Making Password Checking
Systems Better

=5t CORNELL
> TECH

Tom Ristenpart

Covering joint work with:
Anish Athayle, Devdatta Akawhe, Joseph Bonneau, Rahul Chatterjee,
Adam Everspaugh, Ari Juels, Sam Scott

Password checking systems

- tom, passwordl
®.1

(@\ o

tom passwordl
alice 123456

bob p@ssword!

Login
server

(plus hundreds of millions more)

Allow login if:

Attack detection mechanisms don’t flag request

Password matches

Sometimes: second factor succeeds

Problems w/ password checking systems
tom passwordl

6&) alice 123456

”’M\ bob d!
/ Lonn o] p@ssword!
server /

tom, passwordl

People often enter

wrong password:
_ Typos Passwords databases must be protected:

- Memory errors - Server compromise

- Exfiltration attacks (e.g., SQL injection)
Widespread practice:

- Apply hashing w/ salts

- Hope slows down attacks enough

Today’s talk

Pythia: moving beyond “hash & hope”

Harden hashes with off-system secret key using
partially oblivious pseudorandom function protocol

[Everspaugh, Chatterjee, Scott, Juels, R. — USENIX Security 2015]

Typo-tolerant password checking

In-depth study of typos in user-chosen passwords
Show how to allow typos without harming security

[Chatterjee, Athayle, Akawhe, Juels, R. — Oakland 2016]

Password checking systems

ﬁ@i I tom, password1 salt, , H(password1,salt,)
\%\)/\)\UL salt, , H%(123456,salt,)
s It , HE d! sal
Login salt; , H(p@ssword!,salt,)

server

Websites should never store passwords directly,
they should be (at least) hashed with a salt (also stored)

Cryptographic hash function H
(H =SHA-256, SHA-512, etc.)

pw| |salt —B—B— _B_ Common choice is ¢ =10,000
W [N N]

Better: scrypt, argon2

c times

UNIX password hashing scheme, PKCS #5
Formal analyses: [Wagner, Goldberg 2000] [Bellare, R., Tessaro 2012]

Password database compromises

year

rockyou ==
Linked [[]] 2012

F\\Adobe’ ==

ASHLEY
MADIS#N°| 2015

Life is short. Have an affair.®

stolen

32.6 million

117 million

36 million

36 million

% recovered

100%

90%

?7?

33%

format

plaintext (!)

Unsalted SHA-1

ECB encryption

Salted bcrypt
+ MD5

(1) Password protections often implemented
incorrectly in practice

(2) Even in best case, hashing slows down but
does not prevent offline brute-force cracking

Facebook password onion

Scur = ‘password’ n
Scur = md5(Scur)

Ssalt = randbytes(20)

Scur = hmac_shal(Scur, Ssalt)

Scur =remote_hmac_sha256(Scur, Ssecret)
Scur = scrypt(Scur, Ssalt)

Scur = hmac_sha256(Scur, Ssalt)

Strengthening password hash storage

6¥\> -~ tom, password1 \ h R

((44\ € K
f = HMAC(K, h) Back- end
h = H(password1]| | salt) crypto
service

Store salt, f

HMAC is pseudorandom function (PRF). }

= H(123456 | | salt)

>
<€
= HMAC(K, h’)
. . H¢(1234567 || salt)
Must still perform online S
brute-force attack ¢ service
H¢(12345 || salt)
>
<€

Exfiltration doesn’t help

Strengthening password hash storage

% \ -~ tom, password1 | h -]
\K) \ > [
<€ l"n ,) K
f = HMAC(K, h) Back-end
h = H(password1]| | salt) crypto

service
Store salt, f

Critical limitation: can’t rotate K to a new secret K’

* Idea 1: Version database and update as users log in
= But doesn’t update old hashes

 |dea 2: Invalidate old hashes
= But requires password reset

e |dea 3: Use secret-key encryption instead of PRF
= But requires sending keys to web server (or high bandwidth)

The Pythia PRF Se rVice Blinding means service learns

nothing about passswords

g‘\\\

ﬁ%\ == user id, blinded h (1 eee]
) > [N
N < D
Blinded PRF output f i
Back-end
h = H¢(password1] | salt) crypto
Blind h, pick user ID >ervice

Unblind PRF output f User ID reveals fine-grained query
patterns to service.

Store user ID, salt, f) _ o
Compromise detection & rate limiting

Cryptographically erases f:
Useless to attacker in the future

Combine token and f

to generate f' = F(K’,h) . X
= FK, Token(K->K’ n
oken() Back-end
Server learns nothing crypto N/JK’
service

about K or K’

New crypto: partially-oblivious PRF

Groups G, , G, , G;w/ bilinear pairinge: G, xG,->G; e(a*bY)=cv

%K) -~ tom, passwordl \\ userid, h"
\“‘\ >
\ ((@\4\ | £
Y t = H(user id)
h = H¢(password1] | salt) y = e(t¥,h")
Choose random r
f = yl/r

Store user ID, salt, f
f = e(tKh)/r = e(t,h)k™/r = e(t,h)K

e Pairing cryptographically binds user id with password hash
e (Can add verifiability (proof that PRF properly applied)

* Key rotation straightforward: Token(K->K’) = K'/K

* Interesting formal security analysis (see paper)

The Pythia PRF Service

= (Queries are fast despite pairings
e PRFquery: 11.8 ms (LAN) 96 ms (WAN)
= Parallelizable password onions
 HC¢ and PRF query made in parallel (hides latency)
= Multi-tenant (theoretically: scales to 100 million login servers)
= Easy to deploy
 Open-source reference implementation at
http://pages.cs.wisc.edu/~ace/pythia.html

E @, python Re

O mongo

Today’s talk

Pythia: moving beyond “hash & hope”

Harden hashes with off-system secret key using
partially oblivious pseudorandom function protocol

[Everspaugh, Chatterjee, Scott, Juels, R. — USENIX Security 2015]

Typo-tolerant password checking

In-depth study of typos in user-chosen passwords
Show how to allow typos without harming security

[Chatterjee, Athayle, Akawhe, Juels, R. — Oakland 2016]

Back to our big picture
tom Gy(passwordl)

@b\/ L alice | G,(123456)

—E& bob G d!
/ o 0 «(p@ssword!)
server

People often enter

tom, passwordl

wrong password:
_ Typos Passwords databases must be protected:

Memory errors - Server compromise

- Exfiltration attacks (e.g., SQL injection)
Widespread practice:

- Apply hashing w/ salts

- Hope slows down attacks enough

Back to our big picture
tom Gy(passwordl)

6\7\) L alice G(123456)

"’M\ bob |G d!
/ o 0 «(p@ssword!)
server

People often enter

wrong password:
- Typos
- Memory errors

tom, passwordl

Users have hard time remembering (complex) passwords
[Ur et al. 2012] [Shay et al. 2012] [Mazurek et al. 2013] [Shay et al. 2014]

[Bonneau, Schechter 2014]

Passwords can be difficult to enter without error (typo)
[Keith et al. 2007, 2009] [Shay et al. 2012]

Suggestions for error-correcting passphrases
[Bard 2007] [Jakobsson, Akavipat 2012] [Shay et al. 2012]

Facebook passwords are not case sensitive (update)

If you have characters in your Facebook password, there's a second
password that you can log in to the social network with.

3
; By Emil Protalinski for Friending Facebook | September 13, 2011 -- 12:26 GMT (05:26 PDT) | Topic: Security

passwordl Passwordl PASSWORD1

4 N

Typo-tolerant password checking:

Allow registered password or some typos of it
NS /

We focus on relaxed checkers

ﬁ@ B tom, Password1 tom G,(password1)

\\\\\ / alice G (123456

L e
bob G (p@ssword!)

Apply typo corrector functions to incorrect submitted password:

[Slow to compute G, W\ G (Passwordl) ¢

-

Apply caps lock corrector G, (pPASSWORD1) XK
Apply first case flip corrector G,(password1l)

Can we find small but useful set
of typo correctors?

Works with existing password hardening schemes
No change in what is stored

Mechanical Turk transcription study

100,000+ passwords typed by 4,300 workers

9o
e
PN

amazon mechanicalturk

4 I
Top 3 account
7% OF TYPOS Capslock Flip first for 20% of typos

11% letter case - /

4.5% Add

character
at end
4.6%

¢S Lo

A

PREVENTING
LOGIN SINCE

1980

Other 78.8%
19

Impact of Top 3 typos in real world
< Dropbox

Instrumented production login of Dropbox to quantify typos
NOTE: We did not admit login based on relaxed checker

24 hour period:
. of all users failed to login because one of top 3 typos

* 20% of users who made a typo would have saved at least 1
minute in logging into Dropbox if top 3 typos are corrected.

Allowing typos in password will add several
person-months of login time every day.

Typo-tolerance would significantly improve
usability of password-based login

Can it be secure?

Threat #1: Server compromise

Gy(passwordl)

G(123456)

Gy (p@ssword!)

No change to
password DB

No change in security after compromise

Threat #2: Remote guessing attacks

tom Gy(passwordl)

alice G(123456)

bob Gy (p@ssword!)

K&% tom, password
Gy(password) ¥

Apply caps lock corrector G (PASSWORD) X
Apply first case flip corrector G, (Password) X
Apply extra char corrector G,(passwor) X

Threat #2: Remote guessing attacks

tom, password tom G,(password1)
tom, iloveyou alice G(123456)
bob Gy (p@ssword!)

Server locks account after q failed attempts (e.g., q=10)

G, (iloveyou) X

Apply caps lock corrector G (ILOVEYOU) X
Apply first case flip corrector G,(lloveyou) X
Apply extra char corrector G,(iloveyo) X

Up to 4 passwords checked at cost of 1 query
=>
Attack success-iicreases by 4x

Attack simulation using password leaks

Adversary knows:
Distribution of passwords, and the set of correctors ()

Exact checking Typo-tolerant checking

Query most probable g passwords Query q passwords that maximizes success
NP-complete problem.
Compute using greedy approximation

. 3.3 294 M Exact checking
X 3 2.75 B Typo-tolerant checking
>
= 25 0
0 q =
%’ 2
S 1.5 o
A 0.
§ 1 0.79
(?) 0.5 -
0

phpbh :

Security-sensitive typo tolerance

pASSWORD

1\ TN

pASSWORD Password PASSWORD pASSWOR

Free Corrections Theorem:
For any password distribution, set of correctors, and
query budget g, there exists a typo-tolerant checking
scheme with no loss in security

Security-sensitive typo tolerance

Assume distribution over passwords and order them in
decreasing probability:

PW; PW, ... PW, PWgy PWgyp PWeyz o

Construction:
For any password, check as many typos as one can while
ensuring correctness and that 2, . recteq PrLPW] < Pripw,]

Ensures optimal adversarial strategy is to query pwy,...,pw,
against typo-tolerant checker. Same as for strict checker

Checkers w/ heuristic filtering

Use password leak roclyou to estimate distribution

Success probability (%)

3.5

2.5

N

1.5

=

0.5

phpbb

M Exact checking
M Typo-tolerant checking

B Typo-tolerant checking
w/ filtering

0.79 0-9 0.81

myspace

28

Typo-tolerance can enhance user experience
without degrading security in practice

Today’s talk

Pythia: moving beyond “hash & hope”

Harden hashes with off-system secret key using
partially oblivious pseudorandom function protocol

[Everspaugh, Chatterjee, Scott, Juels, R. — USENIX Security 2015]

Typo-tolerant password checking

In-depth study of typos in user-chosen passwords
Show how to allow typos without harming security

[Chatterjee, Athayle, Akawhe, Juels, R. — Oakland 2016]

