
Probabilistic Polynomial-Time
Process Calculus for Security

Protocol Analysis

J. Mitchell, A. Ramanathan, A. Scedrov, V. Teague

P. Lincoln, M. Mitchell
P. Mateus

Outline

Security protocols
Research goals
Specific process calculus
• Probabilistic semantics & complexity
• Asymptotic equivalence & bisimulation
• Equational proof system
• Examples

– Computational indistinguishability
– Decision Diffie-Hellman & ElGamal encryption

Protocol security

Cryptographic Protocol
• Program distributed over network
• Use cryptography to achieve goal
Attacker
• Intercept, replace, remember messages
• Guess random numbers, some computation
Correctness
• Attacker cannot learn protected secret

or cause incorrect conclusion

IKE subprotocol from IPSEC

A, (ga mod p)

B, (gb mod p)

Result: A and B share secret gab mod p

A B

m1

m2
, signB(m1,m2)

signA(m1,m2)

Analysis involves probability, modular exponentiation,
complexity, digital signatures, communication networks

Compositionality

Confidentiality
• A → B: encryptKB(msg)
Authentication
• A → B: signKA(msg)
Composition
• A → B: encryptKB(msg), signKA(msg)
• Broken! signKA(msg) can leak info abt. msg
• Right way: encryptKB(msg), signKA(cipher)

Standard analysis methods

Model-checking (finite state analysis)
Automated theorem provers
• Symbolic search of protocol runs
• Correctness proofs in formal logic (Dolev-Yao)

Computational model
• Consider probability and complexity

– More realistic intruder model
– Interaction between protocol and cryptography Harder

Easier

Outline

Security protocols
Research goals
Specific process calculus
• Probabilistic semantics & complexity
• Asymptotic equivalence & bisimulation
• Equational proof system
• Examples

– Computational indistinguishability
– Decision Diffie-Hellman & ElGamal encryption

One General Starting Point

Express security properties in terms
of comparison to an ideal protocol
Protocol is secure if no adversary can
distinguish it from some idealized
version of the protocol
• Beaver ‘91, Goldwasser-Levin ‘90,

Micali-Rogaway ’91
Security properties should be
compositional

Language approach

Write protocol in process calculus
• Dolev-Yao model

Express security using observational equivalence
• Standard relation from programming language theory

P ≈ Q iff for all contexts C[], same
observations about C[P] and C[Q]

• Inherently compositional
• Context (environment) represents adversary

Use proof rules for ≈ to prove security
• Protocol is secure if no adversary can distinguish it

from some idealized version of the protocol

Roscoe ‘95, Schneider ‘96,
Abadi-Gordon’97

Probabilistic poly-time process calculus

Probabilistic polynomial-time execution model
Specify security via equivalence to “ideal” protocol
Also state cryptographic assumptions via
equivalences
Leads to new proof system
• Equational reasoning
• Based on probabilistic bisimulation, asymptotic equivalence

Connections with modern crypto
• Characterize computational indistinguishability
• Formal derivation of semantic security from computational

assumption DDH (both stated as equations) and vice versa
(indistinguishability of encryptions)

Neighbors

Canetti; B. Pfitzmann, Waidner, Backes
• Interactive Turing machines
• General framework for crypto properties
• Protocol realizes an ideal setting
• Universally composable security
Abadi, Rogaway, Jürjens;
Micciancio, Warinschi; Corin, Laud;
Horwitz, Gligor; Herzog
• Toward transfer principles between formal Dolev-Yao

model and computational model
Impagliazzo, Kapron
• Logic of the computational model

Outline

Security protocols
Research goals
Specific process calculus
• Probabilistic semantics & complexity
• Asymptotic equivalence & bisimulation
• Equational proof system
• Examples

– Computational indistinguishability
– Decision Diffie-Hellman & ElGamal encryption

Syntax

Bounded CCS with integer terms
P :: = 0
| out(cq(|n|),T). P send up to q(|n|) bits
| in(cq(|n|),x). P receive
| υcq(|n|) .(P) private channel
| [T=T] P test
| P | P parallel composition
| ! q(|n|) . P bounded replication

Terms may contain symbol n; channel width
and replication bounded by poly in |n|

Expressions have size
poly in |n|

Evaluation

Reduction
• Evaluate unguarded terms and matches
• Local computation embodied in terms

Scheduling
• Probabilistically pick a type of action

Communication
• Pick a particular action of the chosen type

uniformly at random
• During an actual run only pick input/output

actions.

Nondeterminism vs probabilism

Alice encrypts msg and sends to Bob
A → B: { msg } K

Adversary uses nondeterminism
Process E0 out(c,0) | … | out(c,0)
Process E1 out(c,1) | … | out(c,1)
Process E

in(c, b1)....in(c, bn).out(d,b1b2...bn, msg)

In reality, at most 2-n chance to guess n-bit key

Complexity results

Polynomial time
• For each closed process expression P,

there is a polynomial q(x) such that
– For all n
– For all probabilistic polynomial-time

schedulers
eval of P halts in time q(|n|)

Outline

Security protocols
Research goals
Specific process calculus
• Probabilistic semantics & complexity
• Asymptotic equivalence & bisimulation
• Equational proof system
• Examples

– Computational indistinguishability
– Decision Diffie-Hellman & ElGamal encryption

How to define process equivalence?

Intuition
• | Prob{ C[P] → o } - Prob{ C[Q] → o } | < ε

Difficulty
• How do we choose ε?

– Less than 1/2, 1/4, … ? (not equiv relation)
– Vanishingly small ? As a function of what?

Solution
• Use security parameter

– Protocol is family { Pn } n>0 indexed by key length
• Asymptotic form of process equivalence
P ≈ Q if for all polynomials p, observables ε < 1/p(n)

One way to get equivalences

Labeled transition system
• Allow process to send any output, read any input
• Label with numbers “resembling probabilities”

Probabilistic bisimulation relation
• Relation ~ on processes
• If P ~ Q and P P’, then exists Q’

with Q Q’ and P’ ~ Q’ , and vice versa
• Reactive form of bisimulation (scheduling)
• van Glabbeek, Smolka, Steffen ‘95

r
r

Outline

Security protocols
Research goals
Specific process calculus
• Probabilistic semantics & complexity
• Asymptotic equivalence & bisimulation
• Equational proof system
• Examples

– Computational indistinguishability
– Decision Diffie-Hellman & ElGamal encryption

Provable equivalences

• Assume scheduler is stable under
bisimulation

P ~ Q ⇒ C[P] ~ C[Q]
P ~ Q ⇒ P ≈ Q
P | (Q | R) ≈ (P | Q) | R
P | Q ≈ Q | P
P | 0 ≈ P

Provable equivalences

P ≈ υ c. (out(c,T) | in(c,x).P) x ∉FV(P)
P{a/x} ≈ υ c. (out(c,a) | in(c,x).P)

bandwidth of c large enough
P ≈ 0 if no public channels in P
P ≈ Q ⇒ P{d/c} ≈ Q{d/c}

c , d same bandwidth, d fresh
out(c,T) ≈ out(c,T’)

Prob[T → a] = Prob[T’ → a] all a

Outline

Security protocols
Research goals
Specific process calculus
• Probabilistic semantics & complexity
• Asymptotic equivalence & bisimulation
• Equational proof system
• Examples

– Computational indistinguishability
– Decision Diffie-Hellman & ElGamal encryption

Computational indistinguishability

T(i,n), T’(i,n) terms in the calculus
• T, T’ represent uniform prob. poly-time function

ensembles fi , gi : { } → {0,1}q(|n|)

out(c,T) ≈ out(c,T’) says exactly that
the function ensembles fi , gi are
indistinguishable by prob. poly-time
statistical tests

Yao ’82: fundamental notion in crypto

Outline

Security protocols
Research goals
Specific process calculus
• Probabilistic semantics & complexity
• Asymptotic equivalence & bisimulation
• Equational proof system
• Examples

– Computational indistinguishability
– Decision Diffie-Hellman & ElGamal encryption

Connections with modern crypto

Ciphersystem consists of three parts
• Key generation
• Encryption (often probabilistic)
• Decryption
• Formal derivation of semantic security

of ElGamal from DDH and vice versa
– Well known fact in crypto [Tsiounis & Yung

’98]

ElGamal cryptosystem

n security parameter (e.g., key length)
Gn cyclic group of prime order p ,
length of p roughly n , g generator of Gn
Keys
• public 〈 g , y 〉 , private 〈 g , x 〉 s.t. y = gx

Encryption of m ∈ Gn
• for random k ∈ {0, . . . , p-1} outputs 〈 gk , m yk 〉

Decryption of 〈 v, w 〉 is w (vx)-1

• For v = gk , w = m yk get
w (vx)-1 = m yk / gkx = m gxk / gkx = m

Semantic security

Known equivalent:
indistinguishability of encryptions
• adversary can’t tell from the traffic which of

the two chosen messages has been encrypted
• ElGamal:

〈 1n , gk , m yk 〉 ≈ 〈 1n , gk’ , m’ yk’ 〉

In case of ElGamal known to be
equivalent to DDH [Tsiounis-Yung]
Formally derivable using the proof rules

Decision Diffie-Hellman (DDH)

Standard crypto assumption
n security parameter (e.g., key length)
Gn cyclic group of prime order p,
length of p roughly n ,
g generator of Gn
For random a, b, c ∈ {0, . . . , p-1}
〈 ga , gb , gab 〉 ≈ 〈 ga , gb , gc 〉

DDH implies sem. sec. of ElGamal

Start with 〈 ga , gb , gab 〉 ≈ 〈 ga , gb , gc 〉
(random a,b,c)
Build up statement of sem. sec. from this.
• in(c,<x,y>).out(c, 〈 gr, x.grx 〉) ≈

in(c,<x,y>).out(c, 〈 gr , y.grx 〉)
The proof consists of
• Structural transformations

– E.g., out(c,T(r); r random) ≈ out(c,U(r)) (any r) implies
in(c,x).out(c,T(x)) ≈ in(c,x).out(c,U(x))

• Domain-specific axioms
– E.g., out(c, 〈 ga , gb , gab 〉) ≈ out(c, 〈 ga , gb , gc 〉) implies

out(c, 〈 ga , gb , Mgab 〉) ≈ out(c, 〈 ga , gb , Mgc 〉) (any M)

Sem. sec. of ElGamal implies DDH

Harder direction. Compositionality of ≈ makes ‘building up’
easier than breaking down.
Want to go from

in(c,<x,y>).out(c,〈 gr,x.grx 〉) ≈ in(c,<x,y>).out(c,〈 gr, y.grx 〉)
to

〈 gx , gr , grx 〉 ≈ 〈 gx , gr , gc 〉
Proof idea: if x = 1, then we essentially have DDH.
The proof ’constructs’ a DDH tuple by
• Hiding all public channels except the output challenge
• Setting a message to 1

Need structural rule equating a process with the term
simulating the process
• We use special case where process only has one public

output

Current State of Project

Compositional framework for protocol analysis
• Precise language for studying security protocols
• Replace nondeterminism with probability
• Equivalence based on ptime statistical tests

Probabilistic ptime language
Methods for establishing equivalence
• Probabilistic bisimulation technique

Notion of compositionality
Examples
• Decision Diffie-Hellman, semantic security, ElGamal

encryption, computational indistinguishability

Conclusion

Future work
• Simplify semantics
• Weaken bisimulation technique to generate

asymptotic equivalences
• Apply to more complex protocols

– Bellare-Rogaway, Oblivious Transfer, Computational Zero
Knowledge, …

• Studying various models of compositionality for
security protocols (WITS ‘04)

– Canetti (ITMs), Pfitzmann-Waidner (IOAs)

Probabilistic Polynomial-Time
Process Calculus for Security

Protocol Analysis

J. Mitchell, A. Ramanathan, A. Scedrov, V. Teague

P. Lincoln, M. Mitchell
P. Mateus

