
NTRU and Lattice-Based Crypto:
Past, Present, and Future

Joseph H. Silverman

Brown University

The Mathematics of Post-Quantum Cryptography
DIMACS Center, Rutgers University

January 12–16, 2015

0

Some Definitions,
Some Notation,

and Some Theory

0

Definitions, Notation, Theory 1

Lattices

A lattice L is a (maximal) discrete subgroup of Rn, or
equivalently,

L = {a1v1 + · · · + anvn : a1, . . . , an ∈ Z}
for some R-basis v1, . . . ,vn of Rn. If L ⊂ Zn, it is
called an integral lattice.

The discriminant of L is the volume of a fundamental
domain

Disc(L) = Vol{t1v1 + t2v2 + · · · + tnvn : 0 ≤ ti < 1}.

Lattices have been extensively studied since (at least)
the 19th century and have applications througout math-
ematics, physics, and computer science.

For many applications, both theoretical and practical,
one is interested in finding short non-zero vectors in L.

Definitions, Notation, Theory 2

Short Vectors — Theory

A famous theorem of Hermite (1870s) says that a lat-
tice L contains a non-zero vector v ∈ L satisfying

‖v‖ ≤ γnDisc(L)1/n.

The optimal value for γn, called Hermite’s constant, is
known only for n ≤ 8, but for large n we have√

n/2πe . γn .
√
n/πe.

The shortest vector problem (SVP) is that of de-
termining the shortest non-zero vector in L. Hermite’s
theorem suggests that in a “random” lattice,

min
{
‖v‖ : 0 6= v ∈ L

}
�
√
n · Disc(L)1/n.

The closest vector problem (CVP) is that of de-
termining the vector in L that is closest to a given non-
lattice vector w.

Definitions, Notation, Theory 3

Short Vectors — Practice

In low dimension it is not too hard to find short(est)
vectors. But as the dimension increases, it becomes very
hard. A computational breakthrough is the

LLL Algorithm 1982. Let n = dim(L) and let λ(L)
denote the length of shortest non-zero vector in L. Then
there is a polynomial time algorithm to find a non-zero
vector v ∈ L satisfying

‖v‖ ≤ 2n/2λ(L).

Many improvements have been made, but there is cur-
rently no algorithm that finds a vector satisfying

0 6= ‖v‖ ≤ Poly(n)λ(L)

faster than O(1)n. This suggests using SVP and CVP
as the basis for cryptographic algorithms.

Lattice-Based Crypto
Early History

Lattice-Based Crypto — Early History 4

Lattice-Based Crypto

• Ajtai and Dwork (1995) described a lattice-based pub-
lic key cryptosystem whose security relies on the diffi-
culty of solving CVP in a certain set of lattices LAD.

• They proved that breaking their system for a a ran-
domly chosen lattice of dimension m in LAD is as
difficult as solving SVP for all lattices of dimension n,
where n depends on m.

• This average case-worst case equivalence is a theo-
retical cryptographic milestone, but unfortunately the
Ajtai-Dwork cryptosystem is quite impractical.

• More practical lattice-based cryptosystem were pro-
posed in 1996 by Goldreich, Goldwasser, and Halevi
(GGH, inspired by AD), and independently by Hoff-
stein, Pipher, and Silverman (NTRU).

Lattice-Based Crypto — Early History 5

Why Use Lattices for Crypto?

• A primary initial motivation was efficiency. Lattice-
based systems can be 10 to 100 times faster than RSA
or ECC systems at equivalent security levels.

• Of course, all of these systems have gotten faster over
the years due to implementation “tricks”.

• And as CPU speeds increased and memory costs de-
creased, speed differences became less relevant on many
(but not all) devices.

• Recently, there has been renewed interest in lattice
systems because, at present, there are no quantum
algorithms that solve general cases of SVP or CVP in
polynomial (or even subexponential) time.

• And this is not through lack of trying. Shor’s origi-
nal article specifically mentions SVP as an interesting
problem for quantum algorithm analysis.

Good Bases, Bad Bases,
and CVP

Good Bases, Bad Bases, and CVP 6

Solving CVP Using a Good Basis

It actually easy to solve (appr)CVP if one has a “good”
basis {v1, . . . ,vn} for L, where a basis is good if the
vectors are pairwise “reasonably orthogonal.”

To find a v ∈ L that is close to w, first use linear algebra
to write

w = α1v1 + · · · + αnvn with αi ∈ R,

and then round the αi to get a lattice vector

v = bα1ev1 + · · · + bαnevn ∈ L
that is “close” to w.

Good Bases, Bad Bases, and CVP 7

Using a Basis to Try to Solve the Closest Vector Problem

t

Draw a fundamental domain
around the target point t

L

Use a basis for the lattice to draw a parallelogram
around the target point.

Good Bases, Bad Bases, and CVP 8

Using a Basis to Try to Solve the Closest Vector Problem

t

v

The vertex v that is closest
to t is a candidate for
(approximate) closest vector

L

The vertex v of the fundamental domain that is closest
to t will be a close lattice point if the basis is “good”,
meaning if the basis consists of short vectors that are
reasonably orthogonal to one another.

Good Bases, Bad Bases, and CVP 9

Good and Bad Bases

A “good” basis and a “bad” basis

Good Bases, Bad Bases, and CVP 10

Closest Vertex Method Using Bad Basis

Target Point

Here is the parallelogram spanned by a
“bad” basis and a CVP target point.

Good Bases, Bad Bases, and CVP 11

Closest Vertex Method Using Bad Basis

Target Point
Closest Vertex

It is easy to find the vertex
that is closest to the target point.

Good Bases, Bad Bases, and CVP 12

Closest Vertex Method Using Bad Basis

Target Point
Closest Vertex

Closest Lattice Point

But the lattice point that solves CVP
is much closer to the target.

Good Bases, Bad Bases, and CVP 13

The GGH Cryptosystem — An Outline

The private key is a “good basis”

{v1, . . . ,vn}
for L, and the public key is a “bad basis”

{w1, . . . ,wn}.

To encrypt a plaintext m (a small vector), form

e = r1w1 + · · · + rnwn + m for random ri’s.

To decrypt, express e in terms of the good basis

e = α1v1 + · · · + αnvn with αi ∈ R,

and then round the αi’s to recover

m = e− bα1ev1 − · · · − bαnevn.

Good Bases, Bad Bases, and CVP 14

GGH versus LLL

The LLL algorithm takes a “bad” basis {w1, . . . ,wn}
and outputs a basis {u1, . . . ,un} that is “moderately
good.”

If n is not too large, say n < 100, then LLL can be used
to find a basis that will decrypt GGH.

On the other hand, if n > 400, then the GGH public
key, which consists of n vectors in Zn with (say) 6-digit
entries, is around 400KB. So practicality is an issue.

The problem is that key size is O(n2), and LLL is quite
effective for n < 100 and usable for n < 300.

RSA analogy : Factorization of 256 bit products pq is
easy, while factorization of 2560 bit products pq is infea-
sible. But this is okay, because RSA keys are linear in
bit-size, not quadratic.

NTRUEncrypt

NTRUEncrypt 15

NTRUEncrypt

NTRUEncrypt is a lattice-based public key cryptosystem
invented by Jeff Hoffstein around 1995 and further devel-
oped by Jeff, Jill Pipher, and me over the next few years.
It was the first practical lattice-based system, where

Practical = Secure + Fast + Small Key Size.

The basic algebraic operation used by NTRU may be
described in two equivalent ways:

• Polynomial multiplication in the quotient ring
Z[X]

(XN−1)
.

• Convolution product in the group ZN .

We identify f (X) = a10 + · · · + aN−1X
N−1 with its

vector of coefficients a = (a0, . . . , aN−1). We denote
the product by ?. In terms of convolutions,

c = a ? b with ck =
∑

i+j≡k (mod N)

aibj.

NTRUEncrypt 16

NTRUEncrypt — How It Works

Here is a version of NTRUEncrypt (fitting on one slide).

Public N a prime (250 < N < 2500)
Parameters q large modulus (250 < q < 2500)

p small modulus (say p = 3, p - q)
Private F ,G random ∈ {−1, 0, 1}N

Key f , g set f = 1 + pF and g = pG

Public Key h ≡ f−1 ? g (mod q)

Encryption m plaintext ∈ {−1, 0, 1}N
r random ∈ {−1, 0, 1}N
e ≡ r ? h + m (mod q), ciphertext

Decryption a ≡ f ? e (mod q)

Lift a to ZN with coefficients |ai| ≤ 1
2q

a (mod p) is equal to m.

NTRUEncrypt 17

NTRUEncrypt — Why It Works

First we compute

a ≡ f ? e (mod q)

≡ f ? (r ? h + m) (mod q)

≡ f ? (r ? f−1 ? g + m (mod q)

≡ r ? g + f ?m (mod q).

Since r, g,f ,m have small coefficients, when we lift a,
we get an exact equality

a = r ? g + f ?m in ZN .

Then reducing modulo p gives

a ≡ r ? g + f ?m (mod p)

≡ r ? (pG) + (1 + pF) ?m (mod p)

≡m (mod p).

NTRUEncrypt 18

NTRU as a Lattice-Based Cryptosystem

The Convolution Modular Lattice Lh associated
to the vector h and modulus q is the 2N dimensional
lattice with basis given by the rows of the matrix:

Lh = RowSpan



1 0 · · · 0 h0 h1 · · · hN−1
0 1 · · · 0 hN−1 h0 · · · hN−2
...
0 0 · · · 1 h1 h2 · · · h0
0 0 · · · 0 q 0 · · · 0
0 0 · · · 0 0 q · · · 0
...
0 0 · · · 0 0 0 · · · q


Another way to describe Lh is the set of vectors

Lh =
{

(a, b) ∈ Z2N : a ? h ≡ b (mod q)
}
.

NTRUEncrypt 19

Small Vectors in NTRU Lattices

NTRU public/private key pairs are constructed via

f ? h ≡ g (mod q) with “small” f and g.

This convolution relation implies that the NTRU lat-
tice Lh contains the short vector

[f , g] = [f0, f1, . . . , fN−1, g0, g1, . . . , gN−1].

To see that [f , g] is in Lh, write

f ? h− g = −qu with u ∈ ZN , and then

[f , g] = [f ,u]



1 · · · 0 h0 · · · hN−1
...

0 · · · 1 h1 · · · h0

0 · · · 0 q · · · 0
...

0 · · · 0 0 · · · q


∈ Lh.

• Can also search for [F ,G] via a CVP.

NTRUEncrypt 20

NTRU Decryption as a CVP Problem

Recall that the ciphertext e has the form

e = r ? h + m (mod q).

We can rewrite this relation in vector form as

[0, e] = [0, r ? h + m (modq)]

≡ [r, r ? h (modq)] + [−r,m].

The vector [r, r ?h (mod q)] is in the lattice Lh, while,
the vector [−r,m] is quite short.

Conclusion. For appropriate parameters, recovery of
the private key f from the public key h is equivalent
to finding a shortest vector in Lh, and recovery of the
plaintext m from h and the ciphertext e is equivalent
to finding the vector in Lh that is closest to the vec-
tor [0, e].

Lattice-Based Digital
Signatures

Lattice-Based Digital Signatures 21

Digital Signatures

A digital signature scheme consists of:
• A set of (hashes of) digital documents D.
• A set of signatures S .
• A set of randomization elements R.
• A set K of pairs (Ksign, Kverify) consisting of linked

signing and verification keys.

A signing key is a map

Ksign : D ×R → S,

and a verification key is a map

Kverify : D × S → {Yes,No}.

Sign and verify keys satisfy

Kverify(d, s) = Yes ⇐⇒
s = Ksign(d, r) for some r ∈ R.

Lattice-Based Digital Signatures 22

Digital Signatures Based on Lattice Problems

It is easy to create a CVP-based digital signature scheme
using good and bad bases.

A GGH Digital Signature Scheme
• Key Creation:

Private Key = {v1, . . . ,vn} = a good basis

Public Key = {w1, . . . ,wn} = a bad basis

• Signing: To sign d ∈ Rn, use the good basis and
rounding to find an

s = a1v1 + · · · + anvn ∈ L
that is close to d. Publish the signature

s = b1w1 + · · · + bnwn

expressed in terms of the bad basis.
• Verification: Reconstruct s from the bad basis and

the bi’s and check that it is close to d.

Lattice-Based Digital Signatures 23

Adapting NTRU for Digital Signatures

GGH signatures are unwieldy because keys are at least
O(n2) bits and LLL forces (say) n > 300.

NTRU lattices are specified by only O(N logN) bits,
but how do we find a good basis? The NTRU lattice Lh
contains N independent short vector by rotating (f , g),

(ei ? f , ei ? g) ∈ Lh for 0 ≤ i < N .

But Lh has dimension 2N .

So we expand the list of N very short vectors and in-
clude N additional moderately short vectors to form a
full basis. More precisely, we find one moderately short
vector (f ′, g′) and use its N rotations to fill out the ba-
sis. This can be done and leads to a reasonably practical
digital signature scheme.

However, these GGH and NTRU schemes both have a
potential weakness!

Lattice-Based Digital Signatures 24

Lattices Signature Schemes and Transcript Attacks

Digital signature schemes differ from public key cryp-
tosystems in that each document/signature pair (d, s)
potentially reveals information about the private key. A
Transcript Attack is a method for recovering the pri-
vate key from a long list (transcipt) of signatures:

(d1, s1), (d2, s2), . . . , (dt, st).

Each GGH or NTRU signature reveals a lattice vector
of the form s = a1v1 + · · · + anvn

The attacker does not know the ai or the vi, but taking
an appropriate weighted average over a transcript, he can
build up a picture of the fundamental domain{

t1v1 + · · · + tnvn : 0 ≤ ti < 1
}
.

(This is a simplification, but conveys the underlying idea.)
Using this picture, he can then forge signatures.

Lattice-Based Digital Signatures 25

Naive NTRU Signatures and Transcript Attacks

Various sorts of transcript attacks were developed, both
for general lattices and specifically for NTRU lattices,
by a number of people including Gentry, Nguyen, Regev
and Szydlo.

In particular, an early proposal for an NTRU-like sig-
nature scheme was destroyed by Gentry and Szydlo by
averaging over a transcript to recover the product f ? f̃ ,
and more recently (2006) Nguyen and Regev devised a
very clever and very efficient algorithm for recovering the
secret key parallelopiped from a small number of signa-
tures.

As my colleague Jeff Hoffstein so aptly describes it:

Lattice-Based Digital Signatures 26

A Signature Scheme Disaster

“Luckily the crypto community was pretty forgiving about
this mishap.”

Lattice-Based Digital Signatures 27

A Signature Scheme Disaster

“Luckily the crypto community was pretty forgiving about
this mishap.”

Lattice-Based Digital Signatures 28

Rejection Sampling and Transcript Security

Various ad hoc perturbation methods were proposed to
make it harder for the attacker to build up a picture of
the good fundamental domain, but it was hard to analyze
how effective they were.

Lyubashevsky recently described how to use rejection
sampling to completely(!) eliminate transcript attacks
on certain lattice-based digital signature schemes.

• First one includes some randomness in each signature.
• Next one rejects “bad” signatures and only uses “good”

signatures.
• If done properly, the probability distribution of the

set of good signatures is the same for all private keys.
Hence a transcript of signatures contains no informa-
tion about the private key!

Lattice-Based Digital Signatures 29

NTRUSign

It is not immediately clear how to adapt rejection sam-
pling to GGH or NTRUSign. In a recent preprint, Hoff-
stein et al. have proposed a “two-prime” version of NTRU-
Sign that simultaneously:

• Avoids the problem of having only half a short basis.

• Allows transcript security via rejection sampling.

In the next few slides, I will describe how NTRUSign
works and how rejection sampling achieves transcript se-
curity. First one piece of notation:

‖a‖∞ =
∥∥(a1, . . . , an)

∥∥
∞ = max |ai|.

Also, a vector “a mod q” has coefficients |ai| ≤ 1
2q.

Lattice-Based Digital Signatures 30

NTRUSign and Rejection Sampling

Public Parameters: Dimension parameter N , odd
primes p and q, and a norm bound B = dp2N/4e.
Signing Key: A pair of vectors (f , g), where f = pF
with F random mod 3, and g random mod p.

Verification Key: h = f−1 ? g (mod q)

Digital Documents: A document (hash) is a pair of
mod p vectors (sp, tp).

Valid Signatures: A signature on (sp, tp) for the sign-
ing key h is a pair of vectors (s, t) satisfying:
• t ≡ s ? h (mod q), i.e., (s, t) ∈ Lh.
• (s, t) ≡ (sp, tp) (mod p).

• ‖s‖∞ and ‖t‖∞ are both ≤ 1
2q −B.

Lattice-Based Digital Signatures 31

NTRUSign — Signing Algorithm

This algorithm computes the NTRUSign signature on a
document (sp, tp) using the signing key (f , g).

(1) Choose a random r with ‖r‖∞ ≤
⌊
q
2p −

1
2

⌋
.

(2) Set s0 = sp + pr.
(3) Set t0 = h ? s0 (mod q).
(4) Compute a = g−1 ? (tp − t0) (mod p).
(5) Set s = s0 + a ? f and t = t0 + a ? g.
(6) If ‖s‖∞ or ‖t‖∞ is > 1

2q −B, then REJECT. Go
to Step (1).

(7) Return the signature (s, t).

It is easy to check that the (s, t) returned by the al-
gorithm has the three properties needed to be a valid
signature for the document (sp, tp).

Lattice-Based Digital Signatures 32

Transcript Security of NTRUSign

NTRUSign is secure against transcript attacks due to:

Theorem. Fix a private key (f , g) and a document
(sp, tp) to be signed. Then among vectors (s, t) with

‖s‖ ≤ 1

2
q −B and ‖t‖ ≤ 1

2
q −B

and (s, t) ≡ (sp, tp) (mod p),

the probability that (s, t) is chosen to be the signature
on (sp, tp) is

Prob

(
signature
is (s, t)

)
=

(
p

2bq/2p− 1/2c

)N
.

Conclusion: The probability does not depend on the
private key (f , g). Hence a transcript contains no infor-
mation about the key.

Lattice-Based Digital Signatures 33

Probability of Accepting a Signature

In order for rejection sampling to be practical, there must
be a reasonable probability that (s, t) will be accepted.

The coefficients of s and t satisfy∥∥(s, t)
∥∥
∞ ≤

q

2
+
p2N

4
≈ q

2
+ B.

We fix 2 ≤ k ≤ 50 and take q ≈ kp2N2/4 ≈ kNB.
Then with the slightly simplifying assumption that the
coefficients are uniformly distributed, we find that

Prob

(
(s, t) is
accepted

)
≈
(
q/2−B
q/2 + B

)2N

≈
(

1− 2/kN

1 + 2/kN

)2N

≈ e−8/k.

Lattice-Based Digital Signatures 34

The Lattice Problem Underlying NTRUSign

In order to forge a signature, the forger must find a vector
(s, t) satisfying three conditions:
• Lattice Condition:

(s, t) ∈ Lh, i.e. t ≡ h ? s (mod q).

• Congruence Condition:

(s, t) ≡ (sp, tp) (mod p).

• Norm Condition:∥∥(s, t)
∥∥
∞ ≤

q

2
−B.

The congruence condition says that the difference

(s, t)− (sp, tp) is in the lattice pZ2N .

Lattice-Based Digital Signatures 35

The Lattice Problem Underlying NTRUSign (continued)

Thus the forger is looking for a short vector in the inter-
section

Lh ∩
(
pZ2N + (sp, tp)

)
.

Using the fact that

Disc(Lh) = qN and Disc(pZ2N) = p2N

with gcd(p, q) = 1,

one can reduce the forgery problem to solving apprCVP
in the intersection lattice

Lh,p := Lh ∩ pZ2N having Disc(Lh,p) = (p2q)N .

The difficulty of this problem may then be analyzed in
the usual way via BKZ-LLL lattice reduction experi-
ments.

Lattice-Based Digital Signatures 36

NTRUSign Parameters

Testing is ongoing, but the following should be practical,
while providing good security;

N = 661

p = 3

q = 9829081

B = 1487

k = 10

With these parameters, we have

Prob(Signature is Accepted) ≈ 45%

Key and Signature Size ≈ 15864 bits

Bit Security ≈ 192 to 256

Lattice-Based Digital Signatures 37

I want to thank the organizers
for the invitation to speak and
you for your attention.

NTRU and Lattice-Based Crypto:
Past, Present, and Future

Joseph H. Silverman

Brown University

The Mathematics of Post-Quantum Cryptography
DIMACS Center, Rutgers University

January 12–16, 2015

Addendum: Proof of Transcript
Security for NTRUSign

Proof of Transcript Security for NTRUSign 1

The Preliminary Signing Function

We let

R(k) =
{
f : ‖f‖∞ ≤ k

}
and A =

⌊
q

2p
− 1

2

⌋
.

If we ignore rejection sampling, signing is a function

σ′(f , g, sp, tp, r) = (s, t)

with

(f , g) ∈ pR(1)×R(p/2) private key,

(sp, tp) ∈ R(p/2)×R(p/2) document,

r ∈ R(A) random element.

The domain of σ′ is the set

Ω′ = pR(1)×R
(p

2

)
×R

(p
2

)
×R

(p
2

)
×R(A).

Proof of Transcript Security for NTRUSign 2

The Signing Function with Rejection Sampling

The preliminary signing function is given explicitly by

σ′(f , g, sp, tp, r) = (s0 + a ? f , t0 + a ? g),

where

s0 = sp + pr,

t0 ≡ h ? s0 (mod q) with ‖t0‖ ≤ q/2,

a ≡ g−1 ? (tp − t0) (mod p) with ‖a‖ ≤ p/2.

We now introduce rejection sampling by defining

ΩB =
{

(f , g, sp, tp, r) ∈ Ω′ :
∥∥σ′(f , g, sp, tp, r)

∥∥ ≤ q

2
−B

}
.

The restriction of σ′ to ΩB, denoted σ, is a map

σ : ΩB −→ R
(q

2
−B

)
×R

(q
2
−B

)
.

Proof of Transcript Security for NTRUSign 3

Transcript Security Theorem. The rejection sig-
nature function σ has the following property: For a
given

private key (f , g) ∈ pR(1)×R
(p

2

)
,

document (sp, tp) ∈ R
(p

2

)
×R

(p
2

)
,

signature (s, t) ∈ R
(q

2
−B

)
×R

(q
2
−B

)
,

the probability that (s, t) is the signature on (sp, tp)
using the key (f , g) is

Prob

(
signature
is (s, t)

∣∣∣∣private key is (f , g) and
document hash is (sp, tp)

)
=

{
(p/2A)N if (s, t) ≡ (sp, tp) (mod p),

0 if (s, t) 6≡ (sp, tp) (mod p).

Proof of Transcript Security for NTRUSign 4

Proof of the Transcript Security Theorem

We may assume that

(s, t) ≡ (sp, tp) (mod p)

since otherwise the probability is 0.

Since r is chosen uniformly from the set R(A), there
are (2A)N possible choices for r. Hence the probability
is (2A)−N times the number of elements in the set

Σ(f , g, s, t) =
{
r ∈ R(A) : σ(f , g, sp, tp, r) = (s, t)

}
.

Claim There is a well-defined bijection of sets

φ : R
(p

2

)
−→ Σ(f , g, s, t),

b 7−→
s− sp
p
− b ?

f

p
.

Note that the coefficients of s − sp are multiples of p,
and f ∈ pR(1).

Proof of Transcript Security for NTRUSign 5

Proof of the Claim

To show that φ(b) ∈ Σ(f , g, s, t), we check

σ
(
f , g, sp, tp, φ(b)

)
= (s, t).

We first compute

s0 = sp + pφ(b)

= sp + p

(
s− sp
p
− b ?

f

p

)
= s− b ? f ,

t0 ≡ h ? s0 (mod q)

≡ h ? (s− b ? f) (mod q)

≡ h ? s− b ? g (mod q) since h ≡ f−1 ? g,

≡ t− b ? g (mod q) since (s, t) ∈ Lh.

The formula for s0 is exact, but the formula for t0 is only
a congruence (for now).

Proof of Transcript Security for NTRUSign 6

Proof of the Claim (continued)

Next we compute

‖t− b ? g‖
≤ ‖t‖ + ‖b ? g‖ triangle inequality,

≤
(q

2
−B

)
+ B since t ∈ R

(q
2
−B

)
,

=
q

2
.

Since t0 is determined by the congruence t0 ≡ tp and
the norm estimate ‖t0‖ ≤ q/2, we find that

t0 = t− b ? g exactly.

Next we compute

a ≡ g−1 ? (tp − t0) ≡ b (mod p),

and since a, b ∈ R(p/2), we get a = b.

Proof of Transcript Security for NTRUSign 7

Proof of the Claim (continued)

We now compute the signature

σ
(
f ,g, sp, tp, φ(b)

)
= (s0 + a ? f , t0 + a ? g) definition of σ,

= (s− b ? f + a ? f , t− b ? g + a ? g)

from formulas for s0 and bft0,

= (s, t) since a = b.

The definition of Σ(f , g, s, t) lets us conclude

φ(b) ∈ Σ(f , g, s, t),

This shows that φ is a well-defined map

φ : R
(p

2

)
−→ Σ(f , g, s, t).

It remains to show that φ is bijective.

Proof of Transcript Security for NTRUSign 8

Proof of the Claim (continued)

Fix r ∈ Σ(f , g, s, t). We will show that #φ−1(r) = 1.

Every coefficient of s− sp and f is divisible by p, so let

s− sp = pS and f = pF .

Then

φ(b) = r ⇐⇒ S − b ? F = r

⇐⇒ b ≡ F−1 ? (S − r) (mod p) and ‖b‖ ≤ p

2
.

Hence

φ−1(r) =

(
the unique b ∈ R(p/2) satisfying

b ≡ F−1 ? (S − r) (mod p)

)
.

This proves the claim that φ is bijective. Then

Prob =
#Σ(f , g, s, t)

#R(A)
=

#R(p/2)

#R(A)
=
(p

2A

)N
concludes the proof of the theorem.

NTRU and Lattice-Based Crypto:
Past, Present, and Future

Joseph H. Silverman

Brown University

The Mathematics of Post-Quantum Cryptography
DIMACS Center, Rutgers University

January 12–16, 2015

