The Oblivous Machine
or: How to Put the C into MPC

Marcel Keller Peter Scholl

University of Bristol

9 June 2016

Secure Multiparty Computation

» Computation on secret inputs

» Replace trusted third party

Wanted: f(x,y, z)

Secure Multiparty Computation

v

Computation on secret inputs

v

Replace trusted third party

v

How to formulate f7?

» Start with circuit

v

Central questions in MPC

» How many trusted parties?
» What deviation?

Wanted: f(x,y, z)

Multiparty Computation in This Talk

Security model
How many parties are how corrupted? In this work:
» Malicious adversary: Corrupted parties deviate from protocol.

» Dishonest majority of corrupted parties

» Impossible without computational assumptions (PK crypto)
» Shamir secret sharing does not help
» No guaranteed termination

Malicious Offline-Online MPC Protocols

Preprocessing

corr. rand.

PKC

Advantages

>

Online

» No secret inputs on the line when using crypto
= No one gets hurt if protocol aborts!

» Online computation might have many rounds,
but preprocessing is constant-round.

Malicious Offline-Online MPC Protocols

Preprocessing

corr. rand.

PKC

Suitable public-key crypto

» Somewhat homomorphic encryption (SPDZ)

>

Online

» Oblivious transfer (TinyOT, MASCOT)

First Step — Oblivious Data Structures

> Generally

» Secret pointers

» Secret type of access if needed
» Oblivious array / dictionary

» Secret index / key

» Secret whether reading or writing
» Oblivious priority queue

» Secret priority and value
» Secret whether decreasing priority or inserting

Oblivious RAM

Client
(CPU)

X0

X1

X0

X2

X0

Server
(Encrypted RAM)

Oblivious RAM

Client
(CPU)

Xs

Xg

Xg

Xg

Xs

Server
(Encrypted RAM)

Oblivious RAM in MPC

MPC circuit

Reveal

RAM secret-shared
with Authentication

Dijkstra's Algorithm in MPC

> Dijkstra’s algorithms uses
two nested loops
» One for vertices,
one for neighbors thereof
» MPC would reveal the number

for each vertex do of neighbors for every vertex
outer loop body » Replace by loop over all edges
for each neighbor do » Flag set when starting
inner loop body with a new vertex

» Oblivious data structures
with public size

» Polylog overhead
over classical algorithm

Dijkstra's Algorithm in MPC

> Dijkstra’s algorithms uses
two nested loops
» One for vertices,
one for neighbors thereof
» MPC would reveal the number

for each edge do of neighbors for every vertex
outer loop body » Replace by loop over all edges
(maybe dummy) » Flag set when starting
inner loop body with a new vertex

» Oblivious data structures
with public size

» Polylog overhead
over classical algorithm

Going General

Dijkstra (special case)
Obscure inner vs outer loop by doing both all the time

General case
Obscure by doing everything all the time

» Including memory accesses
» Data registers provide no value

» Memory-only machine with one register for program counter

Memory-only Machine

» Need 3 accesses for arithmetic operations like addition

» 3 is enough for any operation

» For every possible operation there is a circuit before, after,
and in-between memory accesses

» Oblivous selection using instruction from program memory

» Last circuit outputs next program counter

Example

1 |int main() {

2 unsigned int al[5];

3 for (unsigned int i = 0; i < 5; i++)
4 ali]l = 1i;

5

Example

o NN =

©O© 00 N O O

10

11

for.cond:
%0 = load i64x* %i, align 8
%ecmp = icmp ult i64 %0, 5
br i1 Y%cmp, label %for.body, label <
%for.end

for.body:

%1 = load i64x* %i, align 8

%2 = load i64x* i, align 8

harrayidx = getelementptr inbounds <
[5 x i64]* %a, i32 0, i64 %2

store i64 %1, i64* Yarrayidx, align <«
8

br label Y%for.inc

Example

for.cond:
ult_pos_const 9 5 8 # 2
br 4 8 9 # 3

for.body:
add_const 10 3 1 # 4
store 0 8 10 # b5

for.inc:

add_const 8 1 8 # 6

jmp 2 0 O # 7

for.end:

mov O 2 0O # 8

jmp 10 0 O # 9

© 0O ~NO O~ Wi+

===
N = O
+H

Machine Speed

102}
g i > 2 desktop machines
£ > 1 Gbps local network
E 10" | » Path ORAM
© (CORAM too deep)
1000, . ‘ ! ! Ll

vl vl vl vl L1l vl il
10t 10?2 10® 10* 10° 10° 107 108
Data memory size (in field elements)

100-Party Oblivious Machine

Online

0.385 Hz

RAM: 1 million field elements (64 bit)
8.2¢ per clock cycle and party

c4.8xlarge
alpaz_on
Wep services Offline
Per clock cycle ‘ Time Cost per party
c4.8xlarge 16 minutes 49¢

t2.small 7.7 hours 21¢

Overhead for Dijkstra’s Algorithm

Online time (s) with 2 parties

10°
10*
103
102
10!

100

—e— Oblivous machine
—m— Oblivous data structures /'/

101 102
Cycle graph size

Comparison to Garbled Circuits for MIPS

Set intersection

Input size per party 64 inputs 256 inputs 1024 inputs

Wang et al. baseline 58.35 s 324.09 s 3068.19 s
Wang et al. optimized 277 s 12.96 s 108.45 s
This work (online) 6.43 s 4412 s 1346.82 s

Bottom Line

Slow but as general as possible
» No static analysis

» Allows private function evaluation

