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Secure Multiparty Computation

» Computation on secret inputs

» Replace trusted third party

Wanted: f(x,y, z)



Secure Multiparty Computation
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Computation on secret inputs

v

Replace trusted third party

v

How to formulate f7?

» Start with circuit

v

Central questions in MPC

» How many trusted parties?
» What deviation?

Wanted: f(x,y, z)



Multiparty Computation in This Talk

Security model
How many parties are how corrupted? In this work:
» Malicious adversary: Corrupted parties deviate from protocol.

» Dishonest majority of corrupted parties

» Impossible without computational assumptions (PK crypto)
» Shamir secret sharing does not help
» No guaranteed termination



Malicious Offline-Online MPC Protocols

Preprocessing

corr. rand.

PKC

Advantages

>

Online

» No secret inputs on the line when using crypto
= No one gets hurt if protocol aborts!

» Online computation might have many rounds,
but preprocessing is constant-round.



Malicious Offline-Online MPC Protocols

Preprocessing

corr. rand.

PKC

Suitable public-key crypto

» Somewhat homomorphic encryption (SPDZ)

>

Online

» Oblivious transfer (TinyOT, MASCOT)



First Step — Oblivious Data Structures

> Generally

» Secret pointers

» Secret type of access if needed
» Oblivious array / dictionary

» Secret index / key

» Secret whether reading or writing
» Oblivious priority queue

» Secret priority and value
» Secret whether decreasing priority or inserting



Oblivious RAM
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Oblivious RAM
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Oblivious RAM in MPC

MPC circuit

Reveal

RAM secret-shared
with Authentication




Dijkstra's Algorithm in MPC

> Dijkstra’s algorithms uses
two nested loops
» One for vertices,
one for neighbors thereof
» MPC would reveal the number

for each vertex do of neighbors for every vertex
outer loop body » Replace by loop over all edges
for each neighbor do » Flag set when starting
inner loop body with a new vertex

» Oblivious data structures
with public size

» Polylog overhead
over classical algorithm



Dijkstra's Algorithm in MPC

> Dijkstra’s algorithms uses
two nested loops
» One for vertices,
one for neighbors thereof
» MPC would reveal the number

for each edge do of neighbors for every vertex
outer loop body » Replace by loop over all edges
(maybe dummy) » Flag set when starting
inner loop body with a new vertex

» Oblivious data structures
with public size

» Polylog overhead
over classical algorithm



Going General

Dijkstra (special case)
Obscure inner vs outer loop by doing both all the time

General case
Obscure by doing everything all the time

» Including memory accesses
» Data registers provide no value

» Memory-only machine with one register for program counter



Memory-only Machine

» Need 3 accesses for arithmetic operations like addition

» 3 is enough for any operation

» For every possible operation there is a circuit before, after,
and in-between memory accesses

» Oblivous selection using instruction from program memory

» Last circuit outputs next program counter



Example

1 |int main() {

2 unsigned int al[5];

3 for (unsigned int i = 0; i < 5; i++)
4 ali]l = 1i;

5




Example

o NN =
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for.cond:
%0 = load i64x* %i, align 8
%ecmp = icmp ult i64 %0, 5
br i1 Y%cmp, label %for.body, label <
%for.end

for.body:

%1 = load i64x* %i, align 8

%2 = load i64x* i, align 8

harrayidx = getelementptr inbounds <
[5 x i64]* %a, i32 0, i64 %2

store i64 %1, i64* Yarrayidx, align <«
8

br label Y%for.inc




Example

# for.cond:
ult_pos_const 9 5 8 # 2
br 4 8 9 # 3

# for.body:
add_const 10 3 1 # 4
store 0 8 10 # b5

# for.inc:

add_const 8 1 8 # 6

jmp 2 0 O # 7

for.end:

mov O 2 0O # 8

jmp 10 0 O # 9

© 0O ~NO O~ Wi+

===
N = O
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Machine Speed
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100-Party Oblivious Machine

Online

0.385 Hz

RAM: 1 million field elements (64 bit)
8.2¢ per clock cycle and party

c4.8xlarge
alpaz_on
Wep services Offline
Per clock cycle ‘ Time Cost per party
c4.8xlarge 16 minutes 49¢

t2.small 7.7 hours 21¢



Overhead for Dijkstra’s Algorithm

Online time (s) with 2 parties
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Comparison to Garbled Circuits for MIPS

Set intersection

Input size per party 64 inputs 256 inputs 1024 inputs

Wang et al. baseline 58.35 s 324.09 s 3068.19 s
Wang et al. optimized 277 s 12.96 s 108.45 s
This work (online) 6.43 s 4412 s 1346.82 s



Bottom Line

Slow but as general as possible
» No static analysis

» Allows private function evaluation



