Verifiable ASICs:
trustworthy hardware with untrusted components

Riad S. Wahby°*, Max Howaldt*,
Siddharth Garg*, abhi shelat?, and Michael Walfish*

°Stanford University

*New York University

TThe Cooper Union
¥The University of Virginia

June 10t 2016

Setting: ASICs with mutually distrusting designer, manufacturer

Principal W Manufacturer
(government, . (“foundry”
chip designer) ' =) or “fab”)

Setting: ASICs with mutually distrusting designer, manufacturer

Principal
(government,
chip designer)

M Manufacturer
(“foundry”
or “fab")

Here we are thinking about ASICs, not CPUs:

CPU
register
fle | |AMY

ASIC

Setting: ASICs with mutually distrusting designer, manufacturer

Firewall

e.g., a network firewall appliance,
with a custom chip for packet processing

Untrusted manufacturers can craft hardware Trojans

Firewall

What if our packet processing chip has a back door?

Untrusted manufacturers can craft hardware Trojans

Firewall

What if our packet processing chip has a back door?

Threat: incorrect execution of the packet filter

(Other concerns, e.g., secret state, are important but orthogonal)

Untrusted manufacturers can craft hardware Trojans

Firewall

What if our packet processing chip has a back door?

The Cybercrime Economy

Fake tech gear has infiltrated the U.S. government

by David Goldman @DavidGoldmanCNN

@ November 8, 2012: 3:10 PMET

Untrusted manufacturers can craft hardware Trojans

Firewall

US DoD controls supply chain with trusted foundries.

Trusted fabs are the only way to get strong guarantees

For example, stealthy trojans can thwart post-fab detection
[A2: Analog Malicious Hardware, Yang et al., IEEE S&P 2016;
Stealthy Dopant-Level Trojans, Becker et al., CHES 2013]

Trusted fabs are the only way to get strong guarantees
For example, stealthy trojans can thwart post-fab detection

[A2: Analog Malicious Hardware, Yang et al., IEEE S&P 2016;
Stealthy Dopant-Level Trojans, Becker et al., CHES 2013]

But trusted fabrication is not a panacea:

X Only 5 countries have cutting-edge fabs on-shore

X Building a new fab takes $$$$$%, years of R&D

Trusted fabs are the only way to get strong guarantees

For example, stealthy trojans can thwart post-fab detection
[A2: Analog Malicious Hardware, Yang et al., IEEE S&P 2016;
Stealthy Dopant-Level Trojans, Becker et al., CHES 2013]

But trusted fabrication is not a panacea:

X Only 5 countries have cutting-edge fabs on-shore
X Building a new fab takes $$$$$%, years of R&D

X Semiconductor scaling: chip area and energy go with
square and cube of transistor length (*“critical dimension”)

X So using an old fab means an enormous performance hit
e.g., India’s best on-shore fab is 108 x behind state of the art

Trusted fabs are the only way to get strong guarantees

For example, stealthy trojans can thwart post-fab detection
[A2: Analog Malicious Hardware, Yang et al., IEEE S&P 2016;
Stealthy Dopant-Level Trojans, Becker et al., CHES 2013]

But trusted fabrication is not a panacea:

X Only 5 countries have cutting-edge fabs on-shore
X Building a new fab takes $$$$$%, years of R&D

X Semiconductor scaling: chip area and energy go with
square and cube of transistor length (“critical dimension™)

X So using an old fab means an enormous performance hit
e.g., India’s best on-shore fab is 108 x behind state of the art

Can we get trust more cheaply?

Verifiable ASICs

Principal

F — designs
for P,V

Verifiable ASICs

Trusted
fab (slow)
builds V

/

Principal

F — designs
for P,V

Untrusted
fab (fast)
builds P

Verifiable ASICs

Trusted
fab (slow)
builds V

Principal

F — designs
for P,V

/

Integrator

Untrusted
fab (fast)
builds P

s\ /

Verifiable ASICs

Principal
F — designs
Trusted] for P,V T Untrusted
f%b |(§|OW) fgblgast)
uilds vV uilds P
T Integrator L
\

input,_

output

2

Verifiable ASICs

Untrusted
fab (fast)
builds P

Principal
F — designs
Trusted / for P,V \
f%b |(3|0W)
uilds vV
T Integrator L
1
input,_ X
output _ V a P
= proof that
y =F(x)

Can we build Verifiable ASICs?

input

VS.

output

Makes sense if V 4 P are cheaper
than trusted F

Can we build Verifiable ASICs?

input

Babai85
GMR85
BCC86
BFLS91
FGLSS91
Kilian92
ALMSS92 .

i Makes sense if V + P are cheaper

Micali9

s than trusted F
GOS06

IKO07 .
ckros Reasons for hope:

22‘;910 e running time of V < F (asymptotically)
Groth10

GLR11

Lipmaall

BCCT12

GGPR13

BCCT13

KRR14

VS. F

output

Can we build Verifiable ASICs?

input
Babai85
GMRS5 output
BCC86
BFLS91
FGLSS91

Kilian92
ALMSS92

AS0? Makes sense if V + P are cheaper

W™ than trusted F
GOS06

IKO07 .
ckros Reasons for hope:

KR09

cePio e running time of V < F (asymptotically)

oot e Implementations exist
Lipmaall

BCCT12

GGPR13

BCCT13

KRR14

VS.

SBW11
CMT12
SMBW12
TRMP12
SVPBBW12
SBVBPW13
VSBW13
PGHR13
Thalerl3
BCGTV13
BFRSBW13
BFR13
DFKP13
BCTV14a
BCTV14b

BCGGMTV14

FL14
KPPSST14
FTP14

WSRHBW15

BBFR15

CFHKNPZ15

CTV15

KZMQCPPsS15

Can we build Verifiable ASICs?

input
Babai85
GMRss Outeut
BCC86
BFLS91

FGLSS91

Kilian92
ALMSS92

AS02 Makes sense if V + P a

W™ than trusted F
GOS06

IKO07 i
ckros Reasons for hope:

KR09

Groth10 H 1
oot e Implementations exist ®

Lipmaall

worker’s cost
normalized to native C

1013
101

10°

2

—
<

<

=1

matrix multiplication (m=128)

SBW11
CMT12
SMBW12
TRMP12
SVPBBW12
SBVBPW13
VSBW13
PGHR13
Thalerl3
BCGTV13
BFRSBW13
BFR13
DFKP13
BCTV14a

CGP10 e running time of V < F @mptotically)

i 0[[P overheads are massive,}]but using an
GGPR13 advanced fab might offset these costs

BCCT13
KRR14

BCTV14b
BCGGMTV14
FL14
KPPSST14
FTP14
WSRHBW15
BBFR15
CFHKNPZ15
CTV15
KZMQCPPsS15

Can we build Verifiable ASICs?

SBW11
input F CMT12
Babaish ot VS. SMBW12
GMRgs OUR TRMP12
BCC86 SVPBBW12
BFLS91 SBVBPW13
FGLSS91 VSBW13
Kilian92 7) h PGHR13
ALMSS92 i are cheaper Thaler13
e Makes sense if V + P Thelerts
Micalio4 BFRSBW13
o than trusted F e
GOS06 . DFKP13
IKO07 hepe caution: BCTV14a
GKRO08 Reasons for feasibili BCTV14b
KR09 is silent about feasibilit BCGGMTV14
GGP10 e Theory is sile _] y FL14
eo® o Onus is heavier than in prior work KPPSST14
GLR11 A FTP14
spmaall o Hardware issues: energy, chip area WSRHBW15
BCCT12) L . BBFR15
GGPR13 e Need physically realizable circuit design CEHKNPZ15
BCCT13 . . . CTV15
KRR14 e Need V to save for plausible computation sizes

KZMQCPPsS15

Zebra: a hardware design that saves costs

A qualified success

Zebra: a hardware design that saves costs. . .

...sometimes.

Probabilistic proof protocols, briefly

input_

output

F must be expressed as an arithmetic circuit (AC)
AC satisfiable <= F was executed correctly

P convinces)V that the AC is satisfiable

Probabilistic proof protocols, briefly

input_

output

Arguments [GGPR13, IPs
SBVBPW13, PGHR13, BCTV14] [GKROS, CMT12, VSBW13]

e.g., Zaatar, Pinocchio, libsnark e.g., Muggles, CMT, Allspice

Probabilistic proof protocols, briefly

input,_

output |

proof that
y=F(x)

Arguments [GGPR13, IPs
SBVBPW13, PGHR13, BCTV14| [GKR08, CMT12, VSBW13]
e.g., Zaatar, Pinocchio, libsnark e.g., Muggles, CMT, Allspice

What about other schemes? e.g.,
FHE [GGP10], MIP4+FHE [BC12], MIP [BTWV14],
PCIP [RRR16], IOP [BCS16], PIR [BHK16], ...

Probabilistic proof protocols, briefly

input,_

output |

proof that
y=F(x)

Arguments [GGPR13, IPs
SBVBPW13, PGHR13, BCTV14] [GKROS, CMT12, VSBW13]

e.g., Zaatar, Pinocchio, libsnark e.g., Muggles, CMT, Allspice

What about other schemes? e.g.,

FHE [GGP10], MIP+FHE [BC12], MIP [BTWV14],
PCIP [RRR16], IOP [BCS16], PIR [BHK16], ...
These all seem a bit further from practicality.

Probabilistic proof protocols, briefly

input_
output
Arguments [GGPR13, IPs
SBVBPW13, PGHR13, BCTV14| [GKR08, CMT12, VSBW13]
e.g., Zaatar, Pinocchio, libsnark e.g., Muggles, CMT, Allspice
+ nondeterministic ACs, — deterministic ACs;
arbitrary connectivity layered, low depth

+ Few rounds (< 3) — Many rounds

Probabilistic proof protocols, briefly

input_
output
Arguments [GGPR13, IPs
SBVBPW13, PGHR13, BCTV14| [GKR08, CMT12, VSBW13]
e.g., Zaatar, Pinocchio, libsnark e.g., Muggles, CMT, Allspice
+ nondeterministic ACs, — deterministic ACs;
arbitrary connectivity layered, low depth
+ Few rounds (< 3) — Many rounds

Unsuited to hardware X
implementation

Probabilistic proof protocols, briefly

input_
output
Arguments [GGPR13, IPs
SBVBPW13, PGHR13, BCTV14| [GKR08, CMT12, VSBW13]
e.g., Zaatar, Pinocchio, libsnark e.g., Muggles, CMT, Allspice
+ nondeterministic ACs, — deterministic ACs;
arbitrary connectivity layered, low depth
+ Few rounds (< 3) — Many rounds
Unsuited to hardware X Suited to hardware
implementation implementation

Zebra builds on IPs of GKR [GKR08, CMT12, VSBW13|

F must be expressed as a
layered arithmetic circuit.

xxxxx

Zebra builds on IPs of GKR [GKR08, CMT12, VSBW13|

1. V sends inputs

ssssss

1. V sends inputs (? @? @ﬁ S? 9

2. P evaluates

ssssss

RS- 0000606
2 P evalintes (@ 5 o g g g Ej

Zebra builds on IPs of GKR [GKR08, CMT12, VSBW13|

ssssss

1. V sends inputs ? @? @ﬁ S? \@\
2. P evaluates qj i@ g g Eﬂ é
ofio

Zebra builds on IPs of GKR [GKR08, CMT12, VSBW13|

1. V sends inputs

2. P evaluates, returns output y

200669
i

tomiifoRNFon!
2R
@
@ —@t
_® il
—@ @

Zebra builds on IPs of GKR [GKR08, CMT12, VSBW13|

111111 0

1. V sends inputs

2. P evaluates, returns output y

3. V constructs polynomial relating
y to last layer’s input wires

thinking...

Zebra builds on IPs of GKR [GKR08, CMT12, \/SBV\/13]
1. V sends inputs ©) @ @ @ ®

2. P evaluates, returns output y

3. V constructs polynomial relating
y to last layer’s input wires

4.V engages P in a sum-check

sum-check
— || [LFKN9O]

Zebra builds on IPs of GKR [GKR08, CMT12, VSBW13]
1. V sends inputs ©) @ @ OND, @

2. P evaluates, returns output y .
_ _ CRONO
3. V constructs polynomial relating
y to last layer’s input wires

4.V engages P in a sum-check, gets E# ==
claim about second-last layer Ea g [ij 6 ONORONO

sum-check
— || [LFKN9O]

% x P Eé
—— Q
: ®

Zebra builds on IPs of GKR [GKR08, CMT12, VSBW13]
1. V sends inputs ©) @ @ @ ®

2. P evaluates, returns output y

3. V constructs polynomial relating
y to last layer’s input wires

4.V engages P in a sum-check, gets
claim about second-last layer

5. V iterates
% X P
B w— y —
— . sum-check
= |l [LFKN9O]

P

more sum-checks

Zebra builds on IPs of GKR [GKR08, CMT12, VSBW13]

1.
2.
3.

)% x P

Y sends inputs ©) @ @ @ ®

‘P evaluates, returns output y é I E‘J S‘J
V constructs polynomial relating

y to last layer’s input wires %é %d 8 & o %j %j

.V engages P in a sum-check, gets
claim about second-last layer Ea H [Jrj (g o o OO

5.

V iterates

ﬁ@@b@b@

y —

sum-check

e

— I [LFKNoO] &

P

more sum-checks

Zebra builds on IPs of GKR [GKR08, CMT12, VSBVV13]

1.
2.
3.

5.

.V engages P in a sum-check, gets

Y sends inputs © @ @ @ @

P evaluates, returns output y (5 i c g SJ
V constructs polynomial relating

y to last layer’s input wires (Ea @ 6 SN0 E’j %j

claim about second-last layer

V iterates
% x P
~— y —
— . sum-check
= |l [LFKN9O]

D

more sum-checks

Zebra builds on IPs of GKR [GKR08, CMT12, VSBW13]
1. V sends inputs —® @ @ @ ®

2. P evaluates, returns output y

3. V constructs polynomial relating
y to last layer’s input wires

4.V engages P in a sum-check, gets
claim about second-last layer

5. V iterates, gets claim about
inputs, which it can check

% x P
B w— y —
— . sum-check
= |l [LFKN9O]
more sum-checks

Zebra builds on IPs of GKR [GKR08, CMT12, \/SBV\/13]
Soundness error o< p~t ONONONO @

Fre

sum-check
— || [LFKN9O]

more sum-checks

Zebra builds on IPs of GKR [GKR08, CMT12, \/SBW13]
Soundness error oc p* ©) @ @ @ ©

Cost to execute F directly: (,5 i RO g EJ
O(depth - width) 6
V's sequential running time: Eé %d &) 0 %j %j

O(dept_h log width + |x| + |Y| Ea H (”j 6

(assuming precomputed queries)
%@@@@%@
J
NjIpap-=a:

% x P
Y —— CHONCE
— sum-check
— || [LFKN9O]
more sum-checks

Zebra builds on IPs of GKR [GKR08, CMT12, VSBW13]
Soundness error o< p~! @ @ @ 9 o)

Cost to execute F directly: (ﬂg i oRO g SJ
O(depth - width) 8
V's sequential running time: %é %d , ‘ ! %j %j

O(dept_h - log width + |x| + yl) E# g C”j 6

(assuming precomputed queries)

O(depth - width - log width)

% x P
e w— y —
— . sum-check
= |l [LFKN9O]
more sum-checks

Extracting parallelism in Zebra

:@
o

111111

@
o

7 executing AC: layers are
sequential, but all gates at a

layer can be executed in parallel

AONRON
sONEONN

OMIZON
aORRONRON

i

R OEREONaONRON=O)

-

@)

©

—® G

LOMIR®)

altion
i@
cal=ion

Extracting parallelism in Zebra

8

_®
_®

P executing AC: layers are
sequential, but all gates at a
layer can be executed in parallel

}-CD_

aORINIROERONIZO

ONE ORI

ONIEONIONIZG,

Proving step: Can V and P
interact about all of F's layers
at once?

G

&)

R OE RO ONRONC)
ONEON

|
O
0]
2O
—E 3@

©

Extracting parallelism in Zebra

_®
_®

P executing AC: layers are
sequential, but all gates at a
layer can be executed in parallel

}-CD_

aORINIROERONIZO

ONIEONIONIZG,

Proving step: Can V and P
interact about all of F's layers
at once?

R OE RO ONRONC)
ONEON

No. V must ask questions in
order or soundness is lost.

&)
e
Gt

AHl e L
@
—@ @

&

©

Extracting parallelism in Zebra

P executing AC: layers are
sequential, but all gates at a
layer can be executed in parallel

Proving step: Can V and P
interact about all of F's layers
at once?

No. V must ask questions in
order or soundness is lost.

But: there is still parallelism to
be extracted. ..

Extracting parallelism in Zebra's P

(+)
IROIROSINOS RO
N IROS RO RO IO el E©)
{OSIROO Ogﬁ Ok 0..0-
@%S‘J@‘ fl@i ESIOINO,
O INOIROSNONNIROIIINON OO
@\iuvw‘g QIR OSIROS)
OENOSEOSEOSERONEROZNS r@
\vm_)
g
o
53
AT

Extracting parallelism in Zebra's P

V questions P about

_®
OREONEC)
RONROCRRCE!

aONRONIRGE
sONEONN

Simultaneously, P
returns F(x).

i

®
F(x1)'s output layer. 3

-@ @@Z

-

—@

ONIIRONINRON::
RO ONIIERONI
O

calsion

Extracting parallelism in Zebra's P

o

10

e
_®

OB ORI OL
A ONEON

V questions P about
F(x1)'s next layer

AONLON

IS0
©
©
©

R OEREONaONRONO)
&L
aONRONEON

-
R
7 A
éﬂ@ O
O ONEONE
ONEOCERON
ONIRONEONIE:
ONRONIE!
eu

-
__@—1
-]
m i
o
—E

Extracting parallelism in Zebra's P

V questions P about

F(x1)'s next layer, and
F(x2)'s output layer.

aONRONIRGE
A ONEON

1&

i

Sl OMIEON

-

R OEREONaONRONO)
_®

ONIEORINEONRONEONNLC)

—® G

1ON
ONIEITo
calsion

Extracting parallelism in Zebra's P

V questions P about

_®
OREONEC)
m

aONRONIRGE
sONEONN

Meanwhile, P returns
F(X3).

i

®
F(x1)'s next layer, and é
F(x2)'s output layer. Eé

-@ @@Z

O

-

—@

G- E

calsion

Extracting parallelism in Zebra's P

(+)
JPHYM OF
O DD D DB
HOSIROI O op OFNIROSNO
O LD D D IRCURIES ld-o
iRcURCE RO IRONIIMCNMOSNO
of DI D Bl B D
® IR (BB r@
A S S
L L L
; 5
m L
2

Extracting parallelism in Zebra's P

121665 0
1 [

© 0
59
Rk

This process continues. . .

LD

d

-®

mE—cE—

9995

o ol

HOSNOINO

S5

> ol

[
|

F(x1)

F(x)

F(xs)
F(xa)

F(xs)

Extracting parallelism in Zebra's P

Fix) @@ @ : ® 9
This process continues F(Xg) é ONONO g EJ
until ¥V and P interact
about every layer F(xs) Eé @ 6 OO, %j %j
simultaneously—but for 3 (T T
different computations. F(@ H ONRO
—]

) and P can complete

one proof in each time F(X5)<Eé @
step. E I |

]
O
G |—&
a©
—® G

Extracting parallelism in Zebra's P with pipelining

i Input (x)

| [P —— + P

ueries - _
aueres) | __Sub-prover, layerd -1 __
— l— 1
osponses] | 1.Prove ~—i®® 0O &

5 i

V queries d *
—ueres) [Sub-prover,fayer 1
Fosponses| :-__p_ri)’?___-“_'-@_@;@@:
—ueres) [Sub-prover,layer0 ___
Fosponses| :-__F’_rf))’?___-“_'-@_@]@@:

} Output (y)

This approach is just a standard hardware technique, pipelining;
it is possible because the protocol is naturally staged.

Extracting parallelism in Zebra's P with pipelining

i Input (x)
| [P —— + IP
ueries - _
—queres) | Sub-prover, layerd -1 __
osponses] | 1. POve =@ QO)
k [

V ueries d *
—ueres) [Sub-prover,fayer 1
Fosponses| :-__p_ri’)’?___-”_'-@_@;@@:
—ueres) [Sub-prover,layer0 ___
Fosponses| :-__QFE’Y?___-”_'-@_@_'QQ:

} Output (y)

This approach is just a standard hardware technique, pipelining;
it is possible because the protocol is naturally staged.

There are other opportunities to leverage the protocol’s structure.

Per-layer computations

For each sum-check round, P
sums over each gate in a layer —

sssssss

[[[[[[[[[

ONIEONI0]

©

Per-layer computations

For each sum-check round, P

sums over each gate in a layer,
evaluating H[k], k € {0, 1,2}

HIK =) (g k)

Elayer
layer: g=y

CRCHCHCRCHONC

Per-layer computations
HIKl =) d(g. k)

For each sum-check round, P layer: gclayer

sums over each gate in a layer, Gj Gj Gj Cj Gj Gj Gj

evaluating H[k], k € {0, 1,2}

In software:
// compute H[O],H[1],H[2]
for k € {0, 1, 2}:
H[k] < O
for g € layer:
H[k] < H[K] + d(g, k)
// § uses state[g]

// update lookup table
// with V's random coin
for g € layer:

state[g] < 6(g, rj)

Per-layer computations
HIKl =) d(g. k)

For each sum-check round, P layer: gclayer

sums over each gate in a layer, @ @ Gj Cj Gj Gj @

evaluating H[k], k € {0, 1,2}

In software: In hardware:
// compute H[O],H[1], H[2] gate gate gate gate
prover prover prover prover
for k € {0, 1, 2}: 5(0, 0)[|6(1, 0) |[6(2, 0){|4(3, 0)
H[k] < O

for g € layer:
HLk] < H[k] + d(g, k)

// 0 uses state[g]

// update lookup table
// with V's random coin
for g € layer:

state[g] < d(g, ry)

Per-layer computations

HIk = > (g k
For each sum-check round, P layer: gclayer
sums over each gate in a layer,
evaluating H[k], k € {0, 1,2} @ @ Gj Ej Gj Gj @
In software: In hardware:
// compute H[O],H[1], H[2] gate gate gate gate
prover || prover || prover || prover
for k € {0, 1, 2}: 5(0, 0)|[a(1, 0)[|6(2, 0){|5(3, 0)
H[k] < O
for g € layer:
H[k] < H[k] + (g, k)
// 0 uses state[g]
// update lookup table \//
// with V's random coin DDDD
for g € layer:
state[g] < 0(g, ry) RAM

Per-layer computations

HIk = > (g k
For each sum-check round, P layer: gclayer
sums over each gate in a layer,
evaluating H[k], k € {0, 1,2} Gj Gj Gj Ej Gj Gj Gj
In software: In hardware:
// compute H[O],H[1], H[2] gate gate gate gate
prover || prover || prover || prover
for k € {0, 1, 2}: 5(0, 0)|[a(1, 0)[|6(2, 0){|5(3, 0)
H[k] < O
for g € layer:
H[k] < H[k] + (g, k)
// 0 uses state[g] \\\\ \
// update lookup table | NN YT \
// with V's random coin DDDD ! :
for g € layer: | E
statelg] (g, y) RA'V' | Adder tree |

Per-layer computations

For each sum-check round, P
sums over each gate in a layer,

evaluating H[k], k € {0, 1,2}

HIK =) (g k)

g€<layer

layer:

POIDOYIY

In software: In hardware:
// compute H[O],H[1], H[2] gate gate gate gate
prover || prover || prover || prover
for k € {0, 1, 2}: 0(0, 0) [[4(1, 0)||0(2, 0)|{d(3, 0)
HLK] < 0 5(0, 1) ||6(1, D||6(2, 1)|[6(3, 1)

for g € layer:
H[k] < H[k] + (g, k)
// 0 uses state[g]

// update lookup table
// with V's random coin
for g € layer:

state[g] < 40(g, ry)

NN T
=)

RAM

Adder tree

Per-layer computations

For each sum-check round, P

sums over each gate in a layer,
evaluating H[k], k € {0, 1,2}

HIK =) (g k)

g€<layer

layer:

POIDOYIY

In software: In hardware:
// compute H[01,H[1],H[2] gate || gate |[gate || gate
prover prover prover prover
for k € {0, 1, 2}: 5(0, 0){[4(1, 0)||6(2, 0)[|4(3, 0)
HLk] < 0 5(0, 1)[|6(1, D||6(2, 1)][6(3, 1)
for g € layer: 5(0, 2)[|6(1, 2)[|6(2, 2)||6(3. 2)
H[k] < H[k] + d(g, k)

// § uses state[g]

// update lookup table
// with V's random coin
for g € layer:

state[g] < 6(g, rj)

Per-layer computations

For each sum-check round, P
sums over each gate in a layer,
evaluating H[k], k € {0, 1,2}

HIK =) (g k)

g€<layer

layer:

POIDOYIY

In software: In hardware:
// compute H[O],H[1],H[2] gate gate gate gate
prover prover prover prover
for k € {0, 1, 2}: 5(0, 0) [|o(1, 0)]|4(2, 0)[|0(3, 0)
H[k] < 0 o0, D)ffo(L, 1)||o(2, 1)ffo(3, 1)
for g € layer: 5(0, 2)[16(1, 2)[|6(2. 2)||6(3, 2)
HIKD — HIKD + 0c, k) | |50,)| 8(1, r)|[8(2, 1)||83. 1)

// § uses state[g]

// update lookup table
// with V's random coin
for g € layer:

state[g] < 6(g, rj)

Per-layer computations

HIK =) (g k)

For each sum-check round, P layer: gclayer
sums over each gate in a layer,
evaluating H[k], k € {0, 1,2} Gj Gj Gj Ej Gj Gj Gj
In software: In hardware:
// compute H[O],H[1],H[2] gate gate gate gate
prover || prover || prover || prover
for k € {0, 1, 2}: 5(0, 0) [|o(1, 0)]|4(2, 0)[| (3, 0)
HLk] < 0 5(0, 1)[|6(1, D||6(2, 1)][6(3, 1)
for g € layer: 500, 2)[|5(1, 2)||5(2, 2)][6(3, 2)
HIK] <= HIK] + d(g, k) 5(0, v)||8@,)52,)]G, 1)
// § uses state[g]
// update lookup table Do~ o~ \
// with V’s random coin E :
for g € layer: | E
statelg] < d(g. Tj) | _Adder tree |

Per-layer computations

For each sum-check round, P
sums over each gate in a layer,

evaluating H[k], k € {0, 1,2}

In software:

HIK =) (g k)

5060 W00
In hardware:

// compute H[O],H[1],H[2]
for k € {0, 1, 2}:
H[k] < O
for g € layer:
H[k] < H[K] + d(g, k)
// § uses state[g]

// update lookup table
// with V's random coin
for g € layer:

state[g] < 6(g, rj)

state[O]]][[state[1]]][[state[2]]][[state[3]

gate gate gate gate
prover

(3, 0)

Zebra's design approach

\/ Extract parallelism

e.g., pipelined proving
e.g., parallel evaluation of § by gate provers

\/ Exploit locality: distribute data and control
e.g., no RAM: data is kept close to places it is needed

Zebra's design approach

\/ Extract parallelism

e.g., pipelined proving
e.g., parallel evaluation of § by gate provers

\/ Exploit locality: distribute data and control

e.g., no RAM: data is kept close to places it is needed
e.g., latency-insensitive design: localized control

Zebra's design approach

\/ Extract parallelism

e.g., pipelined proving
e.g., parallel evaluation of § by gate provers

\/ Exploit locality: distribute data and control
e.g., no RAM: data is kept close to places it is needed
e.g., latency-insensitive design: localized control

\/ Reduce, reuse, recycle

e.g., computation: save energy by adding memoization to P
e.g., hardware: save chip area by reusing the same circuits

Architectural challenges

Interaction between V and P requires a lot of bandwidth
X V and P on circuit board? Too much energy, circuit area

Architectural challenges

Interaction between V and P requires a lot of bandwidth

X V and P on circuit board? Too much energy, circuit area
v Zebra uses 3D integration

Architectural challenges

Interaction between V and P requires a lot of bandwidth
X V and P on circuit board? Too much energy, circuit area

v Zebra uses 3D integration DIW%E
DIEO\‘I{ |

Protocol requires input-independent precomputation [VSBW13|

Architectural challenges

Interaction between V and P requires a lot of bandwidth
X V and P on circuit board? Too much energy, circuit area

v Zebra uses 3D integration DIE"E
DIEO\‘I{ |

Protocol requires input-independent precomputation [VSBW13|
v/ Zebra amortizes precomputations over many V-P pairs

Architectural challenges

Interaction between V and P requires a lot of bandwidth
X V and P on circuit board? Too much energy, circuit area

v/ Zebra uses 3D integration verz |
DIE‘\‘I{

f_;i,&_‘g_;*;‘;;;‘ é

Protocol requires input-independent precomputation [VSBW13|
v/ Zebra amortizes precomputations over many V-P pairs

Precomputations need secrecy, integrity
X Give V trusted storage? Cost would be prohibitive

input

output

Architectural challenges

Interaction between V and P requires a lot of bandwidth
X V and P on circuit board? Too much energy, circuit area

v/ Zebra uses 3D integration verz |
DIE‘\‘I{

f_;i,&_‘g_;*;‘;;;‘ é

Protocol requires input-independent precomputation [VSBW13|
v/ Zebra amortizes precomputations over many V-P pairs

Precomputations need secrecy, integrity
X Give V trusted storage? Cost would be prohibitive
v/ Zebra uses untrusted storage + authenticated encryption

input:

output

Implementation

Zebra's implementation includes

e a compiler that produces synthesizable Verilog for P

e two V implementations

o hardware (Verilog)
e software (C++)

e library to generate V's precomputations

e Verilog simulator extensions to model
software or hardware V’s interactions with P

...and it seemed to work really well!

Zebra can produce 10k—100k proofs per second,
while existing systems take tens of seconds per proof!

...and it seemed to work really well!

Zebra can produce 10k—100k proofs per second,
while existing systems take tens of seconds per proof!

But that's not a serious evaluation. . .

Evaluation method

input,

VS. F

output

Baseline: direct implementation of F in same technology as V

Evaluation method

input,

VS. F

output

Baseline: direct implementation of F in same technology as V

Metrics: energy, chip size per throughput (discussed in paper)

Evaluation method

input,

output

VS. F

Baseline: direct implementation of F in same technology as V
Metrics: energy,

: based on circuit synthesis and simulation,
published chip designs, and CMOS scaling models

Charge for V, P, communication; retrieving and decrypting
precomputations; PRNG; Operator communicating with V

Evaluation method

input,

VS. F

output

Baseline: direct implementation of F in same technology as V

Metrics: energy, chip size per t

350 nm: 1997 (Pentium II)

Measurements: based on circuif 7 nm: ~ 2017 [TSMC]

published chip designs, and CM| =~ 20 year gap between
Charge for V, P, communi trusted and untrusted fab

precomputations; PRNG; Operator communicating wit@

Constraints: trusted fab = 350 nm; untrusted fab = 7 nm)|
200 mm? max chip area; 150 W max total power

Application #1: number theoretic transform

NTT: a Fourier transform over [,

Widely used, e.g., in computer algebra

Application #1: number theoretic transform
Ratio of baseline energy to Zebra energy

0.3f

baseline vs. Zebra (higher is better)

0-17 I I 1 I I I I

7 1
6 8 Iog29(NTT solze)11 12

13

Application #2: Curve25519 point multiplication

Curve25519: a commonly-used elliptic curve

Point multiplication: primitive, e.g., for ECDH

Application #2: Curve25519 point multiplication

baseline vs. Zebra (higher is better)

0.3

0.1

Ratio of baseline energy to Zebra energy

84 170 340 682 o
Parallel Curve25519 point multiplications

1147

A qualified success

Zebra: a hardware design that saves costs. . .

... sometimes.

Summary of Zebra's applicability

1. Computation F must have a layered, shallow, deterministic AC

2. Must have a wide gap between cutting-edge fab (for P)
and trusted fab (for V)

3. Amortizes precomputations over many instances
4. Computation F must be very large for V to save work

5. Computation F must be efficient as an arithmetic circuit

Summary of Zebra's applicability

Applies to IPs, but not arguments

1. Computation F must have a layered, shallow, deterministic AC

2. Must have a wide gap between cutting-edge fab (for P)
and trusted fab (for V)

3. Amortizes precomputations over many instances
4. Computation F must be very large for V to save work

5. Computation F must be efficient as an arithmetic circuit

Arguments versus |Ps, redux

IPs Arguments
Design principle [GKR08, CMT12, [GGPR13, SBVBPW13,
VSBW13] PGHR13, BCTV14]
Extract parallelism v v
Exploit locality v
Reduce, reuse, recycle v

Argument protocols seem friendly to hardware?

Arguments versus |Ps, redux

IPs Arguments
Design principle [GKR08, CMT12, [GGPR13, SBVBPW13,
VSBW13] PGHR13, BCTV14]
Extract parallelism v v
Exploit locality v X
Reduce, reuse, recycle v

Argument protocols seem unfriendly to hardware:

P computes over entire AC at once = need RAM

Arguments versus |Ps, redux

IPs Arguments
Design principle [GKR08, CMT12, [GGPR13, SBVBPW13,
VSBW13] PGHR13, BCTV14]
Extract parallelism v v
Exploit locality v X
Reduce, reuse, recycle v X

Argument protocols seem unfriendly to hardware:

P computes over entire AC at once = need RAM

P does crypto for every gate in AC = special crypto circuits

Arguments versus |Ps, redux

IPs Arguments
Design principle [GKR08, CMT12, [GGPR13, SBVBPW13,
VSBW13] PGHR13, BCTV14]
Extract parallelism v v
Exploit locality v X
Reduce, reuse, recycle v X

Argument protocols seem unfriendly to hardware:

‘P computes over entire AC at once = need RAM

‘P does crypto for every gate in AC = special crypto circuits

... but we hope these issues are surmountable!

Summary of Zebra's applicability

1. Computation F must have a layered, shallow, deterministic AC

2. Must have a wide gap between cutting-edge fab (for P)
and trusted fab (for V)

3. Amortizes precomputations over many instances
4. Computation F must be very large for V to save work

5. Computation F must be efficient as an arithmetic circuit

Common to essentially all built proof systems

Summary of Zebra's applicability

1. Computation F must have a layered, shallow, deterministic AC

2. Must have a wide gap between cutting-edge fab (for P)
and trusted fab (for V)

3. |Amortizes|precomputations over many instances
4. Computation F must be very large for V to save work

5. Computation F must be efficient as an arithmetic circuit

Summary of Zebra's applicability

1. Computation F

2. Must have a wi
and trusted fab

3. |Amortizes|precc
4, Computatio@

5. Computation F

System Amortization regime Advice
Zebra many V-P pairs short
Allspice batch of instances

. short
[VSBW13] of a particular F
Bootstrapped
Sh ARG Il computations lon
[BCTVida, 2" <OmP =
CTV15]
BCTV all computations e
[BCTV14b] of the same length
Pinocchio all future instances o
[PGHR13] of a particular F
Zaatar batch of instances o
[SBVBPW13] of a particular F

Exception: [CMT12] with logspace-uniform ACs

Summary of Zebra's applicability

1. Computation F must have a layered, shallow, deterministic AC

2. Must have a wide gap between cutting-edge fab (for P)
and trusted fab (for V)

3. Amortizes precomputations over many instances
4. Computation F must be very large for V to save work

5. Computation F must be efficient as an arithmetic circuit

Summary of Zebra's applicability

For example, libsnark [BCTV14b], a highly optimized implementa-
tion of [GGPR13] and Pinocchio [PGHR13]:

V's work: 6 ms + (|x| + |y|) - 3 pus on a 2.7 GHz CPU

4. Computation F must be very large for V to save work ‘ ®

5. Computation F must be efficient as an arithmetic circuit

Summary of Zebra's applicability

For example, libsnark [BCTV14b], a highly optimized implementa-
tion of [GGPR13] and Pinocchio [PGHR13]:

V's work: 6 ms + (|x| + |y|) - 3 pus on a 2.7 GHz CPU
= break-even point > 16 x 10® CPU ops

4. Computation F must be very large for V to save work ‘ ®

5. Computation F must be efficient as an arithmetic circuit

Summary of Zebra's applicability

For example, libsnark [BCTV14b], a highly optimized implementa-
tion of [GGPR13] and Pinocchio [PGHR13]:

V's work: 6 ms + (|x| + |y|) - 3 pus on a 2.7 GHz CPU
= break-even point > 16 x 10® CPU ops

With 32 GB RAM, libsnark handles ACs with < 16 x 10° gates

4. Computation F must be very large for V to save work ‘ ®

5. Computation F must be efficient as an arithmetic circuit

Summary of Zebra's applicability

For example, libsnark [BCTV14b], a highly optimized implementa-
tion of [GGPR13] and Pinocchio [PGHR13|:

V's work: 6 ms + (|x| + |y|) - 3 pus on a 2.7 GHz CPU
= break-even point > 16 x 10® CPU ops

With 32 GB RAM, libsnark handles ACs with < 16 x 10° gates

= breaking even requires > 1 CPU op per AC gate, e.g.,
computations over [F, rather than machine integers

4. Computation F must be very large for V to save work ®

5. Computation F must be efficient as an arithmetic circuit

Recap

input

output

+ Verifiable ASICs: a new approach to building
trustworthy hardware under a strong threat model

+ First hardware design for a probabilistic proof protocol

-+ Improves performance compared to trusted baseline

Recap

input

output

+ Verifiable ASICs: a new approach to building
trustworthy hardware under a strong threat model

+ First hardware design for a probabilistic proof protocol

-+ Improves performance compared to trusted baseline

— Improvement compared to the baseline is modest
— Applicability is limited:

precomputations must be amortized

computation needs to be “big enough”

large gap between trusted and untrusted technology
does not apply to all computations

Recap

input

output

+ Verifiable ASICs: a new approach to building
trustworthy hardware under a strong threat model

+ First hardware design for a probabilistic proof protocol

-+ Improves performance compared to trusted baseline

— Improvement compared to the baseline is modest
— Applicability is limited:

precomputations must be amortized

computation needs to be “big enough”

large gap between trusted and untrusted technology
does not apply to all computations

Bottom line: Zebra is plausible—when it applies
https://www.pepper-project.org/

