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Definition
For any finite set Z,

» for R C Z x Z, the vector x® is the characteristic vector of R,
that is,

R {1 if (i,j) € R
7j_

X\ = .
! 0 otherwise

» the linear ordering polytope PLZO c RZ%Z is

PLZO = conv{xL : L linear order on Z}



Definition

For a vertex-weighted graph (G, ) and S C V(G),
> 1(S) = es m(v) (weight of S)
> w(S) = u(S)— |E(G[S])] (worth of S)
> (G, p) = maxscy(c) w(S)
» Sis tight if w(S) = a(G, u)

> weight =4

> ight =4
Welg » worth = 2

» worth =1 )
> tight




Suppose

v

(G, ) is any weighted graph

Yisasetst |Y|=|V(G)and YNV(G)=10
f:V(G)— Y is a bijection

Zis a finite set s.t. V(G)UY CZ

vV v Vv
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(G, ) is any weighted graph
» Yisasetst. |Y|=|V(G)and YNV(G)=10
» f:V(G) — Y is a bijection
» Zis afinite set s.t. V(G)UY CZ

Definition

» The graphical inequality of (G, 1), which is valid for P75, is

Z )U(V) *Xv,f(v) — Z (XV,f(W) + Xf(V)vW) = a(G,u)
veV(G) {v,w}€E(G)
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Suppose

v

(G, ) is any weighted graph
» Yisasetst. |Y|=|V(G)and YNV(G)=10
» f:V(G) — Y is a bijection
» Zis afinite set s.t. V(G)UY CZ

Definition

» The graphical inequality of (G, 1), which is valid for P75, is

Z ,U(V) *Xv,f(v) — Z (XV,f(W) + Xf(V)vW) = a(G,u)
veV(G) {v,w}€E(G)

» (G, ) is facet-defining if its graphical inequality defines a

facet of PLZO

N.B. (G, ) being facet-defining is a property of the graph solely,
i.e. it is independent of the particular choice of Y, f and Z



A characterization of facet-defining graphs

Definition

» For any tight set T of (G, ), a corresponding affine equation

is defined:
Yot D ve=a(G,p)

veT ecE(T)

» The system of (G, i) is obtained by putting all these
equations together



A characterization of facet-defining graphs

Definition

» For any tight set T of (G, ), a corresponding affine equation

is defined:
Yot D ve=a(G,p)

veT ecE(T)

» The system of (G, i) is obtained by putting all these
equations together

Theorem (Christophe, Doignon and Fiorini, 2004)

(G, ) is facet-defining < the system of (G, i) has a unique
solution

» Basically rephrases the fact that the dimension of the face of
PLZO defined by the graphical inequality must be high enough

» We lack a ‘good characterization’ of these graphs...



A few results

(assuming from now on that all graphs have at least 3 vertices)

Definition

G is stability critical if G has no isolated vertex and

a(G\ e) > a(G) for all e € E(G)

Theorem (Koppen, 1995)

(G, 1) is facet-defining < G is connected and stability critical



A few results

(assuming from now on that all graphs have at least 3 vertices)

Definition

G is stability critical if G has no isolated vertex and

a(G\ e) > a(G) for all e € E(G)

Theorem (Koppen, 1995)

(G, 1) is facet-defining < G is connected and stability critical

Theorem (Christophe, Doignon and Fiorini, 2004)

(G, ) is facet-defining < its 'mirror image’ (G,deg —p) is
facet-defining




Definition

» The defect of G is |V(G)| — 2a(G)

a stability critical graph

IV(G)| =12
a(G)=3
— defect = 6




Definition
» The defect of G is |V(G)| — 2a(G)
» The defect of (G, i) is u(V(G)) — 2a(G, p)

a stability critical graph
[V(G)| = 12

a(G)=3
— defect = 6

a facet-defining graph

nw(V(G)) =7
a(G,u) =2
— defect =3




Theorem

» The defect § of a connected stability critical graph G is always
positive (Erdés and Gallai, 1961)

» Moreover, § > deg(v) — 1 for all v € V(G)  (Hajnal, 1965)



Theorem

» The defect § of a connected stability critical graph G is always
positive (Erdés and Gallai, 1961)

» Moreover, § > deg(v) — 1 for all v € V(G)  (Hajnal, 1965)
Theorem (Doignon, Fiorini, J.)

» The defect 6 of any facet-defining graph (G, u) is positive
» (G, ) and (G,deg —u) have the same defect
» For all v e V(G), we have

d >deg(v) —u(v) >1
and, because of the mirror image, also

d>u(v)>1



Odd subdivision

Here is an extension of a classical operation on stability-critical
graphs:

odd subdivision

—

H

inverse of odd subdivision

Theorem (Christophe, Doignon and Fiorini, 2004)

The odd subdivision operation and its inverse keep both a graph
facet-defining. Moreover, the defect does not change



Lemma
An inclusionwise minimal cutset of a facet-defining graph cannot

span "O" or "O—0O"

Thus when we have /< )\ we can always contract both edges by
using the inverse of odd subdivision operation



Lemma
An inclusionwise minimal cutset of a facet-defining graph cannot

span "O" or "O—0O"

Thus when we have /< )\ we can always contract both edges by
using the inverse of odd subdivision operation

Definition
A facet-defining graph is minimal if no two adjacent vertices have
degree 2



Classification of stability critical graphs

Theorem (Lovész, 1978)

For every positive integer §, the set S5 of minimal connected
stability critical graphs with defect ¢ is finite



Classification of stability critical graphs

Theorem (Lovész, 1978)

For every positive integer §, the set S5 of minimal connected
stability critical graphs with defect ¢ is finite

Research problem

Is there a finite number of minimal facet-defining graphs with
defect 4, for every § > 17

» It turns out to be true for § < 3
— an overview of the proofs is given in the next few slides

» The problem is wide open for 6 > 4



Notice first that the only minimal facet-defining graph with defect

d=1is @D&@ because 6 > u(v) >1



Notice first that the only minimal facet-defining graph with defect

d=1is @D&@ because 6 > u(v) >1

Let's look at another operation:

—>

Theorem
The subdivision of a star operation keeps a graph facet-defining.
Moreover, the defect does not change



Definition
(Gi, 1) and (Gy, p2) are equivalent if one can be obtained from
the other by using the

» odd subdivision
» inverse of odd subdivision
» subdivision of a star

operations finitely many times.



Definition
(Gi, 1) and (Gy, p2) are equivalent if one can be obtained from
the other by using the

» odd subdivision
» inverse of odd subdivision
» subdivision of a star

operations finitely many times.

Notice
> two equivalent graphs have the same defect

» (G,u) and (G, deg —p) are equivalent:




Facet-defining graphs with defect 2
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{52M@21
0 > deg(v) —p(v) >1

for any vertex v of a facet-defining graph with defect §

= deg(v) <26
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Facet-defining graphs with defect 2

Recall

{ d>p(v)>1
6 > deg(v) —p(v) =1

for any vertex v of a facet-defining graph with defect §
= deg(v) <26

Theorem

deg(v) < 25 — 1 for any vertex v of a facet-defining graph with
defect § > 2

Thus, every vertex of a facet-defining graph with defect 2 is either

= Any facet-defining graph with defect 2 is equivalent to some
stability critical graph



Theorem (Andrésfai, 1967)

The only minimal connected stability critical graph with defect 2 is

A



Theorem (Andrésfai, 1967)

The only minimal connected stability critical graph with defect 2 is

A

— we derive:

Theorem
There are exactly five minimal facet-defining graphs with defect 2:

A
VAN




Facet-defining graphs with defect 3

By previous bounds, any vertex falls in one of these cases when
0 =3

AN A A AL A A A
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Facet-defining graphs with defect 3

By previous bounds, any vertex falls in one of these cases when
0 =3

AN A A AL A A A

The subdivision of a star operation is no longer sufficient!
Definition
a (p, g)-vertex is a vertex with weight p and degree g

Fix (G, i) to be any facet-defining graph with defect 3

» We would like to show that the number of vertices v of (G, p)
with deg(v) > 3 is bounded by some absolute constant

» By the subdivision of a star operation, w.l.o.g. # (2,3)-,
(3,4)-, or (3,5)-vertices in (G, p)

» Main issue: how to get rid of the (2,4)-vertices and
(2,5)-vertices?



Suppose v is a (2,4)- or (2,5)-vertex and look at those tight sets
including exactly two neighbors of v but avoiding v:




Suppose v is a (2,4)- or (2,5)-vertex and look at those tight sets
including exactly two neighbors of v but avoiding v:

— defines a graph on the neighborhood N(v) of v, denoted H,:

e



Expanding a vertex

Assume Ja, b,c,d € V(H,) s. t. {a,b} € E(H,) and
{c,d} ¢ E(H,)

A\ v

expanding v

Lemma

» Expanding v keeps (G, 1) facet-defining and does not change
the defect

» Any (2,5)-vertex of (G, i) is expandable



Expanding a vertex

Assume Ja, b,c,d € V(H,) s. t. {a,b} € E(H,) and
{c,d} ¢ E(H,)

v \

expanding v

Lemma

» Expanding v keeps (G, 1) facet-defining and does not change
the defect

» Any (2,5)-vertex of (G, i) is expandable

— w.l.o.g. (G, 1) has no expandable vertices, as expanding a
vertex increases the number of vertices with degree at least 3



Splitting a vertex

Suppose that v is a (2, 4)-vertex and that {a, b}, {c,d} ¢ E(H,)

splitting v
— d O d( O
a b c d

\

Lemma

» Splitting v keeps (G, i) facet-defining and does not change
the defect

» Every nonexpandable (2,4)-vertex is splittable



Assume now that v is a nonexpandable (2,4)-vertex. As v is
splittable, H, is isomorphic to one of these 3 graphs:

.o 4L



Assume now that v is a nonexpandable (2,4)-vertex. As v is
splittable, H, is isomorphic to one of these 3 graphs:

Lemma

» v must be thin or thick, i.e. H, cannot be isomorphic to the
leftmost graph

» (G, ) has at most 5 thick vertices



Assume now that v is a nonexpandable (2,4)-vertex. As v is
splittable, H, is isomorphic to one of these 3 graphs:

Lemma

» v must be thin or thick, i.e. H, cannot be isomorphic to the
leftmost graph

» (G, ) has at most 5 thick vertices

— it remains to show that (G, p) has not too many thin vertices...
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Key lemma

(G, p) has at most %N thin vertices, where N is the number of
vertices with weight 1 and degree at least 3

> lteratively split every vertex of (G, i) which is thin or thick
until there are no more left

» The resulting graph is a connected stability graph with defect
3, with exactly N vertices of degree at least 3

» From Lovasz's theorem, we know that N < ¢ holds for some
absolute constant ¢

» So, the number of vertices with degree at least 3 in (G, p) is
atmost N+ 3N +5=3N+5<3c+5

Thus we obtain:

Theorem
There is a finite number of minimal facet-defining graphs with
defect 3



As a (brief) conclusion

Graphical inequalities for the linear ordering polytope give rise to a
new family of weighted graphs with interesting structural properties
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As a (brief) conclusion

Graphical inequalities for the linear ordering polytope give rise to a
new family of weighted graphs with interesting structural properties

Determining if the set of minimal facet-defining graphs with defect
¢ is finite remains an open problem for § > 4

Thank you!



