
Testing properties of 
distributions 

Ronitt Rubinfeld
MIT and Tel Aviv University



Distributions are everywhere



What properties do your 
distributions have?



Play the lottery?

Is it 
uniform?

Is it independent?



Transactions of 20-30 yr olds Transactions of 30-40 yr olds

Testing closeness of two 
distributions:

trend change?



Outbreak of diseases
Similar patterns?  
Correlated with income level?  
More prevalent near large airports?

Flu 2005

Flu 2006



Information in neural spike trails

Each application of stimuli 
gives sample of signal 
(spike trail) 

Entropy of (discretized) 
signal indicates which 
neurons respond to stimuli

Neural signals

time

[Strong, Koberle, de Ruyter
 

van Steveninck, Bialek
 

’98]



Compressibility of data



Worm detection
find ``heavy hitters’’ – nodes 
that send to many distinct 
addresses 



Testing properties of 
distributions:

Decisions based on samples of distribution

Focus on large domains
Can sample complexity be sublinear in  size of the 
domain?   

Rules out standard statistical 
techniques, learning distribution



Model:

p is arbitrary black-box 
distribution over [n],
generates iid samples.

pi = Prob[ p outputs i ]

Sample complexity in 
terms of n?

p

Test

samples

Pass/Fail?



Some properties
Similarities of distributions:

Testing uniformity
Testing identity
Testing closeness

Entropy estimation

Support size

Independence properties

Monotonicity



Similarities of distributions
Are p and q close or far?

q is known to the tester
q is uniform

q is given via samples



Is
 

p uniform?

Theorem: ([Goldreich Ron][Batu
Fortnow R. Smith White] 
[Paninski]) Sample complexity 
of distinguishing

p=U
from

 
|p-U|1

 

>ε is
 

θ(n1/2)

Nearly same complexity to 
test if p is any known 
distribution [Batu Fischer 
Fortnow Kumar R. White]: 
“Testing identity”

p

Test

samples

Pass/Fail?

|p-q|1

 

=∑|pi

 

-qi

 

|



Testing uniformity 
[GR][BFRSW]

Upper bound:  Estimate collision probability + 
bound L∞ norm

Issues:  
Collision probability of uniform is 1/n
Pairs not independent
Relation between L1 and L2 norms

Comment: [P] uses different estimator

Easy lower bound: Ω(n½)
Can get Ω (n½/ε2) [P] 



Is
 

p uniform?

Theorem: ([Goldreich Ron][Batu
Fortnow R. Smith White] 
[Paninski]) Sample complexity 
of distinguishing

p=U
from

 
|p-U|1

 

>ε
 

is
 

θ(n1/2)

Nearly same complexity to 
test if p is any known 
distribution [Batu Fischer 
Fortnow Kumar R. White]: 
“Testing identity”

p

Test

samples

Pass/Fail?



Testing identity via testing uniformity 
on subdomains:  

(Relabel domain so that q monotone)
Partition domain into O(log n) groups, so 
that each group almost “flat” --

differ by  <(1+ε) multiplicative factor
q close to uniform over each group

Test:
Test that p close to uniform over each group
Test that p assigns approximately correct 
total weights to each group

q (known)



Testing closeness

Theorem: ([BFRSW] [P. Valiant]) 
Sample complexity of 
distinguishing

p=q
from |p-q|1

 

>ε
is θ(n2/3)

p

Test

Pass/Fail?

q

~



A historical note:
Interest in [GR] and [BFRSW] sparked by 
search for property testers for expanders

Eventual success! [Czumaj Sohler, Kale Seshadri, 
Nachmias Shapira] 
Used to give O(n2/3)  time property testers for 
rapidly mixing Markov chains [BFRSW]

Is this optimal?



Approximating the distance 
between two distributions?
Distinguishing whether

 
|p-q|1

 

<ε or           
|p -q|1

 

is Ө(1)
 

requires nearly linear 
samples        [P. Valiant 08]



Can we approximate the 
entropy? [Batu

 
Dasgupta

 
R. Kumar]

In general, not to within a multiplicative 
factor...

≈0 entropy distributions are hard to distinguish 
(even in superlinear time)

What if entropy is big (i.e. Ω(log n))? 
Can γ-multiplicatively approximate the entropy with 
Õ(n1/γ2) samples (when entropy >2γ/ε) 
requires Ω(n1/γ2) [Valiant]
better bounds in terms of support size [Brautbar
Samorodnitsky]



Estimating Compressibility of Data
 [Raskhodnikova

 
Ron Rubinfeld

 
Smith]

General question undecidable
Run-length encoding
Huffman coding 

Entropy 
Lempel-Ziv 

``Color number’’ = Number of elements with 
probability at least 1/n
Can weakly approximate in sublinear time
Requires nearly linear samples to approximate 
well [Raskhodnikova Ron Shpilka Smith]



P. Valiant’s
 

characterization:
Collisions tell all!

Canonical tester identifies if there is a distribution 
with the property that expects observed collision 
statistics
Difficulty in analysis:  

Collision statistics aren’t independent
Low frequency collision statistics can be ignored?

Applies to symmetric properties with “continuity”
condition

Unifies previous results

What about non-symmetric properties?



Testing Independence:
Shopping patterns:

Independent of zip code?



Independence of pairs
p is joint distribution on 
pairs <a,b> from [n] x [m]
(wlog n≥m)

Marginal distributions p1 ,p2

p independent if 
p = p1 x p2 , that is 
p(a,b)=(p1)a (p2)b for all a,b
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Independence vs. product of marginals

Lemma:   [Sahai
 

Vadhan]

If ∃
 

A,B, such that ||p –
 

AxB||1
 

<ε/3 
then

 
||p-

 
p1

 

x p2

 

||1
 

<ε 



Testing Independence
 [Batu Fischer Fortnow Kumar R. White]

Goal:
If p = p1 x p2 then PASS

If ||p – p1 x p2 ||1>ε then 
FAIL

p

Independence Test

samples

Pass/Fail?



1st try: Use closeness test 

Simulate p1 and p2, and 
check ||p- p1 x p2||1<ε.

Behavior:
If ||p- p1 x p2 ||1<ε/n1/3 then 
PASS
If ||p- p1 x p2 ||1>ε then FAIL
Sample complexity: 
Õ((nm)2/3)

p

Closeness Test

samples

Pass/Fail?

p1 x p2



2nd try:  Use identity test

Algorithm:
Approximate marginal distributions f1≈p1 and f2≈ p2
Use Identity testing algorithm to test that  p≈ f1x f2

Comments:  
use care when showing that good distributions pass
Sample complexity:  Õ(n+m + (nm)1/2)
Can combine with previous using filtering ideas—

identity test works well on distribution restricted to ``heavy 
prefixes’’ from p1
closeness test works well if max probability element is bounded 
from above



Theorem: [Batu
 

Fischer Fortnow
 

Kumar R. 
White]

There exists an algorithm for testing 
independence with sample complexity 
O(n2/3m1/3poly(log n, ε-1))

 
s.t.

If p=p1 x p2, it outputs PASS
If ||p-q||1>ε for any independent q, it 
outputs FAIL



An open question:
What is the complexity of testing 
independence of distributions over k-
tuples from [n1]x…x[nk]?

Easy Ω(∏ni
1/2) lower bound



k-wise Independent Distributions
 (binary case)

p is distribution over {0,1}N

p is k-wise independent if  restricting to any k 
coordinates yields the uniform distribution

support size might only be O(Nk)
Ω(2N/2) lower bound for total independence doesn’t 
apply



Bias
Definition : For any S ⊆ [N], 
biasp

 

(S) = Prxεp

 

[Σi

 

ε S

 

xi

 

=0] -
 

Prxεp

 

[Σiε S

 

xi

 

=1]
(Fourier coeff

 
of p corresponding to S = biasp

 

(S)/2N  )

distribution is k-wise independent 
iff

 
all biases over sets S of size 1 ≤ i≤ k

 
are 0

(iff
 

all degree 1≤ i ≤ k
 

Fourier coefficients are 0)

XOR Lemma [Vazirani 85] relates max bias to distance 
from uniform dist. 



Proposed Testing algorithm
p

1.

 

Take O(?)
 

samples
2.

 

Estimate all the biases up to size
 

k
3.

 

Consider the maximum |bias(S)|

k-wise indep.
ε-far from k-wise indep.

?small large



Relation between p’s
 

distance to 
k-wise independence and biases:

Thm: [Alon
 

Goldreich
 

Mansour]
p’s

 
distance to closest k-wise independent distribution 

is bounded above by
O(Σ|S| ≤

 

k

 

|biasp

 

(S)|)

yields Õ(N2k/ ε 2) testing algorithm

Proof idea:
“fix” each degree ≤ k Fourier coefficient by mixing p with uniform 
distribution over strings of “other” parity on S



Another relation between
 p’s

 
distance to k-wise independence 

and biases:
Thm: [Alon

 
Andoni

 
Kaufman Matulef

 
R.  Xie]

p’s
 

distance to closest k-wise independent distribution 
bounded above by

O((log
 

N)k/2

 
sqrt(Σ|S| ≤

 

k

 

biasp

 

(S)2))

yields Õ(Nk/ ε2)  testing algorithm



Proof idea:
Let p1

 

be
 

p
 

with all degree 1
 

≤
 

i
 

≤
 

k
 

Fourier 
coefficients zeroed out

good news: 
p1 is k-wise independent
p and p1 very close
sum of p1 over domain is 1

bad news:  
p1 might not be a distribution (some values not in [0,1])



Proof idea (cont.):
fix negative values of p1 by mixing with other  k-
wise independent distributions:

small negative values 
removed in “one shot” by mixing p1 with uniform distribution

larger negative values 
removed “one by one” by mixing with small support k-wise 
independent distribution based on BCH codes 
[Beckner, Bon Ami] + higher moment inequalities imply that not 
too many large

values >1 work themselves out



Extensions    [R. Xie
 

08]

Larger alphabet case
Main issue: fixing procedure

Arbitrary marginals



(δ,k)-wise Independent 
Distributions

[Naor Naor] A distribution D is (δ, k)-wise 
independent if for all i1,…,ik and v1,…,vk

|Pr[xi1

 

…xik

 

=v1

 

,…,vk

 

] –
 

2 –k

 
| ≤ δ

(δ ,k)-wise independent distributions even smaller!
require only O(2klog N) support size

How do the testing problems compare?



Sample complexity  bounds 
[AAKMRX]

Testing independence
lower bound:   Ω(2N/2)
Testing k-wise independence 
upper bound:  Õ(Nk/ε

 
2)

lower bound:   Ω(N(k-1)/2/ε)
Testing (δ,k)-wise independence
upper bound:  O(k

 
log N/ δ2

 
ε2)

lower bound:  Ω(sqrt(k
 

log N)/ (ε+δ))



Time complexity of Testing 
(ε,k)-wise independence

Bad news:  unlikely in polynomial time 
in terms of (N,1/ε,1/δ) [AAKMRX]

for k=θ(log N)
assuming hardness of finding planted clique of 
size t in G(N,1/2,t) for t(N)≈log3N



Testing the monotonicity
 

of 
distributions:

Does the occurrence
of  cancer decrease
with distance from the
nuclear reactor?



Monotone distributions
p is monotone if 

i<j
 

implies pi ≤
 

pj

Many distributions are 
monotone or are “made 
of” small number of 
monotone distributions
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First…
Monotone distributions over totally 

ordered domains
 

[1..n]
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Form of test?
Idea:

 
test that average weight of distribution in 

range [i..j]
 

less than average weight of 
distribution in [i’…j’]

 
for various choices of i<i’,j<j’

Problem:
 

uniform distribution on even numbers 
passes such tests



Lower bound [Batu
 

Kumar R.]

Lemma: Testing 
monotonicity

 
requires 

Ω(√n)
 

samples

Proof:         
p

 
close to uniform 

iff
p, ppRR

 

= = “reversal”
 

of
 

p,
 

are 
both close to monotone
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Algorithm idea:
Approximate distribution by k-flat distribution:

Properties:
Partition domain into k intervals
Conditional distribution uniform in each

Questions:
Does it exist for k=O(polylog(n))?
How do you find interval boundaries?

Check if k-flat distribution close to monotone
Solve linear program on O(polylog(n)) variables



Upper bound [Batu
 

Kumar R.]

Lemma: There is an algorithm for testing 
monotonicity over totally ordered domains 
which uses Õ(n1/2ε-2) samples s.t. (with 
probability 2/3)

If p monotone, outputs PASS
If ε−far from monotone, outputs FAIL

Can also test unimodal distributions



Monotonicity
 

over general 
posets

 
[Bhattacharyya Fischer R. Valiant]

Can test distributions over poset decomposable into 
union of w disjoint chains of length at most c with 
Õ(wc1/2poly(1/ε)) samples

Algorithm:  approximate each chain by k-flat distribution and 
check if resulting distribution close to monotone
Implications:

Õ (N3/2) bound for NxN grid (simplifying and slightly more 
efficient than in [BKR]) 
Õ(2N/N1/2) bound for N-dimensional hypercube

There are posets for which monotonicity testing 
requires nearly linear samples



Other properties?

K-flat distributions 
Mixtures of k Gaussians
“Junta”-distributions
Generated by a small Markovian process
…



Getting past the lower 
bounds

Special distributions
e.g, uniform on a subset, monotone

Other query models
Queries to probabilities of elements

Other distance measures



Flat distributions 
Entropy can be estimated somewhat faster 
when distribution is uniform on a subset of 
the elements [Batu

 
Dasgupta

 
Kumar R.][Brautbar

 Samorodnitsky]



Monotone distributions over 
totally ordered domains

Test uniformity with O(1) samples [Batu Kumar R.]

Other tasks doable with polylogarithmic samples: [Batu
Dasgupta Kumar R.][BKR]

Examples:
Testing closeness 
Testing independence 
Estimating entropy 

Algorithm:
Use k-flat partitions to approximate distributions
Test property on approximation

Do these big wins carry over to partial orders?



Monotone high-dimensional 
distributions

Domain:  Boolean cube
 

{0,1}N

Are there testing
 

algorithms with sample 
complexity polylogarithmic

 
in domain size, i.e. 

poly(N)?
1N

0N

x

y

z



Testing Uniformity

Theorem [R. Servedio][Adamaszek

 

Czumaj

 

Sohler]: There is 
an Õ(N/ε2)

 
sample complexity tester which given an 

unknown monotone distribution p
 

over {0,1}N

 

([0,1]N)
 satisfies (with probability 2/3):

If p=U, algorithm outputs “uniform”
If ||p - U||1  > ε, algorithm outputs “far from 
uniform”

Comment:  Nearly best possible



Bad news for Boolean cube 
[R.  Servedio]

Technique for sample complexity lower 
bounds:  monotone subcube decomposition

2Ω(N) lower bound for testing equivalence to a 
known distribution (even product distributions!)
2Ω(N) lower bound for approximating entropy 



Open question for 
Boolean cube

Can one test monotone distributions over {0,1}N

 
for 

any of the following properties
equivalence to a known distribution
approximating entropy
independence

with fewer
 

samples than for arbitrary 
distributions?



Other query models:

Distribution given explicitly [BDKR]

Distribution given both by samples and 
oracle for pi’s [BDKR][RS]

Can estimate entropy in polylog(n) time



Other distance measures:
Earth Mover Distance [Doba Nguyen2 R.]

Measures min weight matching to some 
distribution with the property
Can estimate distance between distributions, 
independence over [0,1]N, in time independent of 
domain size 
Still exponential in N

Can improve over highly clusterable distributions 



Conclusions and Future 
Directions

Distribution property testing problems are 
everywhere
Several useful techniques known
Other properties for which sublinear tests exist?
Special classes of distributions?
Time vs. query complexity
Other query models?
Non-iid samples? 



Thank you
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