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Code-based cryptography

Cryptographic primitives based on the decoding problem

Main challenge: put the adversary in the condition of decoding a random-
like code

Everything started with the McEliece (1978) and Niederreiter (1986)
public-key cryptosystems

A large number of variants originated from them
Some private-key cryptosystems were also derived

The extension to digital signatures is still challenging (most concrete
proposals: Courtois-Finiasz-Sendrier (CFS) and Kabatianskii-Krouk-Smeets
(KKS) schemes)



Main ingredients (McEliece)

* Private key:

{G, S, P}

— G: generator matrix of a t-error correcting (n, k) Goppa code
— S: kxknon-singular dense matrix
— P: nxnpermutation matrix

e Public key:
G'=S-G-

The private and public codes are permutation equivalent!



Main ingredients (McEliece)

* Encryption map:

X=u-G' +e
* Decryption map:
x’=x-P'1=u-S-G
all errors are corrected, so we have:

u’ =u-S at the decoder output
u=u’-S!



Main ingredients (McEliece)

Goppa codes are classically used as secret codes

Any degree-t (irreducible) polynomial generates a
different Goppa code (very large families of codes with
the same parameters and correction capability)

Their matrices are non-structured, thus their storage
requires kn bits, which are reduced to rk bits with a
CCA2 secure conversion

The public key size grows quadratically with the code
length



Niederreiter cryptosystem

Exploits the same principle, but uses the code parity-check
matrix (H) in the place of the generator matrix (G)

Secret key: {H, S} = Public key: H’ = SH

Message mapped into a weight-t error vector (e)
Encryption: x = H'e’
Decryption: s = S'x = He” - syndrome decoding (e)

In this case there is no permutation (identity), since passing
from G to H suffices to hide the Goppa code (indeed the
permutation could be avoided also in McEliece)



Permutation equivalence

Using permutation equivalent private and public codes
works for the original system based on Goppa codes

Many attempts of using other families of codes (RS, GRS,
convolutional, RM, QC, QD, LDPC) have been made, aimed
at reducing the public key size

In most cases, they failed due to permutation equivalence
between the private and the public code

In fact, permutation equivalence was exploited to recover
the secret key from the public key



Permutation equivalence (2)
Can we remove permutation equivalence?
We need to replace P with a more general matrix Q

This way, G’ =S - G - Q and the two codes are no longer
permutation equivalent

Encryption is unaffected

Decryption: X’ =x-Q'=u-S-G .|.



Permutation equivalence (3)

How can we guarantee that e’ = e - Q! is still
correctable by the private code?

We shall guarantee that e’ has a low weight

This is generally impossible with a randomly designed
matrix Q

But it becomes possible through some special choices

of Q



Design of Q: first approach

Design Q! as an n x n sparse matrix, with average row and
column weight equal to m:

l1<m<K<n

This way, w(e’) < m - w(e) and w(e’) = m - w(e) due to the
matrix sparse nature

w(e’) is always < m - w(e) with regular matrices (m integer)

The same can be achieved with irregular matrices (m
fractional), with some trick in the design of Q



Design of Q: second approach

* Design Q! as an n x n sparse matrix T, with
average row and column weight equal to m,
summed to a low rank matrix R, such that:

e-Ql=e-T+e-R

e Then:

— Use only intentional error vectors e such thate-R=0
...Or...

— Make Bob informed of the value of e - R



LDPC-code based cryptosystems

(example of use of the first approach)

==

QC-LDPC

Code-RaeeN SpringerBriefs in Electrical and Computer Engineering
Cryptography (preprint available on ResearchGate)

2014, XVI, 120 p. 15 llus.
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LDPC codes

 Low-Density Parity-Check (LDPC) codes are capacity-achieving
codes under Belief Propagation (BP) decoding

* They allow a random-based design, which results in large families of
codes with similar characteristics

 The low density of their matrices could be used to reduce the key
size, but this exposes the system to key recovery attacks

* Hence, the public code cannot be an LDPC code, and permutation
equivalence to the private code must be avoided

[1] C. Monico, J. Rosenthal, and A. Shokrollahi, “Using low density parity check codes in the McEliece
cryptosystem,” in Proc. IEEE ISIT 2000, Sorrento, Italy, Jun. 2000, p. 215.

[2] M. Baldi, F. Chiaraluce, “Cryptanalysis of a new instance of McEliece cryptosystem based on QC-LDPC codes,”
Proc. IEEE ISIT 2007, Nice, France (June 2007) 2591-2595

[3] A.Otmani, J.P. Tillich, L. Dallot, “Cryptanalysis of two McEliece cryptosystems based on quasi-cyclic codes,” Proc.
SCC 2008, Beijing, China (April 2008)



LDPC codes (2)

LDPC codes are linear block codes
code length

code dimension

code redundancy

k x n generator matrix

r x n parity-check matrix
average H column weight
average H row weight

H =

|
::mn xS
S
|
=

Q Q
. S,

Cl

LDPC codes have parity-check matrices with:
— Low density of ones (d, K r, d. < n)

— No more than one overlapping symbol 1
between any two rows/columns

— No short cycles in the associated Tanner graph
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LDPC decoding

 LDPC decoding can be accomplished through the
Sum-Product Algorithm (SPA) with Log-
Likelihood Ratios (LLR)

* For arandom variable U:

|_|_R(u)=|nr)'r(U :O)}

Pr(U =1)

e Theinitial LLRs are derived from the channel

 They are then updated by exchanging messages
on the Tanner graph
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LDPC decoding for the McEliece PKC

The McEliece encryption map is equivalent to transmission over a special
Binary Symmetric Channel with error probability p = t/n

LLR of a priori probabilities associated with the codeword bit at position

I.
) P(Xi:O|yi:y)
LLR(X;) = In{ P(x =1y, = y)}

Applying the Bayes theorem:

LLR(x |y, =0) = In Ll_—p] _In (”—_t)
0 t
p

t
LLR(X |y, =1 =In (ﬁj =1In [n——tj



Bit flipping decoding

LDPC decoding can also be accomplished through hard-decision iterative
algorithms known as bit-flipping (BF)

During an iteration, every check node sends each neighboring variable
node the binary sum of all its neighboring variable nodes, excluding that
node

In order to send a message back to each neighboring check node, a
variable node counts the number of unsatisfied parity-check sums from
the other check nodes

If this number overcomes some threshold, the variable node flips its value
and sends it back, otherwise, it sends its initial value unchanged

BF is well suited when soft information from the channel is not available
(as in the McEliece cryptosystem)



Decoding threshold

» Differently from algebraic codes, the decoding radius of LDPC codes
Is not easy to estimate

 Their error correction capability is statistical (with a high mean)

* For iterative decoders, the decoding threshold of large ensembles
of codes can be estimated through density evolution techniques

 The decoding threshold of BF decoders can be found by iterating
simple closed-form expressions

n [bits] 1228815360 | 1843221504 (24576 27648|30720|33792| 36864 | 39936 | 43008 | 460580 (49152
R—9/3 d, = 13| 190 | 237 | 285 | 333 | 380 | 428 | 476 | 523 | 571 | 619 | 666 | 714 | 762
C|d, =15| 192 | 240 | 288 | 336 | 384 | 432 | 479 | 527 | 575 | 622 | 670 | T18 | 766

1 [bifs] 1633420480 24576 | 28672 | 32768 [ 36864 | 40960 [ 45056 | 49152 |53248| 57344 |61440|65536
d, =13| 181 | 225 | 270 | 315 | 360 | 405 | 450 | 495 | 540 | 585 | 630 | 675 | 720
d, = 15| 187 | 233 | 280 | 327 | 374 | 421 | 468 | 515 | 561 | 608 | 655 | 702 | 749

R=3/4

January 14, 2015 Marco Baldi - Constructive aspects of code-based cryptography 18




Quasi-Cyclic codes

* Alinear block code is a Quasi-Cyclic (QC) code if:

1. Its dimension and length are both multiple of an integer
p (k=kyp and n = nyp)

2. Every cyclic shift of a codeword by n, positions yields
another codeword

 The generator and parity-check matrices of a QC
code can assume two alternative forms:
— Circulant of blocks
— Block of circulants



QC-LDPC codes with rate (n, - 1)/n,

For ry =1, we obtain a particular family of codes with length n = nyp,
dimension k = kyp and rate (n, - 1)/n,

H has the form of a single row of circulants:
completely y

H :{Hg H - H _J <«— described by
0 . .
its firstrow @
In order to be non-singular, H must have at least one non-singular block
(suppose the last)

i c -1 c_T |
(Hn0—1> | HO
In this case, G (in ) 1 . completely
systematic form) G=|l (Hﬁo_l) -H; | described by f
is easily derived: ) ] its (k + 1)-th é
' column
c -1 c ! ]
[(Hno—l) | Hno—z}




Random-based design

A Random Difference Family (RDF) is a set of subsets of a
finite group G such that every non-zero element of G
appears no more than once as a difference of two elements
in a subset

An RDF can be used to obtain a QC-LDPC matrix free of
length-4 cycles in the form:

H=[H; HE - H
The random-based approach allows to design large families
of codes with fixed parameters

The codes in a family share the characteristics that mostly
influence LDPC decoding, thus they have equivalent error
correction performance



An example

* RDF over Z,3:

— {1, 3, 8} (differences: 2, 11, 7, 6, 5, 8)

— {5, 6, 9} (differences: 1, 12, 4, 9, 3, 10)

* Parity-check matrix (n,

0 00O0O0O1110O01O0O00O0
0000O0OO0O11O0O011O0O0
0 000O0OO0O0OI11O0O0T1O0
0 000O0OOOOTI1I1O0O01
10000O0O0OO0OO0OCI1I1O00
01000O0O0OO0OO0ODO0OT11IT1O0
00100O0O0O0O0OO0OO0OT11
100 1000O0O0O0OO0OT 0?11
11 00100O0O0O0O0O0TDO
01100100O0O0O0O0TO
0 0110O0100O0O0O0TO
000110O01O0O0O0O0TO
0 00O0O11001O0O0O00O0

01 010O0O0O0O1O0O0O0TO
001010O0O0O0O1IO0O0T® O
0 0010100O0O0OT11O0O0
0 00O01O01O0O0O0OO0CTI1IO
0 000O0O1O01O0O0O0TC0?1
100 00O0O1O01000°0
01 000O0O0O1O0T1O0OCO0TO
00100O0O0OO0OI1IO0T11IO0O0
0001 0O0O0OO0OO0OI1TO0T1IOPO0
0 000O1O0O0O0OO0OO0OT1IOQ0?1
100 00100O0O0O0T10
01 000O0O1O0O0OO0OO0OTG 0?1
101 00O0O01O0O0O0O0TO

H=



Attacks

In addition to classical attacks against McEliece, some
specific attacks exist against QC-LDPC codes

Dual-code attacks: search for low weight codewords in the
dual of the public code in order to recover the secret (and
sparse) H

QC code weakness: exploit the QC nature to facilitate
information set decoding (decode one out of many) and
low weight codeword searches

Their work factor depends on the complexity of
information set decoding (ISD)



Dual code attacks

Avoiding permutation equivalence is fundamental to
counter these attacks

We use Q! with row and column weight m < n

Q and Q! are formed by n, x n, circulant blocks with
size p to preserve the QC nature in the public code

The public code has parity-check matrix H = H(Q!)"

The row weight of H’ is about m times that of H



e Minimum attack WF for m = 7:

Security level and Key Size

p [bits] 0216110240 11264 |12288[13312]14336|15360| 16384
d'v — 13 2105 2116 2125 ‘ 2146 2157 2161 2161
no =3 d, =15 9105 | 9116 | 9126 9146 | 9157 | 9168 | 5179
d-v — 13 2121 2134 2146 2154 2154 2154 2154
no =4 d, =15 9127 | 9138 | 9152 9176 | 9176 | 9176 | 5176
e Key size (bytes):
p [bits] || 4096 | 5120|6144 | 7168 | 81929216 | 10240 | 11264 | 12288 | 13312 | 14336 | 15360 | 16384
no =3 |[1024 1280 | 1536179242048 | 2304 | 2560 | 2816 ’ 30728 3328 | 3584 | 3840 | 4096
no =4 || 1536|1920 2304 | 2688 | 3072 | 3456 | 3840 | 4224 | 4608 | 4992 | 5376 | 5760 | 6144
[4] M. Baldi, M. Bianchi, F. Chiaraluce, ““Security and complexity of the McEliece cryptosystem based on QC-LDPC

codes”, IET Information Security, Vol. 7, No. 3, pp. 212-220, Sep. 2013.
January 14, 2015
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Comparison with Goppa codes

 Comparison considering the Niederreiter version with 80-bit
security (CCA2 secure conversion)

Goppa 1632 1269 33 57581 48 7890
based
QC-LDPC 24576 18432 38 2304 1206 1790 (BF)
based 1 ,

<L / 2 5 /

* For the QC-LDPC code-based system, the key size grows
linearly with the code length, due to the quasi-cyclic nature
of the codes, while with Goppa codes it grows quadratically



MDPC code-based variants

* An alternative is to use Moderate-Density Parity-Check
(MDPC) codes in the place of LDPC codes

* This means to incorporate the density of Q! into the
private code, which is no longer an LDPC code

* Then the public code can still be permutation
equivalent to the private code

e QC-MDPC code based variants can be designed too

[5] R. Misoczki, J.-P. Tillich, N. Sendrier, P. S. L. M. Barreto, “MDPC-McEliece: New McEliece Variants from Moderate
Density Parity-Check Codes”, Proc. IEEE ISIT 2013, Istanbul, Turkey, pp 2069-2073.



MDPC code-based variants (2)

It appears that the short cycles in the Tanner graph are
no longer a problem with MDPC codes

Therefore, their matrices can be designed completely
at random

This has permitted to obtain the first security
reduction (to the random linear code decoding
problem) for these schemes

On the other hand, decoding MDPC codes is more
complex than for LDPC codes (due to denser graphs)



Irregular codes

Irregular LDPC codes achieve higher error correction capability than
regular ones

This can be exploited to increase the system efficiency by reducing
the code length...

...although the QC structure and the need to avoid enumeration
impose some constraints

160-bit security

regular 4 97 79 13 54616 5121
irregular 4 97 79 13 46448 4355 = &
1S9,

[6]

M. Baldi, M. Bianchi, N. Maturo, F. Chiaraluce, “Improving the efficiency of the LDPC code-based McEliece
cryptosystem through irregular codes”, Proc. IEEE ISCC 2013, Split, Croatia, July 2013.



Symmetric variants

* The same principles can also be exploited to build a
symmetric cryptosystem inspired to the Barbero-Ytrehus
system

e Also in this case, QC-LDPC codes allow to achieve
considerable reductions in the key size

* A QC-LDPC matrix is used as a part of the private key

* The sparse nature of the circulant matrices is also exploited
by using run-length coding and Huffman coding to achieve
a very compact representation of the private key

[7] A. Sobhi Afshar, T. Eghlidos, M. Aref, “Efficient secure channel coding based on quasi-cyclic low-density parity-
check codes”, IET Communications, Vol. 3, No. 2, pp. 279-292.



GRS-code based cryptosystems

(example of use of the second approach)
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Replacing Goppa with GRS codes

GRS codes are maximum distance separable codes,
thus have optimum error correction capability

This would allow to reduce the public key size

GRS codes are widespread, and already implemented
in many practical systems

On the other hand, they are more structured than
Goppa codes (and wild Goppa codes)



Weakness of GRS codes

* When the public code is permutation equivalent
to the private code, the latter can be recovered

* This was first shown by the Sidelnikov-Shestakov
attack against the GRS code-based Niederreiter
cryptosystem



Avoiding permutation equivalence

* Public parity-check matrix (Niederreiter):
H=S1--H - Q—l

* Q'=R+T
e R:dense n x n matrix with rank z << n

* T: sparse n x n matrix with average row and
column weight m < n

* All matrices are over GF(q)

[8] M. Baldi, M. Bianchi, F. Chiaraluce, J. Rosenthal, D. Schipani, “Enhanced public key security for the McEliece
cryptosystem”, Journal of Cryptology, Aug. 2014 (Online First).



Avoiding permutation equivalence (2)

* Example of construction of R:

— take two matrices a and b defined over GF(q),
having size z x n and rank z

— Compute R=b’" - a

* Encryption:

— Alice maps the message into an error vector e
with weight [t/m]

— Alice computes the ciphertextasx =H' * e’



Avoiding permutation equivalence (3)

* Decryption:

Bob computes x'=S-x=H-Q'-e"=H-(bla+T)-e'=
H-b"-y+H:T:e’,wherey=a:-e’

We suppose that Bob knows y, then he computes x" =
X-H:-b"-y=H:-T-e’

e’ =T - e’ has weight < t, thus x" is a correctable syndrome

Bob recovers e’ by syndrome decoding through the private
code

He multiplies the result by T and demaps e into the
secret message



Main issue

 How can Bob be informed of the value of
y=a-e'?

* Two possibilities:
— Alice knows a (which is made public), computes y and

sends it along with the ciphertext (or select only error
vectors such that y is known (all-zero)).

— Alice does not know a and Bob has to guess the value
of y

* Both them have pros and cons



A History of proposals and attacks

M. Baldi, M. Bianchi, F. Chiaraluce, J. Rosenthal, D. Schipani, “A variant of
the McEliece cryptosystem with increased public key security”, Proc. WCC
2011, Paris, France, 11-15 Apr. 2011.

J.-P. Tillich and A. Otmani, “Subcode vulnerability”, private communication,
2011.

M. Baldi, M. Bianchi, F. Chiaraluce, J. Rosenthal, D. Schipani, “Enhanced
public key security for the McEliece cryptosystem”, arXiv:1108.2462v2

A. Couvreur, P. Gaborit, V. Gauthier, A. Otmani, J.-P. Tillich, “Distinguisher-
based attacks on public-key cryptosystems using Reed—Solomon codes”,
Designs, Codes and Cryptography, Vol. 73, No. 2, pp 641-666, Nov. 2014.
M. Baldi, M. Bianchi, F. Chiaraluce, J. Rosenthal, D. Schipani, “Enhanced
public key security for the McEliece cryptosystem”, Journal of Cryptology,
Aug. 2014 (Online First).

A. Couvreur, A. Otmani, J.-P. Tillich, V. Gauthier, “A Polynomial-Time Attack
on the BBCRS Scheme”, to be presented at PKC 2015.

M. Baldi, F. Chiaraluce, J. Rosenthal, D. Schipani, “An improved variant of
McEliece cryptosystem based on Generalized Reed-Solomon codes’,
submitted to MEGA 2015.
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Subcode vulnerability

Hl
When a is public, an attacker can look at H. 2{ }
a

For any codeword c in this subcode: STTHTc' =0

Hence, the effect of the dense matrix R is removed

When T is a permutation matrix, the subcode defined
by H. is permutation-equivalent to a subcode of the
secret code

The dimension of the subcode is n - rank{H}



Distinguishing attacks
When a is private, Bob has to guess the value of y
The number of attempts he needs increases as g*
Therefore only very small values of z (z = 1) are feasible

When z = 1 and m is small, the system can be attacked
by exploiting distinguishers

These attacks, recently improved, force us to use very
large values of m (m = 2) whenz=1



Avoiding attacks

Publish a such that z can be increased, but avoid
subcode attacks

This could be achieved by reducing the dimension of
the subcode to zero, which occurs for z > k

Let us consider z = k (can be extended to z > k): in this
case H is a square invertible matrix

X
The attacker could consider the system { }: H, e
and solve for e Y



Avoiding attacks (2)

 This further attacks is avoided if:

— we design b such that it has rank z’ < z and make a basis of
the kernel of b” public (through a z’ x z matrix B)

— rather than sending y along with the ciphertext, Alice
computes and sends y' =y + v, where vis a z x 1 vector in
the kernel of b’ (that is, b” v = 0)

— Vv is obtained as a non-trivial random linear combination of
the basis vectors

* This way, when Bob computes b’ y’' he still obtains
b”y, but the attack is avoided since y is hidden



ISD WF and Key Size

 Goppa code-based (PK: H’ over GF(2))

4006

2764

2644

2524

2404

2284

2164

2044

1924

111

121

131

141

151

161

171

181

187.3

188.9

189.3

188.5

186.7

183.9

180.2

175.7

449 .4

468.6

484.3

496.5

505.2

510.4

512.0

510.1

n 511

k 307 | 303 | 299 | 205 | 291 | 287 | 283 | 279 | 275
t 102 | 104 | 106 | 108 | 110 | 112 | 114 | 116 | 118
WF §180.1§180.21180.2|180.1{180.0{179.8|179.5(179.2{178.8|178.4
KS {295.9)292.8|289.6|286.4|283.3|280.1|276.8(273.6|270.3|267.1
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Comparison

 Consider the instances of both systems with
highest code rate able to reach WF > 2180

* By using the GRS code-based system, we achieve
a public key size reduction in the order of 26%
over the classical one

* The gap is even larger by considering lower code
rates



Digital signature schemes based

Oon sparse syndromes
(another example of use of the second approach)
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From PKC to Digital Signatures

RSA

McEliece
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Code-based signature schemes

Simply inverting decryption with encryption does
not work with code-based PKCs

Some specific solution must be designed

Two main code-based digital signature schemes:
— Kabatianskii-Krouk-Smeets (KKS)
— Courtois-Finiasz-Sendrier (CFS)

CFS appears to be more robust than KKS



CFS

Close to the original McEliece Cryptosystem
Based on Goppa codes

Public:
— A hash function (")

— A function F(h) able to transform any hash digest h into a
correctable syndrome through the code C

Key generation:

— The signer chooses a Goppa code able to correct t errors,
having parity-check matrix H

— He chooses a scrambling matrix S and publishes H’ = SH



CFS (2)

* Signing the document D:
— The signer computes s = F(H(D)) and s’ =S!s

— He decodes the syndrome s’ through the secret
code

— The error vector e is the sighature

e Verification:
— The verifier computes s = F(H(D))
— He checksthat H’ e"’=SHe ' =SS1ls=s5s



CFS (3)

* The main issue is to find an efficient function F(h)

* In the original CFS there are two solutions:

— Appending a counter to h = H(D) until a valid signature is
generated

— Performing complete decoding

* Both these methods require codes with very special
parameters:

— very high rate
— very small error correction capability



Weaknesses

e Codes with small t and high rate could be decoded,
with good probability, through the Generalized
Birthday Paradox Algorithm (GBA)

* High rate Goppa codes have been discovered to
produce public codes which are distinguishable from
random codes

* The public key size and decoding complexity can be
very large



A CFS variant

* Main differences:
— Only a subset of sparse syndromes is considered

— Goppa codes are replaced with low-density generator-
matrix (LDGM) codes

 Main advantages:
— Significant reductions in the public key size are achieved
— Classical attacks against the CFS scheme are inapplicable

— Decoding is replaced by a straightforward vector
manipulation

[9] M. Baldi, M. Bianchi, F. Chiaraluce, J. Rosenthal, D. Schipani, “Using LDGM Codes and Sparse Syndromes to
Achieve Digital Signatures”, Proc. PQCrypto 2013, Limoges, France, June 2013.



Rationale

* If we use a secret code in systematic form and sparse
syndromes, we can obtain sparse signatures

e An attacker instead can only forge dense signatures

 Example:
— secret code: H = [X]|1], with I an r x r identity matrix

— sisan r x 1 sparse syndrome vector
— the error vector e = [0]s'] is sparse and verifiesHe  =s



Issues
The map s €<= e is trivial (and also linear!)

The public syndrome should undergo (at least) a secret
permutation before obtaining e

Also e should be disguised before being made public

Sparsity is used to distinguish e from other (forged)
vectors in the same coset, but it should not endanger
the system security



Key generation

* Private key: {Q, H, S}, with
— H: r x n parity-check matrix of the secret code C(n, k)
—Q=R+T
— R=a’b, havingrank z < n

— T : sparse random matrix with row and column weight
m+, such that Qis full rank

— S: sparse non-singular n x n matrix with average row
and column weight m. <'n

* Publickey:H'=Q'HS™



Sighature generation

Given the document M
The signer computes h = H(M)

The signer finds s = F{(h), with weight w, such that
b s = 0 (this requires 2% attempts, on average)

The signer computes the private syndrome s’ = Q s,

with weight < m,w

The signer computes the private error vector e = [0|s'’]

The signer selects a random codeword ¢ € C with small

weight w,

The signer computes the public signature of M as
e'=(e+c)S’



Sighature generation issues

Without any random codeword ¢, the signing map becomes
linear, and signatures can be easily forged

With ¢ having weight w, < n, the map becomes affine, and
summing two signatures does not result in a valid signature

The signature should not change each time a document is
signed, to avoid attacks exploiting many signatures of the
same document

It suffices to choose ¢ as a deterministic function of M



Signature verification

The verifier receives the message M, its signature e’ and
the parameters to use in

He checks that the weight of e is < (mw + w)m,
otherwise the signature is discarded

He computes s* = F{H(M)) and checks that it has weight w,
otherwise the sighature is discarded

He computesH' e"=Q1HS!S(eT+c’)=Q1H(e"+ ') =
QlHe =Qls'=5s

If s = s*, the signature is accepted, otherwise it is discarded



LDGM codes

* LDGM codes are codes with a low density
generator matrix G

* The row weight of Gis w, <K'n

* They are useful in this cryptosystem because:
— Large random-based families of codes can be desighed
— Finding low weight codewords is very easy
— Structured codes (e.g. QC) can be designed



Attacks

The signature e’ is an error vector corresponding to the
public syndrome s through the public code parity-check
matrix H’

If e has a low weight it is difficult to find, otherwise
signatures could be forged

If e’ has a too low weight the supports of e and ¢ could be
almost disjoint, and the link between the support of s and
that of e’ could be discovered

Hence, the density of e’ must be:
— sufficiently low to avoid forgeries
— sufficiently high to avoid support decompositions



Attacks (2)

* If the matrix S is (sparse and) regular, statistical arguments
could be used to analyze large number of intercepted
signatures (thanks to J. P. Tillich for pointing this out)

* This way, an attacker could discover which columns of S
have a symbol 1 in the same row

e By iterating the procedure, the structure of the matrix S
could be recovered (except for a permutation)

* This can be avoided by using an irregular matrix S with the
same average weight

[10] M. Baldi, M. Bianchi, F. Chiaraluce, J. Rosenthal, D. Schipani, “Proposal and Cryptanalysis of a Digital Signature
Scheme Based on Sparse Syndromes”, in preparation.



Examples

SL (bits)| n k| p |w|wg|we|z|my|ms| Aw, | Ns |Sk (KiB)
80 | 9800 | 4900 | 50 [18[20(160|2| 1 | 9 |2%276 12156100 117
120 |24960|10000| 80 |23|25(325(2| 1 | 14 |[2140-1919242511 570
160  |46000(16000|100(29|31 |465|2| 1 | 20 2199232326491 1685

with n = 221 and r = 219, which gives a key size of 52.5 MiB

For 80-bit security, the original CFS system needs a Goppa code

* By using the parallel CFS, the same security level is obtained with
key sizes between 1.25 MiB and 20 MiB

e The proposed system requires a public key of only 117 KiB to
achieve 80-bit security (by using QC-LDGM codes)
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Comments

Permutation equivalence between private and public
codes can be avoided

This opens the way to the use of families of codes
other than Goppa codes

Both public-key encryption and digital signature
schemes can take advantage of this

This results in strong reductions in the size of the public
keys



