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What properties do your
distributions have?



Play the lottery?
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Testing closeness of two
distributions:

Transactions of 20-30 yr olds Transactions of 30-40 yr olds
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Outbreak of diseases

® Similar patterns?
® Correlated with income level?

" More prevalent near large airports?
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Information in neural spike trails
[Strong, Koberle, de Ruyter van Steveninck, Bialek 98]

= Each application of stimuli
gives sample of signal
(spike trail)

® Entropy of (discretized)

I A/\/\AA iRy R
l \/ Al V\/VV\//’\/V' \/WV / signal indicates which
neurons respond to stimuli




Compressibility of data




Worm detection

" find "heavy hitters” — nodes
that send to many distinct
addresses




Testing properties of
distributions:

® Decisions based on samples of distribution

" Focus on large domains
® Can sample complexity be sublinear in size of the

domain? /\

Rules out standard statistical
techniques, learning distribution




Model:

® pis arbitrary black-box
distribution over [n],
generates iid samples.

ﬂsamples " p.= Prob[ p outputs / |

Test

!

Pass/Fail?

= Sample complexity in
terms of n?



Some properties

= Similarities of distributions:
= Testing uniformity
" Testing identity
" Testing closeness

= Entropy estimation
= Support size
" |ndependence properties

= Monotonicity



Similarities of distributions

= Are p and q close or far?

" g is known to the tester
® g is uniform

" g is given via samples



Is puniform?

" Theorem: ([Goldreich Ron][Batu
Fortnow R. Smith White]

[Paninski]) Sample complexity
of distinguishing

samples p=U
P from |p-U|,>eis 6(n"?)

test if

1 distribu
Fortnow Kumar R. White]:
Pass/Fail? “Testing identity”




Testing uniformity
[GR][BFRSW]

" Upper bound: Estimate collision probability +
bound L_ norm
" |ssues:
= Collision probability of uniformis 1/n

® Pairs not independent
= Relation between L, and L, norms

= Comment: [P] uses different estimator

= Easy lower bound: Q(n”?)
= Can get Q (n”/g?) [P]



Is puniform?

" Theorem: ([Goldreich Ron][Batu
Fortnow R. Smith White]

[Paninski]) Sample complexity
of distinguishing

samples p=U
P from |[p-U|,>¢is 6(n'/?)

Test " Nearly same complexity to
test if p is any known
ﬁ distribution [Batu Fischer
Fortnow Kumar R. White]:

Pass/Fail? “Testing identity”



Testing identity via testing uniformity
onh subdomains:
g (known)

" (Relabel domain so that g monotone)

= Partition domain into O(log n) groups, so
that each group almost “flat” -- I I
= differ by <(1+¢) multiplicative factor I
® g close to uniform over each group _II Il-___

" Test:
= Test that p close to uniform over each group

® Test that p assigns approximately correct
total weights to each group

°
“III ||III



Testing closeness

from Ip qI1 >€

Test IS O(n2/3)

!

Pass/Fail?

Theorem: ([BFRSW] [P. Valiant])
Sample complexity of
dlstlngwshmg




A historical note:

" |nterest in [GR] and [BFRSW] sparked by
search for property testers for expanders

® Fventual success! [Czumaj Sohler, Kale Seshadri,
Nachmias Shapira]

= Used to give O(n%3) time property testers for
rapidly mixing Markov chains [BFRSW]

"= |s this optimal?



Approximating the distance
between two distributions?

Distinguishing whether |p-q|,<&or
|p -q|, i1s ©(1) requires nearly linear
samples [P. Valiant 08]



Can we approximate the
en’rropy? [Batu Dasgupta R. Kumar]

" |n general, not to within a multiplicative
factor...
" =0 entropy distributions are hard to distinguish
(even in superlinear time)
" What if entropy is big (i.e. Q(log n))?
® Can y-multiplicatively approximate the entropy with
O(n'") samples (when entropy >2v/e)
= requires Q(n'*?) [Valiant]
" better bounds in terms of support size [Brautbar
Samorodnitsky]



Estimating Compressibility of Data

[Raskhodnikova Ron Rubinfeld Smith]

® General question undecidable
" Run-length encoding

® Huffman coding
" Entropy
" | empel-Ziv
® ""Color number” = Number of elements with
probability at least 7/n
® Can weakly approximate in sublinear time

® Requires nearly linear samples to approximate
well [Raskhodnikova Ron Shpilka Smith]



P. Valiant's characterization:

= Collisions tell all!

® Canonical tester identifies if there is a distribution

with the property that expects observed collision
statistics

= Difficulty in analysis:
= Collision statistics aren’t independent
= | ow frequency collision statistics can be ignored?

" Applies to symmetric properties with “continuity”
condition

= Unifies previous results

® What about non-symmetric properties?



Testing Independence:

Shopping patterns:

Independent of zip code?




Independence of pairs

" pis joint distribution on
pairs <a,b> from [n] x [m]
(wlog n2m)

" Marginal distributions p, ,p,

" o independent if
p=psXxp,,thatis

Pan=(P1)a (P2), Tor all a,b



Independence vs. product of marginals

Lemma: [Sahai Vadhan]
If 3 A,B, such that ||p — AxBl||,<¢/3
then [|p- p; x p,l|4<e



Testing Independence

[Batu Fischer Fortnow Kumar R. White]

Goal:
" If p=p, xp, then PASS

samples
1 " If |[p —py X p; [|1>€ then

!

Pass/Fail?



1st try: Use closeness test

--

= Simulate p, and p,, and
check |[p- py X pyl[4<e.

1 samples 1 =" Behavior:

Closeness Test

!

Pass/Fail?

" If [|p- py X P, [|<e/n"° then
PASS

" If [[p- p4 X P, ||4>€ then FAIL

B Sample complexity:
O((nm)?23)



2nd try: Use identity test

= Algorithm:
= Approximate marginal distributions f,=p, and f,= p,
" Use Identity testing algorithm to test that p= f,x f,

® Comments:
® use care when showing that good distributions pass
® Sample complexity: O(n+m + (nm)"2)
= Can combine with previous using filtering ideas—

= identity test works well on distribution restricted to " "heavy
prefixes” from p,

= closeness test works well if max probability element is bounded
from above



Theo rem. [Batu Fischer Fortnow Kumar R.
White]

There exists an algorithm for testing
iIndependence with sample complexity
O(n?*m'3poly(log n, 1)) s.t.

" If p=p,4 X p,, it outputs PASS

" If [|[p-q||>¢ for any independent q, it
outputs FAIL



An open question:

= What is the complexity of testing
independence of distributions over k-
tuples from [n,Jx...x[nJ?

" Easy (//n;"?) lower bound



k-wise Independent Distributions
(binary case)

" pis distribution over {0, 1}N

" pis k-wise independent if restricting to any k
coordinates yields the uniform distribution

= support size might only be O(N¥)

= Q(2N2) lower bound for total independence doesn’t
apply



Bias

® Definition : Forany S < [N],
biasp(S) = Prxgp[z;'gS Xi=0] - Prxep 2;88 Xi=1]
(Fourier coeff of p corresponding to S = bias,, (S)/2"')

® distribution is k-wise independent
iff all biases over sets S of size 1 siskare 0
(iff all degree 1< sk Fourier coefficients are 0)

= XOR Lemma [Vazirani 85] relates max bias to distance
from uniform dist.



Proposed Testing algorithm




Relation between p's distance to
k-wise independence and biases:

Thm: [Alon Goldreich Mansour]

p’s distance to closest k-wise independent distribution
IS bounded above by

O(%s < klbrasy(S)|)
= vields O(N2¥/ ¢ 2) testing algorithm

" Proof idea:

" “fix” each degree < k Fourier coefficient by mixing p with uniform
distribution over strings of “other” parity on S



Another relation between
p's distance to A-wise independence

ahd biases:

Thm: [Alon Andoni Kaufman Matulef R. Xie]

p’s distance to closest k-wise independent distribution
bounded above by

O((log N)*2 sqrt(X < bias,(S)?))

= vields O(N¥/ €2) testing algorithm



Proof idea:

Let p, be p with all degree 1 </ < k Fourier
coefficients zeroed out
® good news:
" p, IS k-wise independent
" p and p, very close
= sum of p, over domain is 1

" bad news:
" p, might not be a distribution (some values not in [0,1])



Proof idea (cont.):

" fix negative values of p, by mixing with other k-

wise independent distributions:

" small negative values
= removed in “one shot” by mixing p, with uniform distribution

" [arger negative values

= removed “one by one” by mixing with small support k-wise
independent distribution based on BCH codes

= [Beckner, Bon Ami] + higher moment inequalities imply that not
too many large

® yvalues >1 work themselves out



Extensions [R. Xie 08]

= L arger alphabet case
® Main issue: fixing procedure

® Arbitrary marginals



(0,k)-wise Independent
Distributions

= [Naor Naor] A distribution D is (0, k)-wise
independent if for all i,...,i,and v,,...,v,

Py XSV ] = 27| <6

® (0,k)-wise independent distributions even smaller!
= require only O(2klog N) support size

®" How do the testing problems compare?



Sample complexity bounds
[AAKMRX]

" Testing independence
lower bound: Q(2N?2)

" Testing k-wise independence
upper bound: O(NK/e 2)
lower bound: Q(N&k-1/2/¢)

= Testing (§,k)-wise independence
upper bound: O(k log N/ &2 £2)
lower bound: Q(sqrt(k log N)/ (e+0))



Time complexity of Testing
(¢,k)-wise independence

" Bad news: unlikely in polynomial time
in terms of (N,1/e,1/0) [AAKMRX]
= for k=6(log N)

® assuming hardness of finding planted clique of
size tin G(N,1/2,t) for t(N) ~1log>N



Testing the monotonicity of
distributions:

Does the occurrence
of cancer decrease
with distance from the
nuclear reactor?




Monotone distributions

" pis monotone if
i<j implies p; = p;

" Many distributions are
monotone or are “made
of” small number of
monotone distributions
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First...

Monotone distributions over totally
ordered domains [1..n]

0.4

0.3
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B pi

0.1;
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Form of test?

ldea: test that average weight of distribution in
range [I..j] less than average weight of
distribution in [i’.. j’] for various choices of i</’ j<j’

Problem: uniform distribution on even numbers
passes such tests



Lower bound [Batu Kumar R.]

Lemma: Testing
monotonicity requires
Q(n) samples

Proof:

p close to uniform

iff

p, pR=“reversal’ of p, are
both close to monotone
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Algorithm idea:

" Approximate distribution by k-flat distribution:

® Properties:
® Partition domain into k intervals
® Conditional distribution uniform in each

= Questions:
= Does it exist for k=O(polylog(n))?
= How do you find interval boundaries?

® Check if k-flat distribution close to monotone
® Solve linear program on O(polylog(n)) variables



Upper bound [Batu kumar R.]

" | emma: There is an algorithm for testing
monotonicity over totally ordered domains
which uses O(n"2¢2) samples s.t. (with
probability 2/3)

" |f p monotone, outputs PASS
® |f e—far from monotone, outputs FAIL

® Can also test unimodal distributions



Monotonicity over general
pOSZTS [Bhattacharyya Fischer R. Valiant]

= Can test distributions over poset decomposable into
union of w disjoint chains of length at most ¢ with
O(wc2poly(1/€)) samples
= Algorithm: approximate each chain by k-flat distribution and
check if resulting distribution close to monotone
" |mplications:

= O (N32) bound for NxN grid (simplifying and slightly more
efficient than in [BKR])
= O(2N/N'2) bound for N-dimensional hypercube

" There are posets for which monotonicity testing
requires nearly linear samples



Other properties?

= K-flat distributions

" Mixtures of k Gaussians

= “Junta’-distributions

® Generated by a small Markovian process



Getting past the lower
bounds

= Special distributions
® e.g, uniform on a subset, monotone

= Other query models
® Queries to probabilities of elements

® Other distance measures



Flat distributions

Entropy can be estimated somewhat faster
when distribution is uniform on a subset of

the elements [Batu Dasgupta Kumar R.][Brautbar
Samorodnitsky]



Monotone distributions over @
totally ordered domains

= Test uniformity with O(7) samples [Batu Kumar R.]

= Other tasks doable with polylogarithmic samples: [Batu
Dasgupta Kumar R.][BKR]

= Examples:
® Testing closeness
® Testing independence
= Estimating entropy
= Algorithm:
® Use k-flat partitions to approximate distributions
" Test property on approximation

® Do these big wins carry over to partial orders?



Monotone high-dimensional
distributions

Domain: Boolean cube {0, 1}V

Are there testing algorithms with sample
complexity polylogarithmic in domain size, i.e.

poly(N)?

1N




Testing Uniformity

Theorem [R. Servedio][Adamaszek Czumaj Sohler]: There is
an O(N/£2) sample complexity tester which given an
unknown monotone distribution p over {0, 7}V ([0,1]N)
satisfies (with probability 2/3):

= |f p=U, algorithm outputs “uniform”

= If ||p - U||, > ¢, algorithm outputs “far from
uniform”

= Comment: Nearly best possible



Bad news for Boolean cube
[R. Servedio]

® Technique for sample complexity lower
bounds: monotone subcube decomposition

= 22N) lower bound for testing equivalence to a
known distribution (even product distributions!)

= 22N) |lower bound for approximating entropy



Open question for
Boolean cube

Can one test monotone distributions over {0,1}N for
any of the following properties

® equivalence to a known distribution
" approximating entropy
" independence

with fewer samples than for arbitrary
distributions?



Other query models:

® Distribution given explicitly [BDKR]

® Distribution given both by samples and
oracle for p;'s [BDKR][RS]

® Can estimate entropy in polylog(n) time



Other distance measures:

" Earth Mover Distance [Doba Nguyen2R.]
" Measures min weight matching to some
distribution with the property

® Can estimate distance between distributions,
independence over [0, 1]V, in time independent of
domain size
= Still exponential in N
= Can improve over highly clusterable distributions



Conclusions and Future
Directions

® Distribution property testing problems are
everywhere

= Several useful techniqgues known

® Other properties for which sublinear tests exist?
® Special classes of distributions?

" Time vs. query complexity

® Other query models?

® Non-iid samples?



Thank you
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