b/\e e/a\ /e\

e a a

/ I\ /\ I\ N\ I\
e ¢ 1 b b ¢ 1 b c b 1

O/d NG N\ VAN A A AR AN AN
¢c ¢ d1 0 ¢cd ¢ d1 0 ¢cd1d ¢
AWANWAWA AN AN AVASVAYA
0 10/? ?\1 01 O/C|IO 1 ?\1 01 0/(I101 01 7]\1
010 1 01 01 01 01

e Each of these trees costs 41.4668

Results Il - Searching CM Tree Space

10, following were the best trees over a few runs:

Formn =

NS R -
/ Nocs<8Z

o o
~o o —~—

- .) .O\d/
© D N - N =)
v—" / C/ ~
Ne Yo @ o ©

Current Work

* Tree Equivalence
—Decision Equivalence: Two or more decision trees are called
decision equivalent if their underlying Boolean function is same
—Cost Equivalence: Two trees are called cost equivalent iff they are
“transposes” of each other. For example:

A i\
IC’\/ R a\/ A
0/c d 1 O/d ¢ 1

g1 g1

—The size of largest equivalence class also increases more than
double exponentially with »

—Therefore, we define a space of equivalence classes of decision
trees, with a unique, canonical representation of each class

Current Work

* Tree Reduction and Irreducible Trees
—A transpose of a complete tree can be incomplete. For example:

PN a/\
RN /\d c/\ RN
/

/e\/ \/d A \/c\ /C\(\ /(/ \/e\ Cu did o \/e
0l1el0lf 101 1f 0/1e/ é\lé\lf/\lo/\lf\l
ANEA /\ /\ /\ /\
01 01 01 01 01 01
b
TN

—Irreducible Trees: A tree will be called irreducible, if all the trees
belonging to its equivalence class are complete

Current Work

e Canonical Form Representation

— We chose a lexicographic representation of the
equivalence class

— “Pull-up” the lexicographically smallest sensor as the root
node and recursively repeat the procedure in the left and
right subtrees

— A canonical form representation of an equivalence class
enables us to “shrink” the tree space

— Every tree is first converted to its canonical form, before
checking for its cost, therefore checking the cost of only
one tree from an equivalence class is sufficient

Current Work

e Canonical Form Representation: Example

Current Work

e Revisiting Completeness:

1. Atanynode in a tree, the left and right subtrees should not be
cost-equivalent

2. Atany node in a tree, the left and right subtrees should not have
identical Boolean function

2 covers 1, therefore...

Equi-complete BDT: A binary decision tree will be called equi-
complete if every sensor occurs at least once in the tree and, at any
non-leaf node, the left and right subtrees do not correspond to same
Boolean function.

Current Work

* Revisiting Monotonicity:
1. A cost-equivalent tree of a monotonic tree can be non-
monotonic (‘0” as right leaf, ‘1’ as left leaf or both).

* Equi-monotonic BDT: A binary decision tree will be called
equi-monotonic, if all the trees belonging to its equivalence
class are monotonic.

Discussion

. The exhaustive search method, for finding the optimum
thresholds for a given tree, become practically infeasible
beyond a very small number of sensors.

. The threshold optimization technique discussed in our
work provide faster and better ways to calculate the
optimal total cost of a tree.

. The exhaustive search method, for finding the cheapest
tree in the entire space of trees is also hard to extend
beyond a very small number of sensors.

We described a couple of efficient search methods to find
the best trees in the CM tree space

Discussion

Expanding the ideas of monotonicity and completeness

from BDFs to BDTs is reasonable because:

e certain trees obtained from incomplete/ non-
monotonic BDFs are potentially valid BDTs and,

* it facilitates tree search algorithms

We proved that the proposed CM tree space is irreducible
under the defined neighborhood operations.

We discussed the ideas of tree equivalence and tree
reduction that help us “shrink” the tree space

We describe way to represent an equivalence class with a
unigue, canonical form.

Future Work

A more basic and rigorous analysis of monotonicity
IS required

Different instances of a sensor in a tree can be set
to different thresholds for optimum cost

Sensor models, other than the one we use could
be tried

Acknowledgements

Dr. Fred Roberts
DIMACS, NSF and ONR

Dr. Peter Meer and Oncel Tuzel

Dr. Endre Boros

