Mathematical problems of very large networks

László Lovász

Eötvös Loránd University, Budapest

lovasz@cs.elte.hu

Issues on very large graphs

The following issues are closely related:

- property testing;
- parameter estimation;
- limit objects for convergent graph sequences;
- regularity lemmas;
- distance of graphs;
- duality of left and right convergence.

Issues on very large graphs

The following concepts are cryptomorphic:

- a consistent local finite random graph model;
- a consistent local countable random graph;
- a measurable, symmetric function W: [0,1]²→[0,1];
- a multiplicative graph parameter with nonnegative Möbius transform;
- a multiplicative, reflection positive graph parameter;
- A point in the completion of the set of finite graphs with the cut-distance.

Cut distance of two graphs

(a)
$$V(G) = V(G')$$

$$d_{\Box}(G,G') = \max_{S,T \subseteq V(G)} \frac{|e_{G}(S,T) - e_{G'}(S,T)|}{n^{2}}$$

(b)
$$|V(G)| = |V(G')| = n$$

$$\delta_{\square}^*(G,G') = \min_{G \leftrightarrow G'} d_{\square}(G,G')$$

Cut distance of two graphs

(c)
$$|V(G)| = n \neq n' = |V(G')|$$

blow up nodes, or fractional overlay

$$(X_{ij})_{i \in V(G), j \in V(G')} \ge 0$$
 $\sum_{i \in V(G)} X_{ij} = \frac{1}{n'}, \quad \sum_{j \in V(G')} X_{ij} = \frac{1}{n}$

$$\delta_{\Box}(G,G') =$$

$$= \min_{X} \max_{S,T \subseteq V(G) \times V(G')} \left| \sum_{(i,u) \in S} \sum_{(j,v) \in T} X_{iu} X_{jv} (a_{ij} - a'_{uv}) \right|$$

Cut distance of two graphs

Examples:
$$\delta_{\Box}(K_{n,n},\mathbb{G}(2n,\frac{1}{2})) \approx \frac{1}{8}$$

$$\delta_{\Box}(\mathbb{G}_{1}(n,\frac{1}{2}),\mathbb{G}_{2}(n,\frac{1}{2})) = o(1)$$

$$\delta_{\Box}(\mathbb{G}_{1}(n,\frac{1}{2}),\mathbb{G}) = \delta_{\Box}(\mathbb{G}_{1}(n,\frac{1}{2}),1/2) = o(1)$$

Sampling Lemmas

G,G': graphs with V(G) = V(G')

 $\mathbf{S}_k \subseteq V(G)$: random set of k nodes

With large probability,

$$\left| d_{\Box}(G[\mathbf{S}_k], G'[\mathbf{S}_k]) - d_{\Box}(G, G') \right| < \frac{10}{k^{1/4}}$$

Alon-Fernandez de la Vega-Kannan-Karpinski+

With large probability,

$$\delta_{\square}(G, G[\mathbf{S}_k]) < \frac{10}{\sqrt{\log k}}$$

Borgs-Chayes-Lovász-Sós-Vesztergombi

Regularity Lemmas

Original Regularity Lemma

Szemerédi 1976

"Weak" Regularity Lemma

Frieze-Kannan 1999

"Strong" Regularity Lemma

Alon - Fischer

- Krivelevich
- M. Szegedy 2000

Regularity Lemmas

$$\mathcal{P} = \{V_1, ..., V_k\}$$
 partition of $V(G)$:

 $G_{\mathcal{P}}$ is the complete graph on V(G) with edgeweights

$$w_{uv} = \frac{e_G(V_i, V_j)}{|V_i| \cdot |V_j|} \quad (u \in V_i, v \in V_j)$$

Regularity Lemmas

"Weak" Regularity Lemma (Frieze-Kannan):

For every graph G and $k \ge 1$ there is a partition $\mathcal P$ of V(G) with k classes such that

$$\delta_{\square}(G, G_{\mathcal{P}}) \leq \frac{1}{\sqrt{\log k}}.$$

For every graph G and $k \ge 1$ there is a graph H with k nodes such that

$$\delta_{\Box}(G,H) \leq \frac{2}{\sqrt{\log k}}.$$

"Weak" Regularity Lemma: geometric form

$$\underline{d_2(s,t)} := \mathsf{E}_v \left| \mathsf{E}_u(a_{su}a_{vu}) - \mathsf{E}_w(a_{tw}a_{wv}) \right|$$

Fact 1. This is a metric, computable by sampling

Fact 2.

Weak Szemerédi partition → partition most nodes into sets with small diameter

"Weak" Regularity Lemma: geometric form

$$S \subseteq [0,1]: \quad \overline{d}(S) = \mathsf{E}_x d(x,S)$$

average ε-net

$$\mathcal{P}$$
 partition of $[0,1]$: $r(\mathcal{P}) = d_{\square}(G,G_{\mathcal{P}})$

regular partition

 $\forall S \subseteq [0,1] \Rightarrow Voronoi cells of S form a partition with$

$$r(\mathcal{P}) < 8\sqrt{\overline{d}(S)}$$

 \forall partition $\mathcal{P}=\{V_1,...,V_k\}$ of [0,1] $\exists v_i \in V_i$ with $\overline{d}(\{v_1,...,v_k\}) < 12r(\mathcal{P})$

LL – B. Szegedy

"Weak" Regularity Lemma: algorithm

Algorithm to construct representatives of classes:

- Begin with $U=\emptyset$.
- Select random nodes $v_1, v_2, ...$
- Put v_i in U iff $d_2(v_i,u) > \varepsilon$ for all $u \in U$.
- Stop if for more than $1/\epsilon^2$ trials, U did not grow.

size bounded by O(min # classes)

"Weak" Regularity Lemma: algorithm

Algorithm to decide in which class v belongs:

Let
$$U = \{u_1, ..., u_k\}$$
.

Put a node v in V_i iff u_i is the nearest node to v in U.

Max Cut in huge graphs

(Different algorithm implicit by Frieze-Kannan.)

Algorithm to construct representation of cut:

- Construct *U* as for the weak Szemerédi partition
- Compute p_{ij} = density between classes V_i and V_j (use sampling)
- Compute max cut (U_1, U_2) in complete graph on U with edge-weights p_{ij}

Max Cut in huge graphs

Algorithm to decide in which class does v belong:

- Put
$$v \in V$$
 into V_1 if $d_2(v, U_1) \le d_2(v, U_2)$
$$V_2 \text{ if } d_2(v, U_1) > d_2(v, U_2)$$

Convergent graph sequences

hom(G, H) := # of homomorphisms of G into H

$$t(F,G) = \frac{\text{hom}(F,G)}{|V(G)|^{|V(F)|}} \leftarrow \text{Probability that random map}$$
$$V(F) \rightarrow V(G) \text{ is a hom}$$

- (i) $(G_1, G_2,...)$ convergent: Cauchy in the δ_{\Box} -metric.
- (ii) $(G_1, G_2,...)$ convergent: $\forall F \ t(F, G_n)$ is convergent

distribution of *k*-samples is convergent for all *k*

(i) and (ii) are equivalent.

Convergent graph sequences

Example: random graphs

$$t(F, \mathbb{G}(n, \frac{1}{2})) \rightarrow \left(\frac{1}{2}\right)^{|E(F)|}$$
 with probability 1

$$\delta_{\square}(\mathbb{G}(n,\frac{1}{2}),\mathbb{G}(m,\frac{1}{2}))\to 0 \qquad (n,m\to\infty)$$

Convergent graph sequences

(i) and (ii) are equivalent.

"Counting lemma": $t(F,G)-t(F,H) \leq |E(F)|\delta_{\square}(G,H)$

"Inverse counting lemma": if $|t(F,G)-t(F,H)| \le \frac{1}{k}$ for all graphs F with k nodes, then $\delta_{\Box}(G,H) < \frac{10}{\sqrt{\log k}}$

a consistent local finite random graph model

 $G[S_k]$: probability distribution on k-point graphs

consistent

(a) $G[S_k] \setminus \{v\}$ has same distribution as $G[S_{k-1}]$

local

(b) for $S = S_1 \dot{\cup} S_2$, $G[S_1]$ and $G[S_2]$ are independent.

Every random graph model with (a) and (b) is the limit of models *G*[*S*].

- a consistent local finite random graph model
- a consistent local countable random graph

countable random graph

- a consistent local finite random graph model
- a consistent local countable random graph
- a measurable, symmetric function W: [0,1]²→[0,1]

1/2

A random graph
with 100 nodes and with 2500 edges

Rearranging the rows and columns

25

A random graph 1/2

with 100 nodes and with 2500 edges (no matter how you reorder the nodes)

December 2008 26

A randomly grown uniform attachment graph with 200 nodes

$$1 - \max(x, y)$$

$$W(x, y) := 1 - \max(x, y)$$

$$t(K_3, G_n) \rightarrow \iiint W(x, y)W(y, z)W(x, z) dx dy dz$$

$$\mathcal{W}_0 = \left\{W : [0,1]^2 \rightarrow [0,1] \text{ symmetric, measurable}\right\}$$

$$t(F,W) = \int_{[0,1]^{V(F)}} \prod_{ij \in E(F)} W(x_i, x_j) dx$$

Adjacency matrix of graph *G*:

$$\begin{pmatrix}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{pmatrix}$$

Associated function W_G :

$$t(F,G) = t(F,W_G)$$

Distance of functions

$$\delta_{\square}(W, W') = \inf \sup_{S, T \subseteq [0,1]} \left| \int_{S \times T} (W - W') \right|$$

$$\delta_{\Box}(G,G') = \delta_{\Box}(W_G,W_{G'})$$

 $(\mathcal{W}_0, \delta_{\square})$ is compact.

Equivalent to the Regularity Lemma

Converging to a function

$$G_n o W:$$
 (i) $\delta(W_{G_n}, W) o 0$ (ii) $(\forall F) \ t(F, G_n) o t(F, W)$

(i) and (ii) are equivalent.

 G_n

W(x, y)

$$\delta_{\square}\left(G_{n},W\right) \rightarrow 0$$

$$\forall F \ t(F,G_n) \rightarrow t(F,W)$$

For every convergent graph sequence (G_n) there is a $W\in \mathcal{W}_0$ such that $G_n\to W$. Conversely, $\forall W\ \exists (G_n)$ such that $G_n\to W$

LL – B. Szegedy

W is essentially unique (up to measure-preserving transform).

Borgs – Chayes - LL

- a consistent local finite random graph model
- a consistent local countable random graph
- a measurable, symmetric function W: [0,1]²→[0,1]

Fix
$$W:[0,1]^2 \to [0,1]$$
. Let $X_1,...,X_n \in [0,1]$ ind uniform.

$$V(\mathbb{G}(n,W)) = \{1,...,n\}$$
 $P(ij \in E(\mathbb{G}(n,W))) = W(X_i,X_j)$ W-random graphs

$$W \equiv 1/2 \implies \mathbf{G}(n,1/2)$$

- a consistent local finite random graph model
- a consistent local countable random graph
- a measurable, symmetric function W: [0,1]²→[0,1]
- a multiplicative graph parameter with nonnegative Möbius transform

$$f^{\dagger}(F) = \sum_{F'\supseteq F} (-1)^{|E(F')\setminus E(F)|} f(F')$$

$$f(F) = \mathsf{P}(F \subseteq G[\mathbf{S}_k]) \quad f^{\dagger}(F) = \mathsf{P}(F = G[\mathbf{S}_k])$$

$$t(F, W) = \int_{[0,1]^{V(F)}} \prod_{ij\in E(F)} W(x_i, x_j) dx$$

- a consistent local finite random graph model;
- a consistent local countable random graph;
- a measurable, symmetric function W: [0,1]²→[0,1];
- a multiplicative graph parameter with nonnegative Möbius transform;
- a multiplicative, reflection positive graph parameter;
 (connection matrices are positive semidefinite)

Many applications in extremal graph theory

- a consistent local finite random graph model;
- a consistent local countable random graph;
- a measurable, symmetric function W: [0,1]²→[0,1];
- a multiplicative graph parameter with nonnegative Möbius transform;
- a multiplicative, reflection positive graph parameter;
- A point in the completion of the set of finite graphs with the cut-metric.

Parameter estimation

Graph parameter *f* is estimable:

$$\forall \varepsilon > 0 \ \exists k \ge 1 \ \mathsf{P}(|f(G[S_k]) - f(G)| > \varepsilon) < \varepsilon.$$

f is estimable

 \Leftrightarrow

 $f(G_n)$ is convergent if (G_n) is convergent

Parameter estimation

f is estimable

 \Leftrightarrow

(1)
$$\forall \varepsilon \exists \delta \ V(G) = V(G'), \ d_{\square}(G,G') < \delta$$

 $\Rightarrow |f(G) - f(G')| < \varepsilon$

(2) if G(m) is obtained from G by replacing each node by m copies, then f(G(m)) is convergent.

(3)
$$\forall \varepsilon \exists k \ |V(G)| > k \Rightarrow |f(G \setminus v) - f(G)| < \varepsilon$$

Borgs, Chayes, LL, Sós, Vesztergombi