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Setting: ASICs with mutually distrusting designer, manufacturer

Firewall

e.g., a network firewall appliance,
with a custom chip for packet processing
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Untrusted manufacturers can craft hardware Trojans

Firewall

What if our packet processing chip has a back door?

Threat: incorrect execution of the packet filter

(Other concerns, e.g., secret state, are important but orthogonal)



Untrusted manufacturers can craft hardware Trojans

Firewall

What if our packet processing chip has a back door?

The Cybercrime Economy

Fake tech gear has infiltrated the U.S. government

by David Goldman @DavidGoldmanCNN

@ November 8, 2012: 3:10 PMET




Untrusted manufacturers can craft hardware Trojans

Firewall

US DoD controls supply chain with trusted foundries.
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Trusted fabs are the only way to get strong guarantees

For example, stealthy trojans can thwart post-fab detection
[A2: Analog Malicious Hardware, Yang et al., IEEE S&P 2016;
Stealthy Dopant-Level Trojans, Becker et al., CHES 2013]

But trusted fabrication is not a panacea:

X Only 5 countries have cutting-edge fabs on-shore
X Building a new fab takes $$$$$%, years of R&D

X Semiconductor scaling: chip area and energy go with
square and cube of transistor length (“critical dimension™)

X So using an old fab means an enormous performance hit
e.g., India’s best on-shore fab is 108 x behind state of the art

Can we get trust more cheaply?
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Zebra: a hardware design that saves costs



A qualified success

Zebra: a hardware design that saves costs. . .

...sometimes.
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What about other schemes? e.g.,

FHE [GGP10], MIP+FHE [BC12], MIP [BTWV14],
PCIP [RRR16], IOP [BCS16], PIR [BHK16], ...
These all seem a bit further from practicality.
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Probabilistic proof protocols, briefly
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Arguments [GGPR13, IPs
SBVBPW13, PGHR13, BCTV14| [GKR08, CMT12, VSBW13]
e.g., Zaatar, Pinocchio, libsnark e.g., Muggles, CMT, Allspice
+ nondeterministic ACs, — deterministic ACs;
arbitrary connectivity layered, low depth
+ Few rounds (< 3) — Many rounds
Unsuited to hardware X Suited to hardware
implementation implementation



Zebra builds on IPs of GKR [GKR08, CMT12, VSBW13|

F must be expressed as a
layered arithmetic circuit.

xxxxx




Zebra builds on IPs of GKR [GKR08, CMT12, VSBW13|
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Zebra builds on IPs of GKR [GKR08, CMT12, VSBW13|

1. V sends inputs

2. P evaluates, returns output y

200669
i

tomiifoRNFon!
2R
@
@ —@t
_® il
—@ @



Zebra builds on IPs of GKR [GKR08, CMT12, VSBW13|
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1. V sends inputs

2. P evaluates, returns output y

3. V constructs polynomial relating
y to last layer’s input wires

thinking...
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2. P evaluates, returns output y
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Zebra builds on IPs of GKR [GKR08, CMT12, VSBW13]
1. V sends inputs —® @ @ @ ®

2. P evaluates, returns output y

3. V constructs polynomial relating
y to last layer’s input wires

4.V engages P in a sum-check, gets
claim about second-last layer

5. V iterates, gets claim about
inputs, which it can check

% x P
B w— y —
— . sum-check
= |l [LFKN9O]
more sum-checks




Zebra builds on IPs of GKR [GKR08, CMT12, \/SBV\/13]
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Zebra builds on IPs of GKR [GKR08, CMT12, VSBW13]
Soundness error o< p~! @ @ @ 9 o)

Cost to execute F directly: (ﬂg i oRO g SJ
O(depth - width) 8
V's sequential running time: %é %d , ‘ ! %j %j

O(dept_h - log width + |x| + yl) E# g C”j 6

(assuming precomputed queries)
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Extracting parallelism in Zebra

P executing AC: layers are
sequential, but all gates at a
layer can be executed in parallel

Proving step: Can V and P
interact about all of F's layers
at once?

No. V must ask questions in
order or soundness is lost.

But: there is still parallelism to
be extracted. ..




Extracting parallelism in Zebra's P
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Extracting parallelism in Zebra's P
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Extracting parallelism in Zebra's P

V questions P about

F(x1)'s next layer, and
F(x2)'s output layer.
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Extracting parallelism in Zebra's P

V questions P about
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Extracting parallelism in Zebra's P
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Extracting parallelism in Zebra's P
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Extracting parallelism in Zebra's P
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Extracting parallelism in Zebra's P with pipelining

i Input (x)
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This approach is just a standard hardware technique, pipelining;
it is possible because the protocol is naturally staged.



Extracting parallelism in Zebra's P with pipelining
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This approach is just a standard hardware technique, pipelining;
it is possible because the protocol is naturally staged.

There are other opportunities to leverage the protocol’s structure.



Per-layer computations
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Per-layer computations

For each sum-check round, P

sums over each gate in a layer,
evaluating H[k], k € {0, 1,2}

HIK = ) (g k)

Elayer
layer: g=y
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Per-layer computations
HIKl = ) d(g. k)
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H[k] < H[K] + d(g, k)
// § uses state[g]

// update lookup table
// with V's random coin
for g € layer:

state[g] < 6(g, rj)
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Per-layer computations

For each sum-check round, P
sums over each gate in a layer,

evaluating H[k], k € {0, 1,2}

HIK = ) (g k)

g€<layer

layer:
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In software: In hardware:
// compute H[O],H[1], H[2] gate gate gate gate
prover || prover || prover || prover
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for g € layer:
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Per-layer computations

For each sum-check round, P

sums over each gate in a layer,
evaluating H[k], k € {0, 1,2}
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Per-layer computations

For each sum-check round, P
sums over each gate in a layer,
evaluating H[k], k € {0, 1,2}

HIK = ) (g k)

g€<layer

layer:

POIDOYIY

In software: In hardware:
// compute H[O],H[1],H[2] gate gate gate gate
prover prover prover prover
for k € {0, 1, 2}: 5(0, 0) [|o(1, 0)]|4(2, 0)[|0(3, 0)
H[k] < 0 o0, D)ffo(L, 1)||o(2, 1)ffo(3, 1)
for g € layer: 5(0, 2)[16(1, 2)[|6(2. 2)||6(3, 2)
HIKD — HIKD + 0c, k) | |50, )| 8(1, r)|[8(2, 1)||83. 1)

// § uses state[g]

// update lookup table
// with V's random coin
for g € layer:

state[g] < 6(g, rj)




Per-layer computations

HIK = ) (g k)

For each sum-check round, P layer: gclayer
sums over each gate in a layer,
evaluating H[k], k € {0, 1,2} Gj Gj Gj Ej Gj Gj Gj
In software: In hardware:
// compute H[O],H[1],H[2] gate gate gate gate
prover || prover || prover || prover
for k € {0, 1, 2}: 5(0, 0) [|o(1, 0)]|4(2, 0)[| (3, 0)
HLk] < 0 5(0, 1)[|6(1, D||6(2, 1)][6(3, 1)
for g € layer: 500, 2)[|5(1, 2)||5(2, 2)][6(3, 2)
HIK] <= HIK] + d(g, k) 5(0, v)||8@, )52, )]G, 1)
// § uses state[g]
// update lookup table Do~ o~ \
// with V’s random coin E :
for g € layer: | E
statelg] < d(g. Tj) | _Adder tree |




Per-layer computations

For each sum-check round, P
sums over each gate in a layer,

evaluating H[k], k € {0, 1,2}

In software:

HIK = ) (g k)

5060 W00
In hardware:

// compute H[O],H[1],H[2]
for k € {0, 1, 2}:
H[k] < O
for g € layer:
H[k] < H[K] + d(g, k)
// § uses state[g]

// update lookup table
// with V's random coin
for g € layer:

state[g] < 6(g, rj)

state[O]]][[state[1]]][[state[2]]][[state[3]

gate gate gate gate
prover

(3, 0)
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Zebra's design approach

\/ Extract parallelism

e.g., pipelined proving
e.g., parallel evaluation of § by gate provers

\/ Exploit locality: distribute data and control
e.g., no RAM: data is kept close to places it is needed
e.g., latency-insensitive design: localized control

\/ Reduce, reuse, recycle

e.g., computation: save energy by adding memoization to P
e.g., hardware: save chip area by reusing the same circuits
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Architectural challenges

Interaction between V and P requires a lot of bandwidth
X V and P on circuit board? Too much energy, circuit area

v/ Zebra uses 3D integration verz |
DIE‘\‘I{

f_;i,&_‘g_;*;‘;;;‘ é

Protocol requires input-independent precomputation [VSBW13|
v/ Zebra amortizes precomputations over many V-P pairs

Precomputations need secrecy, integrity
X Give V trusted storage? Cost would be prohibitive
v/ Zebra uses untrusted storage + authenticated encryption

input:

output




Implementation

Zebra's implementation includes

e a compiler that produces synthesizable Verilog for P

e two V implementations

o hardware (Verilog)
e software (C++)

e library to generate V's precomputations

e Verilog simulator extensions to model
software or hardware V’s interactions with P



...and it seemed to work really well!

Zebra can produce 10k—100k proofs per second,
while existing systems take tens of seconds per proof!



...and it seemed to work really well!

Zebra can produce 10k—100k proofs per second,
while existing systems take tens of seconds per proof!

But that's not a serious evaluation. . .
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Evaluation method

input,

VS. F

output

Baseline: direct implementation of F in same technology as V

Metrics: energy, chip size per t

350 nm: 1997 (Pentium II)

Measurements: based on circuif 7 nm: ~ 2017 [TSMC]

published chip designs, and CM| =~ 20 year gap between
Charge for V, P, communi trusted and untrusted fab

precomputations; PRNG; Operator communicating wit@

Constraints: trusted fab = 350 nm; untrusted fab = 7 nm)|
200 mm? max chip area; 150 W max total power




Application #1: number theoretic transform

NTT: a Fourier transform over [,

Widely used, e.g., in computer algebra



Application #1: number theoretic transform
Ratio of baseline energy to Zebra energy

0.3f

baseline vs. Zebra (higher is better)

0-17 I I 1 I I I I

7 1
6 8 Iog29(NTT solze)11 12

13



Application #2: Curve25519 point multiplication

Curve25519: a commonly-used elliptic curve

Point multiplication: primitive, e.g., for ECDH



Application #2: Curve25519 point multiplication

baseline vs. Zebra (higher is better)

0.3

0.1

Ratio of baseline energy to Zebra energy

84 170 340 682 o
Parallel Curve25519 point multiplications

1147



A qualified success

Zebra: a hardware design that saves costs. . .

... sometimes.
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Arguments versus |Ps, redux

IPs Arguments
Design principle [GKR08, CMT12, [GGPR13, SBVBPW13,
VSBW13] PGHR13, BCTV14]
Extract parallelism v v
Exploit locality v X
Reduce, reuse, recycle v X

Argument protocols seem unfriendly to hardware:

‘P computes over entire AC at once = need RAM

‘P does crypto for every gate in AC = special crypto circuits

... but we hope these issues are surmountable!
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Summary of Zebra's applicability

1. Computation F

2. Must have a wi
and trusted fab

3. |Amortizes|precc
4, Computatio@

5. Computation F

System Amortization regime  Advice
Zebra many V-P pairs short
Allspice batch of instances

. short
[VSBW13] of a particular F
Bootstrapped
Sh ARG Il computations lon
[BCTVida, 2" <OmP =
CTV15]
BCTV all computations e
[BCTV14b] of the same length
Pinocchio all future instances o
[PGHR13] of a particular F
Zaatar batch of instances o
[SBVBPW13]  of a particular F

Exception: [CMT12] with logspace-uniform ACs
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Summary of Zebra's applicability

For example, libsnark [BCTV14b], a highly optimized implementa-
tion of [GGPR13] and Pinocchio [PGHR13|:

V's work: 6 ms + (|x| + |y|) - 3 pus on a 2.7 GHz CPU
= break-even point > 16 x 10® CPU ops

With 32 GB RAM, libsnark handles ACs with < 16 x 10° gates

= breaking even requires > 1 CPU op per AC gate, e.g.,
computations over [F, rather than machine integers

4. Computation F must be very large for V to save work ®

5. Computation F must be efficient as an arithmetic circuit




Recap

input

output

+ Verifiable ASICs: a new approach to building
trustworthy hardware under a strong threat model

+ First hardware design for a probabilistic proof protocol

-+ Improves performance compared to trusted baseline



Recap

input

output

+ Verifiable ASICs: a new approach to building
trustworthy hardware under a strong threat model

+ First hardware design for a probabilistic proof protocol

-+ Improves performance compared to trusted baseline

— Improvement compared to the baseline is modest
— Applicability is limited:

precomputations must be amortized

computation needs to be “big enough”

large gap between trusted and untrusted technology
does not apply to all computations



Recap

input

output

+ Verifiable ASICs: a new approach to building
trustworthy hardware under a strong threat model

+ First hardware design for a probabilistic proof protocol

-+ Improves performance compared to trusted baseline

— Improvement compared to the baseline is modest
— Applicability is limited:

precomputations must be amortized

computation needs to be “big enough”

large gap between trusted and untrusted technology
does not apply to all computations

Bottom line: Zebra is plausible—when it applies
https://www.pepper-project.org/



