### The Exact Round Complexity of Secure Computation

Antigoni Polychroniadou (Aarhus University) *joint work with* Sanjam Garg, Pratyay Mukherjee (UC Berkeley), Omkant Pandey (Drexel University)

#### Background: Secure Multi-Party Computation



#### **Motivating Questions**

Lower bounds on the round complexity of secure protocols.

Construct optimal round secure protocols.

# State of the Art: Information-Theoretic Setting

| Communication | Round                  |
|---------------|------------------------|
| Complexity    | Complexity             |
| O(n C )       | O(depth <sub>c</sub> ) |

# State of the Art: Information-Theoretic Setting

| Communication             | Round                                    |
|---------------------------|------------------------------------------|
| Complexity                | Complexity                               |
| Ω(n C ) [DN <b>P</b> R16] | Ω(depth <sub>c</sub> ) [DN <b>P</b> R16] |

Novel approach must be found to construct **O(1)** round protocols (that beat the complexities of BGW, CCD, GMW, SPDZ etc.)

| Co  | mmunication<br>Complexity | Round Co | omplexity |
|-----|---------------------------|----------|-----------|
|     |                           | 2PC      | MPC       |
|     | << C                      |          |           |
| FHE |                           |          |           |

| Round Complexity      |       |  |
|-----------------------|-------|--|
| 2PC                   | MPC   |  |
| 5 rounds [KO04,ORS15] | O(1)* |  |



\*[BMR90,KOS03,Pas04,DI05,DI06,PPV08,IPS08,Wee10,Goy11,LP11,GLOV12]

| Round Complexity      |      |  |
|-----------------------|------|--|
| 2PC                   | MPC  |  |
| 5 rounds [KO04,ORS15] | O(1) |  |

#### What is the exact round complexity of secure MPC?











| Round Complexity |      |  |
|------------------|------|--|
| 2PC              | MPC  |  |
| 5 rounds [KO04]  | O(1) |  |

What is the exact round complexity of secure **MPC**?

How many simultaneous message exchange rounds are necessary for **2PC**?

| Round Complexity |      |  |
|------------------|------|--|
| 2PC              | MPC  |  |
| 5 rounds [KO04]  | O(1) |  |

• (3-round Impossibility): There does not exist a 3-round protocol for the two-party coin-flipping functionality.

| Round Complexity           |      |
|----------------------------|------|
| 2PC MPC                    |      |
| max(4,k+1) <sup>1</sup>    | O(1) |
| <sup>1</sup> k-round NMCOM |      |

Suppose that there exists a k-round NMCOM scheme; then

 (2PC): there exists a max(4, k + 1)-round protocol for securely realizing every twoparty functionality.

The use of NMCOM is not a coincidence [LPV09,Goy11,LP11,LPTV10,GLOV12]

| Round Complexity        |                            |  |
|-------------------------|----------------------------|--|
| 2PC MCF*                |                            |  |
| max(4,k+1) <sup>1</sup> | max(4,k+1)                 |  |
|                         | <sup>1</sup> k-round NMCOM |  |

Suppose that there exists a k-round NMCOM scheme; then

- (2PC): there exists a max(4, k + 1)-round protocol for securely realizing every twoparty functionality;
- (MPC): there exists a max(4, k + 1)-round protocol for securely realizing the multiparty coin-flipping functionality.

| Round Complexity        |                            |
|-------------------------|----------------------------|
| 2PC                     | MCF*                       |
| max(4,k+1) <sup>1</sup> | max(4,k+1)                 |
|                         | <sup>1</sup> k-round NMCOM |

Suppose that there exists a k-round NMCOM scheme; then

- (2PC): there exists a max(4, k + 1)-round protoc party functionality;
- (MPC): there exists a max(4, k + 1)-round proto party coin-flipping functionality.

Four rounds are both necessary and sufficient for both the results based on 3-round NMCOMs [PPV08,GPR16,COSV16].

#### Outline

- 1. Lower bound on the two-party coin-flipping.
- 2. 4-round 2PC protocol.

Theorem 1. There does not exist a 3-round protocol for the twoparty coin-flipping functionality

- for tossing ω(log λ) coins,
- with a black-box simulation,
- in the simultaneous message exchange model.

where  $\boldsymbol{\lambda}$  is the security parameter









Theorem 2. There does not exist a 4-round protocol for the twoparty coin-flipping functionality

- for tossing  $\omega(\log \lambda)$  coins,
- with a black-box simulation,
- in the simultaneous message exchange model,
- with at least one unidirectional round.



Theorem 2. There does **not** exist a **4-round protocol** for the **twoparty coin-flipping** functionality

- for tossing  $\omega(\log \lambda)$  coins,
- with a black-box simulation,
- in the simultaneous message exchange model,
- with at least one unidirectional round.







Must use the simultaneous message exchange channel in each round;

Fails due to malleability and input consistency Run two executions of a 4-round protocol ( issues. party learns the output) in "opposite" direct



#### max(4, k + 1)-round 2PC protocols

Theorem 3.

**TDP + k-round** (parallel) **NMCOM → max(4, k + 1)**-round **2PC** protocol

- with black-box simulation,
- in the presence of a malicious adversary,
- in the simultaneous message exchange model.





#### Garble Circuit Construction [Yao80]



#### Garble Circuit Construction [Yao80]



Decoder

Semi-Honest Secure 2PC  

$$C(x, y) \quad (y) \quad (y) \quad (g) \quad$$

\_

Semi-Honest Secure 2PC  

$$\overbrace{C(x)} C(x, y) \qquad (y) \overbrace{C(x, y)} C(x, y) = (y) = (y)$$

$$Z_{i,x_i} = W_{i,x_i} \oplus H(z_{i,x_i})$$
$$v = EvalGC(GC_y, Z_{i,x_i})$$
$$where \ v = C(x,y)$$

 $i \in \{0,1\}^{\lambda}, b \in \{0,1\}$ 



$$Z_{i,x_i} = W_{i,x_i} \oplus H(z_{i,x_i})$$
$$v = EvalGC(GC_y, Z_{i,x_i})$$
$$where \ v = C(x, y)$$

 $i \in \{0,1\}^{\lambda}, b \in \{0,1\}$ 













#### **Proof Systems**

 3-round ⊓<sub>WIPOK</sub> public-coin, witness-indistinguishable proofof-knowledge [FLS99] for NP (st<sub>1</sub> ∧st<sub>2</sub>)

 4-round Π<sub>FS</sub> zero-knowledge argument-of knowledge protocol [FS90] for NP (*thm*) based on NMCOM and Π<sub>WIPOK</sub>.

> 1<sup>st</sup>  $\Pi_{WIPOK}$ : V sets  $t_1 = f(w_1)$ ,  $t_2 = f(w_2)$ and proves knowledge of a w for  $t_1 \vee t_2$ 2<sup>nd</sup>  $\Pi_{WIPOK}$ : P proves knowledge of a witness to  $thm \vee (t_1 \vee t_2)$

#### Proof Systems

 3-round ⊓<sub>WIPOK</sub> public-coin, witness-indistinguishable proofof-knowledge [FLS99] for NP (st<sub>1</sub> ∧st<sub>2</sub>)

 4-round Π<sub>FS</sub> zero-knowledge argument-of knowledge protocol [FS90] for NP (*thm*) based on NMCOM and Π<sub>WIPOK</sub>.

1<sup>st</sup>  $\Pi_{WIPOK}$ : V sets  $t_1 = nm^{\sigma 1}$ ,  $t_2 = nm^{\sigma 2}$ 

**Crucial Change** 

and proves knowledge of a w for  $t_1 \vee t_2$ 2<sup>nd</sup>  $\Pi_{WIPOK}$ : P proves knowledge of a witness to thm  $\vee(t_1 \vee t_2)$ 

#### Proof Systems

 3-round ⊓<sub>WIPOK</sub> public-coin, witness-indistinguishable proofof-knowledge [FLS99] for NP (st<sub>1</sub> ∧st<sub>2</sub>)

 4-round Π<sub>FS</sub> zero-knowledge argument-of knowledge protocol [FS90] for NP (*thm* ∧ *thm*') based on NMCOM and Π<sub>WIPOK</sub>.

> 1<sup>st</sup>  $\Pi_{WIPOK}$ : V sets  $t_1 = nm^{\sigma 1}$ ,  $t_2 = nm^{\sigma 2}$ and proves knowledge of a w for  $t_1 \vee t_2$  $2^{nd} \Pi_{WIPOK}$ : P proves knowledge of a witness to thm  $\vee(t_1 \vee t_2)$

Input-Delayed Proof Systems











#### Conclusion

| Round Complexity |      |  |
|------------------|------|--|
| 2PC              | MPC  |  |
| 5 rounds [KO04]  | O(1) |  |

• (3-round Impossibility): There does not exist a 3-round protocol for the two-party coin-flipping functionality.

#### Conclusion

| Round Complexity        |                            |
|-------------------------|----------------------------|
| 2PC                     | MCF*                       |
| max(4,k+1) <sup>1</sup> | max(4,k+1)                 |
|                         | <sup>1</sup> k-round NMCOM |

Suppose that there exists a k-round NMCOM scheme; then

- (2PC): there exists a max(4, k + 1)-round protoc party functionality;
- (MPC): there exists a max(4, k + 1)-round proto party coin-flipping functionality.

Four rounds are both necessary and sufficient for both the results based on the 3-round NMCOM of [GPR16].

#### 4-round 2PC protocols



#### 4-round MPC protocols



#### **Open Problems**

| Crypto Assumption | Plain Model               | CRS Model              |
|-------------------|---------------------------|------------------------|
| MPC protocols     |                           |                        |
| Semi-Honest OT    | O(1) rounds [BMR90]       | 4 rounds [GMW87+AIK05] |
| LWE               | 6 rounds [this work]      | 2 rounds [MW15]        |
| iO                | 4 rounds [H <b>P</b> V16] | 2 rounds [GGHR14]      |

Can we get optimal-round static MPC protocols from different/weaker assumptions?

#### Thank you!